top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algorithms for Constructing Computably Enumerable Sets / / by Kenneth J. Supowit
Algorithms for Constructing Computably Enumerable Sets / / by Kenneth J. Supowit
Autore Supowit Kenneth J.
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Descrizione fisica 1 online resource (191 pages)
Disciplina 004.0151
Collana Computer Science Foundations and Applied Logic
Soggetto topico Computer science
Computable functions
Recursion theory
Set theory
Computer science—Mathematics
Theory of Computation
Computability and Recursion Theory
Set Theory
Theory and Algorithms for Application Domains
Mathematics of Computing
ISBN 9783031269042
9783031269035
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Index of notation and terms -- 2 Set theory, requirements, witnesses -- 3 What’s new in this chapter? -- 4 Priorities (a splitting theorem) -- 5 Reductions, comparability (Kleene-Post Theorem) -- 6 Finite injury (Friedberg-Muchnik Theorem) -- 7 The Permanence Lemma -- 8 Permitting (Friedberg-Muchnik below C Theorem) -- 9 Length of agreement (Sacks Splitting Theorem) -- 10 Introduction to infinite injury -- 11 A tree of guesses (Weak Thickness Lemma) -- 12 An infinitely branching tree (Thickness Lemma) -- 13 True stages (another proof of the Thickness Lemma) -- 14 Joint custody (Minimal Pair Theorem) -- 15 Witness lists (Density Theorem) -- 16 The theme of this book: delaying tactics -- Appendix A: a pairing function -- Bibliograph -- Solutions to selected exercises.
Record Nr. UNINA-9910726280003321
Supowit Kenneth J.  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Calvin C. Elgot selected papers / edited by Stephen L. Bloom ; with a foreword by Dana S. Scott and "A glimpse back" by Samuel Eilenberg
Calvin C. Elgot selected papers / edited by Stephen L. Bloom ; with a foreword by Dana S. Scott and "A glimpse back" by Samuel Eilenberg
Autore Elgot, Calvin C.
Pubbl/distr/stampa New York : Springer-Verlag, c1982
Descrizione fisica xxiv, [460] p. : ill. ; 24 cm.
Disciplina 510
Altri autori (Persone) Bloom, Stephen L.
Soggetto topico Elgot, Calvin C.-selected papers
Machine theory
Mathematics
Recursion theory
ISBN 0387906983
Classificazione QA3.E5825
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000730739707536
Elgot, Calvin C.  
New York : Springer-Verlag, c1982
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Classical recursion theory [e-book] / Piergiorgio Odifreddi
Classical recursion theory [e-book] / Piergiorgio Odifreddi
Autore Odifreddi, Piergiorgio
Pubbl/distr/stampa Amsterdam ; New York : North-Holland : Elsevier, 1989-1999
Descrizione fisica 949 p. : ill. ; 23 cm
Disciplina 511.3
Collana Studies in logic and the foundations of mathematics, 0049-237X ; 143
Soggetto topico Recursion theory
ISBN 9780444502056
044450205X
Classificazione AMS 03D
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003272489707536
Odifreddi, Piergiorgio  
Amsterdam ; New York : North-Holland : Elsevier, 1989-1999
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Classical recursion theory : the theory of functions and sets of natural numbers / Piergiorgio Odifreddi
Classical recursion theory : the theory of functions and sets of natural numbers / Piergiorgio Odifreddi
Autore Odifreddi, Piergiorgio
Pubbl/distr/stampa Amsterdam : North-Holland, 1989
Descrizione fisica xvii, 668 p. ; 24 cm
Disciplina 511.3
Collana Studies in logic and the foundations of mathematics, 0049-237X ; 125
Soggetto topico Recursion theory
ISBN 0444872957
Classificazione AMS 03D
LC QA9.6.O35
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000744919707536
Odifreddi, Piergiorgio  
Amsterdam : North-Holland, 1989
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Combinatorial functors / J. N. Crossley, Anil Nerode
Combinatorial functors / J. N. Crossley, Anil Nerode
Autore Crossley, John N.
Pubbl/distr/stampa Berlin ; New York : Springer-Verlag, 1974
Descrizione fisica viii, 146 p. ; 24 cm.
Disciplina 511.3
Altri autori (Persone) Nerode, Anilauthor
Collana Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge ; 81
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 0071-1136 ; 81 = A series of modern surveys in mathematics, 0071-1136 ; 81
Soggetto topico Combinatorial analysis
Functor theory
Model theory
Recursion theory
ISBN 3540064281
Classificazione AMS 03C
AMS 03D
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000755499707536
Crossley, John N.  
Berlin ; New York : Springer-Verlag, 1974
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Computability : an introduction to recursive function theory / Nigel Cutland
Computability : an introduction to recursive function theory / Nigel Cutland
Autore Cutland, Nigel
Pubbl/distr/stampa Cambridge : Cambridge University Press, 1980
Descrizione fisica x, 251 p. ; 23 cm.
Disciplina 519.4
Soggetto topico Computable functions
Recursion theory
ISBN 0521294657
Classificazione AMS 03D
QA9.59.C87
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione en
Record Nr. UNISALENTO-991000772779707536
Cutland, Nigel  
Cambridge : Cambridge University Press, 1980
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Computability theory / Rebecca Weber
Computability theory / Rebecca Weber
Autore Weber, Rebecca
Pubbl/distr/stampa Providence, R. I. : American Mathematical Society, c2012
Descrizione fisica vii, 203 p. : ill. ; 22 cm
Disciplina 511.352
Collana Student mathematical library, 1520-9121 ; 62
Soggetto topico Recursion theory
Computable functions
ISBN 9780821873922
Classificazione AMS 03D
AMS 68Q
LC QA9.6.W43
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001839319707536
Weber, Rebecca  
Providence, R. I. : American Mathematical Society, c2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Computation and proof theory : proc. of the Logic Colloquium held in Aachen, July 18-23, 1983 / eds. G. H. Muller, M. M. Richter
Computation and proof theory : proc. of the Logic Colloquium held in Aachen, July 18-23, 1983 / eds. G. H. Muller, M. M. Richter
Autore Borger, Egon
Disciplina 511.3
Altri autori (Persone) Oberschelp, Walter
Richter, Michael M.
Schinzel, Brigitta
Thomas, Wolfgang
Soggetto topico Recursion theory
ISBN 354013901X
Classificazione AMS 03D
AMS 03F
AMS 68-XX
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000773229707536
Borger, Egon  
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Computational prospects of infinity [[electronic resource] ] . Part I Tutorials / / editors, Chitat Chong ... [et al.]
Computational prospects of infinity [[electronic resource] ] . Part I Tutorials / / editors, Chitat Chong ... [et al.]
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (264 p.)
Disciplina 511.322
Altri autori (Persone) ChongC.-T <1949-> (Chi-Tat)
Collana Lecture notes series / Institute for Mathematical Sciences, National University of Singapore
Soggetto topico Recursion theory
Set theory
Infinite
Soggetto genere / forma Electronic books.
ISBN 1-281-93434-8
9786611934347
981-279-405-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Foreword; Preface; Recursion Theory Tutorials; Five Lectures on Algorithmic Randomness Rod Downey; 1. Introduction; 2. Lecture 1: Kolmogorov complexity basics; 2.1. Plain complexity; 2.2. Symmetry of Information; 2.3. Pre.x-free complexity; 2.4. The Coding Theorem; 2.5. Pre.x-free symmetry of information; 2.6. Pre.x-free randomness; 2.7. The overgraph functions; 3. Lecture 2: Randomness for reals; 3.1. Martin-L ̈of randomness; 3.2. Schnorr's Theorem and the computational paradigm; 3.3. Martingales and the prediction paradigm; 3.4. Super martingales and continuous semimeasures
3.5. Schnorr and computable randomness 4. Lecture 3: Randomness in general; 4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem, and Sacks' Theorem; 4.2. Coding into randoms; 4.3. Kucera Coding; 4.4. n-randomness; 4.5. Notes on 2-randoms; 4.6. Kucera strikes again; 4.7. van Lambalgen's Theorem; 4.8. Effective 0-1 Laws; 4.9. Omega operators; 5. Lecture 4: Calibrating randomness; 5.1. Measures of relative randomness and the Kucera-Slaman Theorem; 5.2. The Density Theorem; 5.3. Other measures of relative randomness; 5.4. 5.7. Hausdor. Dimension 6. Lecture 5: Measure-theoretical injury arguments; 6.1. Risking measure; 6.2. 2-random degrees are hyperimmune; 6.3. Almost every degree is CEA; References; Global Properties of the Turing Degrees and the Turing Jump Theodore A. Slaman; 1. Introduction; 1.1. Style; 2. The coding lemma and the rst order theory of the Turing degrees; 2.1. The coding lemma; 3. Properties of automorphisms of D; 3.1. Results of Nerode and Shore; 4. Slaman and Woodin analysis of Aut(D); 4.1. Persistent automorphisms; 4.2. Persistently extending persistent automorphisms
4.3. Persistence and reection 4.4. Generic persistence; 4.5. Denability of automorphisms of D; 4.6. Invariance of the double jump; 5. Denability in D; 5.1. Bi-interpretability; 6. The Turing jump; 6.1. Recursive enumerability; References; Set Theory Tutorials; Derived Models Associated to Mice John R. Steel; 1. Introduction; 2. Some background and preliminaries; 2.1. Homogeneously Suslin sets; 2.2. Hom1 iteration strategies; 2.3. The derived model; 2.4. Iterations to make RV = R; 2.5. Premice over a set; 3. Iteration independence for derived models of mice
4. Mouse operators and jump operators 5. The mouse set conjecture in D(M; ); 6. The Solovay sequence in D(M; ); 7. The -transform; 8. A long Solovay sequence; 9. The mouse set conjectures: Framework of the induction; 10. The background universe N; 11. The L[E]-model Nx; 12. Two hybrid mouse operators at 0; 13. New mice modulo (y); 15. The consistency strength of AD+ + 0 <; 16. Global MSC implies the local MSC; 17. MSC implies capturing via R-mice; References; Tutorial Outline: Suitable Extender Sequences W. Hugh Woodin; 1. Introduction; 2. Generalized iteration trees
2.1. Long extenders
Record Nr. UNINA-9910452972103321
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational prospects of infinity [[electronic resource] ] . Part I Tutorials / / editors, Chitat Chong ... [et al.]
Computational prospects of infinity [[electronic resource] ] . Part I Tutorials / / editors, Chitat Chong ... [et al.]
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (264 p.)
Disciplina 511.322
Altri autori (Persone) ChongC.-T <1949-> (Chi-Tat)
Collana Lecture notes series / Institute for Mathematical Sciences, National University of Singapore
Soggetto topico Recursion theory
Set theory
Infinite
ISBN 1-281-93434-8
9786611934347
981-279-405-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Foreword; Preface; Recursion Theory Tutorials; Five Lectures on Algorithmic Randomness Rod Downey; 1. Introduction; 2. Lecture 1: Kolmogorov complexity basics; 2.1. Plain complexity; 2.2. Symmetry of Information; 2.3. Pre.x-free complexity; 2.4. The Coding Theorem; 2.5. Pre.x-free symmetry of information; 2.6. Pre.x-free randomness; 2.7. The overgraph functions; 3. Lecture 2: Randomness for reals; 3.1. Martin-L ̈of randomness; 3.2. Schnorr's Theorem and the computational paradigm; 3.3. Martingales and the prediction paradigm; 3.4. Super martingales and continuous semimeasures
3.5. Schnorr and computable randomness 4. Lecture 3: Randomness in general; 4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem, and Sacks' Theorem; 4.2. Coding into randoms; 4.3. Kucera Coding; 4.4. n-randomness; 4.5. Notes on 2-randoms; 4.6. Kucera strikes again; 4.7. van Lambalgen's Theorem; 4.8. Effective 0-1 Laws; 4.9. Omega operators; 5. Lecture 4: Calibrating randomness; 5.1. Measures of relative randomness and the Kucera-Slaman Theorem; 5.2. The Density Theorem; 5.3. Other measures of relative randomness; 5.4. 5.7. Hausdor. Dimension 6. Lecture 5: Measure-theoretical injury arguments; 6.1. Risking measure; 6.2. 2-random degrees are hyperimmune; 6.3. Almost every degree is CEA; References; Global Properties of the Turing Degrees and the Turing Jump Theodore A. Slaman; 1. Introduction; 1.1. Style; 2. The coding lemma and the rst order theory of the Turing degrees; 2.1. The coding lemma; 3. Properties of automorphisms of D; 3.1. Results of Nerode and Shore; 4. Slaman and Woodin analysis of Aut(D); 4.1. Persistent automorphisms; 4.2. Persistently extending persistent automorphisms
4.3. Persistence and reection 4.4. Generic persistence; 4.5. Denability of automorphisms of D; 4.6. Invariance of the double jump; 5. Denability in D; 5.1. Bi-interpretability; 6. The Turing jump; 6.1. Recursive enumerability; References; Set Theory Tutorials; Derived Models Associated to Mice John R. Steel; 1. Introduction; 2. Some background and preliminaries; 2.1. Homogeneously Suslin sets; 2.2. Hom1 iteration strategies; 2.3. The derived model; 2.4. Iterations to make RV = R; 2.5. Premice over a set; 3. Iteration independence for derived models of mice
4. Mouse operators and jump operators 5. The mouse set conjecture in D(M; ); 6. The Solovay sequence in D(M; ); 7. The -transform; 8. A long Solovay sequence; 9. The mouse set conjectures: Framework of the induction; 10. The background universe N; 11. The L[E]-model Nx; 12. Two hybrid mouse operators at 0; 13. New mice modulo (y); 15. The consistency strength of AD+ + 0 <; 16. Global MSC implies the local MSC; 17. MSC implies capturing via R-mice; References; Tutorial Outline: Suitable Extender Sequences W. Hugh Woodin; 1. Introduction; 2. Generalized iteration trees
2.1. Long extenders
Record Nr. UNINA-9910782357403321
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui