Advance concepts of image processing and pattern recognition : effective solution for global challenges / / Narendra Kumar [and four others], editors
| Advance concepts of image processing and pattern recognition : effective solution for global challenges / / Narendra Kumar [and four others], editors |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (233 pages) |
| Disciplina | 621.367 |
| Collana | Transactions on Computer Systems and Networks Ser. |
| Soggetto topico |
Image processing - Digital techniques
Image processing - Digital techniques - Data processing Processament digital d'imatges Reconeixement de formes (Informàtica) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-16-9324-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996464549403316 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advance concepts of image processing and pattern recognition : effective solution for global challenges / / Narendra Kumar [and four others], editors
| Advance concepts of image processing and pattern recognition : effective solution for global challenges / / Narendra Kumar [and four others], editors |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (233 pages) |
| Disciplina | 621.367 |
| Collana | Transactions on Computer Systems and Networks |
| Soggetto topico |
Image processing - Digital techniques
Image processing - Digital techniques - Data processing Processament digital d'imatges Reconeixement de formes (Informàtica) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-9324-2
981-16-9323-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996549370903316 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advance concepts of image processing and pattern recognition : effective solution for global challenges / / Narendra Kumar [and four others], editors
| Advance concepts of image processing and pattern recognition : effective solution for global challenges / / Narendra Kumar [and four others], editors |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (233 pages) |
| Disciplina | 621.367 |
| Collana | Transactions on Computer Systems and Networks |
| Soggetto topico |
Image processing - Digital techniques
Image processing - Digital techniques - Data processing Processament digital d'imatges Reconeixement de formes (Informàtica) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-9324-2
981-16-9323-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910743353203321 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Biometric Person Authentication [[electronic resource] ] : 5th Chinese Conference on Biometric Recognition, SINOBIOMETRICS 2004, Guangzhou, China, December 13-14, 2004, Proceedings / / edited by Stan Z. Li, Jianhuang Lai, Tieniu Tan, Guocan Feng, Yunhong Wang
| Advances in Biometric Person Authentication [[electronic resource] ] : 5th Chinese Conference on Biometric Recognition, SINOBIOMETRICS 2004, Guangzhou, China, December 13-14, 2004, Proceedings / / edited by Stan Z. Li, Jianhuang Lai, Tieniu Tan, Guocan Feng, Yunhong Wang |
| Edizione | [1st ed. 2005.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2005 |
| Descrizione fisica | 1 online resource (XVIII, 700 p.) |
| Disciplina | 006.4 |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Pattern recognition
Application software Multimedia information systems Special purpose computers Management information systems Computer science Pattern Recognition Computer Appl. in Social and Behavioral Sciences Computer Appl. in Administrative Data Processing Multimedia Information Systems Special Purpose and Application-Based Systems Management of Computing and Information Systems Seguretat informàtica Reconeixement de formes (Informàtica) Biometria |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-540-30548-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Biometrics -- Biometrics: When Identity Matters -- Face Recognition: Technical Challenges and Research Directions -- Fingerprints: Recognition, Performance Evaluation and Synthetic Generation -- Recognising Persons by Their Iris Patterns -- Multiple Classifier Fusion for Biometric Authentication -- Performance Evaluation in 1 : 1 Biometric Engines -- Best Performing Biometric Engines -- Discussions on Some Problems in Face Recognition -- Improving Fingerprint Recognition Performance Based on Feature Fusion and Adaptive Registration Pattern -- Iris Recognition Based on Non-local Comparisons -- Palmprint Authentication Technologies, Systems and Applications -- Face Recognition -- Novel Face Detection Method Based on Gabor Features -- Optimal Shape Space and Searching in ASM Based Face Alignment -- Gabor Wavelet-Based Eyes and Mouth Detection Algorithm -- An Entropy-Based Diversity Measure for Classifier Combining and Its Application to Face Classifier Ensemble Thinning -- Estimating the Visual Direction with Two-Circle Algorithm -- Multiple Face Contour Detection Using Adaptive Flows -- Pose Normalization Using Generic 3D Face Model as a Priori for Pose-Insensitive Face Recognition -- Gabor-Based Kernel Fisher Discriminant Analysis for Pose Discrimination -- Robust Pose Estimation of Face Using Genetic Algorithm -- Facial Pose Estimation Based on the Mongolian Race’s Feature Characteristic from a Monocular Image -- Boosting Local Binary Pattern (LBP)-Based Face Recognition -- Gabor Features Based Method Using HDR (G-HDR) for Multiview Face Recognition -- Face Recognition Under Varying Lighting Based on Derivates of Log Image -- A Fast Method of Lighting Estimate Using Multi-linear Algebra -- Face Recognition Using More than One Still Image: What Is More? -- Video-Based Face Recognition Using a Metric of Average Euclidean Distance -- 3D Face Recognition Based on G-H Shape Variation -- 3D Face Recognition Based on Geometrical Measurement -- 3D Face Recognition Using Eigen-Spectrum on the Flattened Facial Surface -- Building a 3D Morphable Face Model by Using Thin Plate Splines for Face Reconstruction -- 3D Surface Reconstruction Based on One Non-symmetric Face Image -- Recent Advances in Subspace Analysis for Face Recognition -- Component-Based Cascade Linear Discriminant Analysis for Face Recognition -- Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition -- On Dimensionality Reduction for Client Specific Discriminant Analysis with Application to Face Verification -- The Solution Space for Fisher Discriminant Analysis and the Uniqueness Under Constraints -- A Novel One-Parameter Regularized Linear Discriminant Analysis for Solving Small Sample Size Problem in Face Recognition -- Fast Calculation for Fisher Criteria in Small Sample Size Problem -- Vision-Based Face Understanding Technologies and Their Applications -- International Standardization on Face Recognition Technology -- System Design and Assessment Methodology for Face Recognition Algorithms -- Baseline Evaluations on the CAS-PEAL-R1 Face Database -- An Efficient Compression and Reconstruction Method of Face Image for Low Rate Net -- How Can We Reconstruct Facial Image from Partially Occluded or Low-Resolution One? -- A Matrix-Oriented Method for Appearance-Based Data Compression – An Idea from Group Representation Theory -- Fingerprint Recognition -- An Adaptive Fingerprint Post-processing Algorithm Based on Mathematical Morphology -- Fingerprint Image Segmentation by Energy of Gaussian-Hermite Moments -- Robust Ridge Following in Fingerprints -- A New Approach for Fingerprint Minutiae Extraction -- A Top-Down Fingerprint Image Enhancement Method Based on Fourier Analysis -- Fingerprint Templates Combination -- Skeletonization of Fingerprint Based-on Modulus Minima of Wavelet Transform -- Transformation-Variants Estimation Using Similarity Relative Histogram Grouping Model -- A Study of Minutiae Matching Algorithm Based on Orientation Validation -- Cascading a Couple of Registration Methods for a High Accurate Fingerprint Verification System -- A Hierarchical Fingerprint Matching Method Based on Rotation Invariant Features -- Phase-Correlation Based Registration of Swipe Fingerprints -- An Improved Method for Singularity Detection of Fingerprint Images -- Fingerprint Classifier Using Embedded Hidden Markov Models -- A Robust Pseudoridges Extraction Algorithm for Fingerprints -- Iris Recognition -- Iris Image Capture System Design for Personal Identification -- An Iris Segmentation Procedure for Iris Recognition -- Zernike Moment Invariants Based Iris Recognition -- Two-Dimensional Projection and Crossing for Iris Optimal Localization -- Speaker Recognition -- Improvement of Speaker Identification by Combining Prosodic Features with Acoustic Features -- Bimodal Speaker Identification Using Dynamic Bayesian Network -- A Novel Pitch Period Detection Algorithm Based on Hilbert-Huang Transform -- Noisy Speech Pitch Detection Based on Mathematical Morphology and Weighted MACF -- Glottal Information Based Spectral Recuperation in Multi-channel Speaker Recognition -- Speaker Modeling Technique Based on Regression Class for Speaker Identification with Sparse Training -- Other Biometrics -- Some Issues Pertaining to Adaptive Multimodal Biometric Authentication -- Protecting Biometric Data for Personal Identification -- Digital Curvelet Transform for Palmprint Recognition -- On-line Writer Verification Using Force Features of Basic Strokes -- A Novel Force Sensitive Tablet for Handwriting Information Acquisition -- Shape and Structural Feature Based Ear Recognition -- LLE Based Gait Analysis and Recognition -- Personal Identification Using Knuckleprint -- AAM Based Matching of Hand Appearance for User Verification. |
| Record Nr. | UNISA-996466360203316 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2005 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advances in Intelligent Data Analysis XXII : 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I / / edited by Ioanna Miliou, Nico Piatkowski, Panagiotis Papapetrou
| Advances in Intelligent Data Analysis XXII : 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I / / edited by Ioanna Miliou, Nico Piatkowski, Panagiotis Papapetrou |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (XVI, 268 p. 74 illus., 61 illus. in color.) |
| Disciplina | 005.7 |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Database management
Education - Data processing Image processing - Digital techniques Computer vision Artificial intelligence Machine learning Natural language processing (Computer science) Database Management System Computers and Education Computer Imaging, Vision, Pattern Recognition and Graphics Artificial Intelligence Machine Learning Natural Language Processing (NLP) Reconeixement de formes (Informàtica) Estadística matemàtica Processament de dades |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN |
9783031585470
303158547X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Foundations of AI and ML -- Tackling the Abstraction and Reasoning Corpus (ARC) with Object-Centric Models and the MDL Principle -- 1 Introduction -- 2 Related Work -- 3 Object-Centric Models -- 3.1 Mixing Patterns and Functions -- 3.2 Parsing and Generating Grids with a Grid Model -- 3.3 Predict and Describe Grids with Task Models -- 4 MDL-Based Model Learning -- 4.1 Description Lengths -- 4.2 Search Space and Strategy -- 4.3 Pruning Phase -- 5 Evaluation -- 6 Conclusion -- References -- RMI-RRG: A Soft Protocol to Postulate Monotonicity Constraints for Tabular Datasets -- 1 Introduction -- 2 Related Work -- 3 Preliminaries and Notation -- 3.1 Rank Mutual Information -- 3.2 Relabeling -- 4 Main Direct Competitors -- 4.1 Subjective Approaches -- 4.2 Objective Approaches -- 5 RMI Tables and Required Relabelings Graphs -- 6 The RMI-RRG Protocol -- 7 Experimental Results -- 7.1 Breast Cancer -- 7.2 Car -- 7.3 CMC -- 7.4 Pasture -- 7.5 PIMA -- 7.6 Windsor -- 8 Conclusions -- References -- A Structural-Clustering Based Active Learning for Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Node Classification on Attributed Graphs -- 3.2 Graph Neural Networks (GNNs) -- 3.3 Active Learning Task for Graph Neural Networks -- 4 Proposed Method -- 4.1 Community Detection Using the SCAN Algorithm -- 4.2 Node Selection Based on PageRank -- 4.3 SPA Algorithm -- 5 Experiments -- 5.1 Experiment Settings -- 5.2 Dataset -- 5.3 Evaluation Metrics -- 5.4 Baselines Methods -- 6 Results -- 6.1 Experiment Results of SPA on GCN -- 6.2 Experiment Result of SPA on GraphSAGE -- 6.3 Complexity Analysis -- 7 Discussion and Conclusion -- References -- Multi-armed Bandits with Generalized Temporally-Partitioned Rewards -- 1 Introduction.
2 Background and Related Work -- 3 Problem Formulation -- 4 Lower Bound on Regret -- 5 Proposed Algorithm and Regret Upper Bound -- 5.1 Proposed Algorithm: TP-UCB-FR-G -- 5.2 Regret Upper Bound of TP-UCB-FR-G -- 6 Experimental Results -- 6.1 Setting 1: Synthetic Environment -- 6.2 Setting 2: Spotify Playlists -- 7 Concluding Remarks and Future Work -- References -- GloNets: Globally Connected Neural Networks -- 1 Introduction -- 2 Notation and Model Definition -- 3 Related Work -- 4 Implementing GloNet -- 5 Experiments -- 6 Conclusions and Future Works -- References -- Mind the Data, Measuring the Performance Gap Between Tree Ensembles and Deep Learning on Tabular Data -- 1 Introduction -- 2 Preliminaries -- 2.1 Tabular Data -- 2.2 Tree Ensembles -- 2.3 Deep Learning -- 3 Related Work -- 4 Methodology and Design of Experiments -- 5 Results -- 5.1 Impact of Training Dataset Size -- 5.2 Feature Complexity -- 5.3 Explainability -- 6 Conclusions and Future Work -- References -- A Remark on Concept Drift for Dependent Data -- 1 Introduction -- 2 Problem Setup -- 2.1 A Probability Theoretical Framework for Concept Drift -- 2.2 Stochastic Processes -- 2.3 A Taxonomy of Change Detection in Data Streams -- 3 Consistency Property -- 3.1 Drift is not Non-Stationarity -- 3.2 Temporal Consistency -- 3.3 Measuring Consistency of a Noisy Stochastic Processes -- 4 Numerical Evaluation -- 4.1 Testing Stationarity -- 4.2 Evaluation of Method -- 5 Conclusion -- References -- Representation Learning -- Variational Perspective on Fair Edge Prediction -- 1 Introduction -- 2 Related Work -- 3 Variational Fairness-Aware Node Embedding -- 3.1 Problem Set-Up -- 3.2 Definition of the Loss -- 3.3 Optimization of LEAVE -- 4 Experiments and Results -- 4.1 Edge Prediction Protocol -- 4.2 Evaluation Metrics -- 4.3 Baselines for Edge Prediction -- 4.4 Analysis of Results. 5 Conclusion -- References -- Node Classification in Random Trees -- 1 Introduction -- 2 Related Work -- 2.1 Learning Probabilistic Graphical Models -- 2.2 Node Classification Using Graph Neural Networks -- 3 Method -- 3.1 Problem Formulation -- 3.2 Approach -- 3.3 GNN Design -- 3.4 Classifying Nodes -- 4 Evaluation -- 4.1 Dataset -- 4.2 Experiments -- 4.3 Results -- 5 Conclusion -- References -- Self-supervised Siamese Autoencoders -- 1 Introduction -- 2 Self-supervised Representation Learning -- 3 A Siamese Denoising Autoencoder -- 3.1 Motivation -- 3.2 Architecture -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Related Work -- 6 Conclusion -- References -- Equivariant Parameter Sharing for Porous Crystalline Materials -- 1 Introduction -- 2 Related Work -- 3 Crystal Symmetries -- 4 Methods -- 5 Experiments -- 6 Discussion -- References -- Subgraph Mining for Graph Neural Networks -- 1 Introduction -- 2 Preliminaries -- 3 AutoGSN -- 3.1 Subgraph Mining -- 3.2 Selection -- 3.3 Counting -- 4 Experiments -- 5 Related Work -- 6 Conclusion -- References -- Applications -- Super-Resolution Analysis for Landfill Waste Classification -- 1 Introduction -- 2 Related Work -- 2.1 Image Classification for Landfills Discovery -- 2.2 Image Quality Improvement -- 3 Methodology -- 3.1 Experimental Setup -- 3.2 Results -- 4 Conclusions -- References -- Predicting Performance Drift in AI Models of Healthcare Without Ground Truth Labels -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Probabilistic Sources of Drift -- 3.2 Drift Detection Framework -- 4 Results -- 4.1 Simulated Data -- 4.2 UK Primary Care Covid-19 Data -- 5 Conclusions -- References -- An Interpretable Human-in-the-Loop Process to Improve Medical Image Classification -- 1 Introduction -- 2 Methodology -- 2.1 Dataset Description -- 2.2 Baseline Classifier Description. 2.3 Concept-Based Interpretability -- 2.4 Concept Selection -- 2.5 Human-in-the-Loop Approach -- 3 Results and Discussion -- 3.1 Baseline Classifiers -- 3.2 Concept-Based Interpretability Results -- 3.3 Human-in-the-Loop Approach Results -- 4 Conclusion -- References -- Hybrid Ensemble-Based Travel Mode Prediction -- 1 Introduction -- 2 Related Works -- 3 Ensemble of Batch and Online Learners -- 3.1 Training of Online and Batch Learners with TMC Data Streams -- 3.2 Building an Ensemble of Batch and Online Learners -- 4 Results -- 4.1 Data Streams and Libraries -- 4.2 Experiments -- 4.3 Discussion -- 5 Conclusions -- References -- Natural Language Processing -- Beyond Words: A Comparative Analysis of LLM Embeddings for Effective Clustering -- 1 Introduction -- 2 Related Work -- 3 Models and Algorithms -- 3.1 Clustering Algorithms -- 4 Numerical Experiments -- 4.1 Evaluation Metrics -- 4.2 Experimental Settings -- 4.3 Results and Discussion -- 5 Conclusion and Perspectives -- References -- Data Quality in NLP: Metrics and a Comprehensive Taxonomy -- 1 Introduction -- 1.1 Data Quality -- 2 Related Work -- 3 Taxonomy for Data Quality in NLP -- 3.1 Linguistic -- 3.2 Semantic -- 3.3 Anomaly -- 3.4 Classifier Performance -- 3.5 Diversity -- 4 Experimental Setup -- 5 Results and Discussion -- 6 Conclusion and Future Works -- References -- Building Brownian Bridges to Learn Dynamic Author Representations from Texts -- 1 Introduction -- 2 Related Works -- 3 BARL: Brownian Bridges for Author Representation Learning -- 3.1 Background -- 3.2 Using the Brownian Bridges -- 3.3 Variational Information Bottleneck -- 3.4 Learning Author Representations -- 3.5 Model Architecture of BARL -- 4 Experiments with BARL -- 4.1 Datasets -- 4.2 Parameter Settings and Competitors -- 4.3 Results in Authorship Attribution -- 4.4 Results in Document Dating. 4.5 Results in Author Classification -- 4.6 Ablation Study -- 4.7 Qualitative Analysis -- 5 Conclusion -- References -- Automatically Detecting Political Viewpoints in Norwegian Text -- 1 Introduction -- 2 Related Work -- 2.1 Political Text Analysis -- 2.2 Domain- and Language-Specific LLMs -- 2.3 Masking Techniques -- 3 The nor-pvi Dataset -- 4 Encoder-Decoder Models -- 4.1 Training Datasets -- 4.2 Setup and Training -- 5 Experiments and Evaluations -- 6 Results and Discussions -- 7 Conclusion and Future Work -- References -- AHAM: Adapt, Help, Ask, Model Harvesting LLMs for Literature Mining -- 1 Introduction -- 2 Related Work -- 3 Experimental Data: Literature-Based Discovery Publications -- 4 Methodology -- 4.1 Domain-Adaptation via Sentence-Transformers and BERTopic -- 4.2 Prompt Engineering of LLMs to Design Topic Names -- 4.3 Assessing Adaptation Through Evaluation of Topic Naming -- 4.4 AHAM Heuristic -- 5 Quantitative Exploration of the AHAM Objective -- 6 Qualitative Evaluation -- 7 Conclusion and Further Work -- References -- Author Index. |
| Record Nr. | UNINA-9910847588803321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analysis of Images, Social Networks and Texts : 10th International Conference, AIST 2021, Tbilisi, Georgia, December 16–18, 2021, Revised Selected Papers / / edited by Evgeny Burnaev, Dmitry I. Ignatov, Sergei Ivanov, Michael Khachay, Olessia Koltsova, Andrei Kutuzov, Sergei O. Kuznetsov, Natalia Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Jari Saramäki, Andrey V. Savchenko, Evgenii Tsymbalov, Elena Tutubalina
| Analysis of Images, Social Networks and Texts : 10th International Conference, AIST 2021, Tbilisi, Georgia, December 16–18, 2021, Revised Selected Papers / / edited by Evgeny Burnaev, Dmitry I. Ignatov, Sergei Ivanov, Michael Khachay, Olessia Koltsova, Andrei Kutuzov, Sergei O. Kuznetsov, Natalia Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Jari Saramäki, Andrey V. Savchenko, Evgenii Tsymbalov, Elena Tutubalina |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (358 pages) |
| Disciplina |
006.312
621.367 |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Data mining
Machine learning Database management Natural language processing (Computer science) Information storage and retrieval systems Application software Data Mining and Knowledge Discovery Machine Learning Database Management Natural Language Processing (NLP) Information Storage and Retrieval Computer and Information Systems Applications Mineria de dades Processament d'imatges Tractament de textos Tractament del llenguatge natural (Informàtica) Reconeixement de formes (Informàtica) Xarxes socials en línia |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN |
9783031165009
3031165004 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Invited Papers -- On Georgian Text Processing Toolkit Development -- Taxonomy Enrichment with Text and Graph Vector Representation -- Natural Language Processing -- Near-Zero-Shot Suggestion Mining with a Little Help from WordNet -- Selection of Pseudo-Annotated Data for Adverse Drug Reaction Classification Across Drug Groups -- Building a Combined Morphological Model for Russian Word Forms -- SocialBERT -- Transformers for Online Social Network Language Modelling -- Lexicon-based Methods vs. BERT for Text Sentiment Analysis -- Multilingual Embeddings for Clustering Cultural Events -- Jokingbird: Funny Headline Generation for News -- Learning to Rank with Capsule Neural Networks -- Building a Bilingual QA-system with ruGPT-3 -- Sculpting enhanced dependencies for Belarusian -- Improving morpheme segmentation using BERT embeddings -- Training dataset and dictionary sizes matter in BERT models: the case of Baltic languages -- Computer Vision -- Development of a method for iris-based person recognition using convolutional neural networks -- Data dimension reduction technique based on preservation of Hellinger divergence -- Group-level Affect Recognition in Video using Deviation of Frame Features -- Outfit Recommendation Using Visual Similarity -- Data Analysis and Machine Learning -- Scalable computation of prediction intervals for neural networks with matrix sketching -- Application of Data Analysis Methods for Optimizing the Multifunctional Service Center Operation -- Depression Detection by Person's Voice -- Social Network Analysis -- Research Papers Recommendation -- Multimodal Space of Users' Interests and Preferences in Social Networks -- Citation network applications in a scientific co-authorship recommender system -- Theoretical Machine Learning and Optimization -- How Fast Can the Uniform Capacitated Facility Location Problem Be Solved on Path Graphs -- On a weakly supervised classification problem -- A Local Search Algorithm for the Biclustering Problem. |
| Record Nr. | UNINA-9910624318603321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Anomaly Detection in Video Surveillance / / by Xiaochun Wang
| Anomaly Detection in Video Surveillance / / by Xiaochun Wang |
| Autore | Wang Xiaochun <1954-> |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (396 pages) |
| Disciplina | 621.38928 |
| Collana | Cognitive Intelligence and Robotics |
| Soggetto topico |
Computer vision
Data mining Image processing - Digital techniques Machine learning Pattern recognition systems Computer science Computer Vision Data Mining and Knowledge Discovery Computer Imaging, Vision, Pattern Recognition and Graphics Machine Learning Automated Pattern Recognition Theory and Algorithms for Application Domains Visió per ordinador Mineria de dades Aprenentatge automàtic Processament digital d'imatges Reconeixement de formes (Informàtica) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 9789819730230 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1 Introduction -- Chapter 2 Mathematical Preliminaries for Video Anomaly Detection Techniques -- Chapter 3 Probability Based Video Anomaly Detection Approaches -- Chapter 4 k-Nearest Neighbor Based Video Anomaly Detection Approaches -- Chapter 5 Gaussian Mixture Model Based Video Anomaly Detection. |
| Record Nr. | UNINA-9910878978103321 |
Wang Xiaochun <1954->
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computer and Communication Engineering : Third International Conference, CCCE 2023, Stockholm, Sweden, March 10–12, 2023, Revised Selected Papers / / edited by Filippo Neri, Ke-Lin Du, Vijayakumar Varadarajan, Angel-Antonio San-Blas, Zhiyu Jiang
| Computer and Communication Engineering : Third International Conference, CCCE 2023, Stockholm, Sweden, March 10–12, 2023, Revised Selected Papers / / edited by Filippo Neri, Ke-Lin Du, Vijayakumar Varadarajan, Angel-Antonio San-Blas, Zhiyu Jiang |
| Autore | Neri Filippo |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (239 pages) |
| Disciplina | 004 |
| Altri autori (Persone) |
DuKe-Lin
VaradarajanVijayakumar San-BlasAngel-Antonio JiangZhiyu |
| Collana | Communications in Computer and Information Science |
| Soggetto topico |
Computer engineering
Computer networks Artificial intelligence Image processing—Digital techniques Computer vision Software engineering Computer science—Mathematics Computer Engineering and Networks Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Software Engineering Mathematics of Computing Enginyeria d'ordinadors Xarxes d'ordinadors Enginyeria de programari Intel·ligència artificial Visió per ordinador Algorismes Reconeixement de formes (Informàtica) |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-031-35299-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Image analysis and method: Enhanced Acoustic Noise Reduction Techniques for Magnetic Resonance Imaging System -- Rough Rice Grading in the Philippines Using Infrared Thermography -- An Interpretable Hybrid Recommender Based on Graph Convolution to Address Serendipity -- Network Model and Function Analysis of Mobile Network: A Geometry-based Strategic Placement of RISs In millimeter Wave Device to Device Communication -- Obstacle Aware Link Selection for Stable Multicast D2D Communications -- Mobility Aware Path Selection for Millimeterwave 5G Networks in the Presence of Obstacles -- A Probabilistic Analysis of the Delay in RIS Assisted SISO D2D Communication using Chernoff's Bounds -- An Empirical Analysis on Lossless Compression Techniques: Enhancing IoT Security through Deep Learning-based Intrusion Detection -- A Security and Vulnerability Assessment on Android Gambling Applications -- A Compliance Based and Security Assessment of Bring Your Own Device (BYOD) in Organizations -- A Compliance Based and Security Assessment of Bring Your Own Device (BYOD) in Organizations -- AI -based system model and algorithm: Application of Machine Learning in Predicting Crime Links on Specialized Features -- An Empirical Analysis on Lossless Compression Techniques -- An Analysis of the Performance Changes of the Model by Reducing the Input Feature Dimension in Stock Price Forecasting -- A Hybrid Algorithm by Incorporating Neural Network and Metaheuristic Algorithms for Function Approximation and Demand Prediction Estimation -- Deep QA: An Open-Domain Dataset of Deep Questions and Comprehensive Answers -- Tropical Cyclone Analysis and Accumulated Precipitation Predictive Model Using Regression Machine Learning Algorithm -- Mapping Learning Algorithms on Data, A Promising Novel Methodology to Compare Learning Algorithms. |
| Record Nr. | UNINA-9910731474903321 |
Neri Filippo
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computer Vision - ECCV 2022 : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XVII
| Computer Vision - ECCV 2022 : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XVII |
| Autore | Avidan Shai |
| Pubbl/distr/stampa | Cham : , : Springer, , 2022 |
| Descrizione fisica | 1 online resource (800 pages) |
| Disciplina | 006.37 |
| Altri autori (Persone) |
BrostowGabriel
CisséMoustapha FarinellaGiovanni Maria HassnerTal |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Visió per ordinador
Reconeixement de formes (Informàtica) |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| Soggetto non controllato |
Engineering
Technology & Engineering |
| ISBN |
9783031197901
3031197909 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910619273903321 |
Avidan Shai
|
||
| Cham : , : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computer Vision - ECCV 2022 : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIV
| Computer Vision - ECCV 2022 : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIV |
| Autore | Avidan Shai |
| Pubbl/distr/stampa | Cham : , : Springer, , 2022 |
| Descrizione fisica | 1 online resource (803 pages) |
| Disciplina | 006.37 |
| Altri autori (Persone) |
BrostowGabriel
CisséMoustapha FarinellaGiovanni Maria HassnerTal |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Visió per ordinador
Reconeixement de formes (Informàtica) |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| Soggetto non controllato |
Engineering
Technology & Engineering |
| ISBN |
9783031200533
3031200535 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Preface -- Organization -- Contents - Part XXIV -- Improving Vision Transformers by Revisiting High-Frequency Components -- 1 Introduction -- 2 Related Work -- 3 Revisiting ViT Models from a Frequency Perspective -- 4 The Proposed Method -- 4.1 Adversarial Training with High-Frequency Perturbations -- 4.2 A Case Study Using ViT-B -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Results on ImageNet Classification -- 5.3 Results on Out-of-distribution Data -- 5.4 Transfer Learning to Downstream Tasks -- 5.5 Ablation Studies -- 5.6 Discussions -- 6 Conclusions and Future Work -- References -- Recurrent Bilinear Optimization for Binary Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Preliminaries -- 3.2 Bilinear Model of BNNs -- 3.3 Recurrent Bilinear Optimization -- 3.4 Discussion -- 4 Experiments -- 4.1 Datasets and Implementation Details -- 4.2 Ablation Study -- 4.3 Image Classification -- 4.4 Object Detection -- 4.5 Deployment Efficiency -- 5 Conclusion -- References -- Neural Architecture Search for Spiking Neural Networks -- 1 Introduction -- 2 Related Work -- 2.1 Spiking Neural Networks -- 2.2 Neural Architecture Search -- 3 Preliminaries -- 3.1 Leaky Integrate-and-Fire Neuron -- 3.2 NAS Without Training -- 4 Methodology -- 4.1 Linear Regions from LIF Neurons -- 4.2 Sparsity-Aware Hamming Distance -- 4.3 Searching Forward and Backward Connections -- 5 Experiments -- 5.1 Implementation Details -- 5.2 Performance Comparison -- 5.3 Experimental Analysis -- 6 Conclusion -- References -- Where to Focus: Investigating Hierarchical Attention Relationship for Fine-Grained Visual Classification -- 1 Introduction -- 2 Related Work -- 2.1 Fine-Grained Visual Classification -- 2.2 Human Attention in Vision -- 3 Approach -- 3.1 Overview -- 3.2 Region Feature Mining Module.
3.3 Cross-Hierarchical Orthogonal Fusion Module -- 4 Experiments and Analysis -- 4.1 Datasets -- 4.2 Hierarchy Interaction Analysis -- 4.3 Evaluation on Traditional FGVC Setting -- 4.4 Further Analysis -- 5 Conclusions -- References -- DaViT: Dual Attention Vision Transformers -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Overview -- 3.2 Spatial Window Attention -- 3.3 Channel Group Attention -- 3.4 Model Instantiation -- 4 Analysis -- 5 Experiments -- 5.1 Image Classification -- 5.2 Object Detection and Instance Segmentation -- 5.3 Semantic Segmentation on ADE20k -- 5.4 Ablation Study -- 6 Conclusion -- References -- Optimal Transport for Label-Efficient Visible-Infrared Person Re-Identification -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation and Overview -- 3.2 Discrepancy Elimination Network (DEN) -- 3.3 Optimal-Transport Label Assignment (OTLA) -- 3.4 Prediction Alignment Learning (PAL) -- 3.5 Optimization -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Implementation Details -- 4.3 Main Results -- 4.4 Ablation Study -- 4.5 Discussion -- 5 Conclusion -- References -- Locality Guidance for Improving Vision Transformers on Tiny Datasets -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 The Overall Approach -- 3.2 Guidance Positions -- 3.3 Architecture of the CNN -- 4 Experiments -- 4.1 Main Results -- 4.2 Discussion -- 4.3 Ablation Study -- 5 Conclusion -- References -- Neighborhood Collective Estimation for Noisy Label Identification and Correction -- 1 Introduction -- 2 Related Work -- 2.1 Noise Verification -- 2.2 Label Correction -- 3 The Proposed Method -- 3.1 Neighborhood Collective Noise Verification -- 3.2 Neighborhood Collective Label Correction -- 3.3 Training Objectives -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Comparisons with the State of the Art -- 4.3 Analysis. 5 Conclusions -- References -- Few-Shot Class-Incremental Learning via Entropy-Regularized Data-Free Replay -- 1 Introduction -- 2 Related Works -- 2.1 Class-Incremental Learning -- 2.2 Few-Shot Class-Incremental Learning -- 2.3 Data-Free Knowledge Distillation -- 3 Preliminaries -- 3.1 Problem Setting -- 3.2 Data-Free Replay -- 4 Methodology -- 4.1 Entropy-Regularized Data-Free Replay -- 4.2 Learning Incrementally with Uncertain Data -- 5 Experiments -- 5.1 Datasets -- 5.2 Implementation Details -- 5.3 Re-implementation of Replay-based Methods -- 5.4 Main Results and Comparison -- 5.5 Analysis -- 6 Conclusion -- References -- Anti-retroactive Interference for Lifelong Learning -- 1 Introduction -- 2 Related Work -- 2.1 Lifelong Learning -- 2.2 Adversarial Training -- 3 Proposed Method -- 3.1 Extracting Intra-Class Features -- 3.2 Generating and Fusing Task-Specific Models -- 4 Experiments and Results -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Results and Comparison -- 4.4 Ablation Study -- 5 Conclusion -- References -- Towards Calibrated Hyper-Sphere Representation via Distribution Overlap Coefficient for Long-Tailed Learning -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Build vMF Classifier on Hyper-Sphere -- 3.2 Quantify Distribution Overlap Coefficient on Hyper-Sphere -- 3.3 Improve Representation of Feature and Classifier via o -- 3.4 Calibrate Classifier Weight Beyond Training via o -- 4 Experiments -- 4.1 Long-Tailed Image Classification Task -- 4.2 Long-Tailed Semantic and Instance Segmentation Task -- 4.3 Ablation Study -- 5 Conclusions -- References -- Dynamic Metric Learning with Cross-Level Concept Distillation -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Dynamic Metric Learning -- 3.2 Hierarchical Concept Refiner -- 3.3 Cross-Level Concept Distillation -- 3.4 Discussions -- 4 Experiments. 4.1 Datasets -- 4.2 Evaluation Protocol -- 4.3 Implementation Details -- 4.4 Main Results -- 4.5 Experimental Analysis -- 5 Conclusion -- References -- MENet: A Memory-Based Network with Dual-Branch for Efficient Event Stream Processing -- 1 Introduction -- 2 Related Work -- 2.1 Event-Based Representations -- 2.2 Memory-Based Networks -- 3 Event Camera Model -- 4 Method -- 4.1 Dual-Branch Structure -- 4.2 Double Polarities Calculation Method -- 4.3 Point-Wise Memory Bank -- 4.4 Training and Testing Strategies -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Ablation Study -- 5.3 Object Recognition -- 5.4 Gesture Recognition -- 6 Conclusion -- References -- Out-of-distribution Detection with Boundary Aware Learning -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Boundary Aware Learning -- 4.1 Representation Extraction Module (REM) -- 4.2 Representation Sampling Module (RSM) -- 4.3 Representation Discrimination Module (RDM) -- 5 Experiments -- 5.1 Dataset -- 5.2 Experimental Setup -- 5.3 Ablation Study -- 5.4 Detection Results -- 5.5 Visualization of trivial and hard OOD features -- 6 Conclusion -- References -- Learning Hierarchy Aware Features for Reducing Mistake Severity -- 1 Introduction -- 2 Related Work -- 3 HAF: Proposed Approach -- 3.1 Fine Grained Cross-Entropy (LCEfine) -- 3.2 Soft Hierarchical Consistency (Lshc) -- 3.3 Margin Loss (Lm) -- 3.4 Geometric Consistency (Lgc) -- 4 Experiments and Results -- 4.1 Experimental Setup -- 4.2 Training Configurations -- 4.3 Results -- 4.4 Coarse Classification Accuracy -- 5 Analysis -- 5.1 Ablation Study -- 5.2 Mistakes Severity Plots -- 5.3 Discussion: Hierarchical Metrics -- 6 Conclusion -- References -- Learning to Detect Every Thing in an Open World -- 1 Introduction -- 2 Related Work -- 3 Learning to Detect Every Thing -- 3.1 Data Augmentation: Background Erasing (BackErase). 3.2 Decoupled Multi-domain Training -- 4 Experiments -- 4.1 Cross-category Generalization -- 4.2 Cross-Dataset Generalization -- 5 Conclusion -- References -- KVT: k-NN Attention for Boosting Vision Transformers -- 1 Introduction -- 2 Related Work -- 2.1 Self-attention -- 2.2 Transformer for Vision -- 3 k-NN Attention -- 3.1 Vanilla Attention -- 3.2 k-NN Attention -- 3.3 Theoretical Analysis on k-NN Attention -- 4 Experiments for Vision Transformers -- 4.1 Experimental Settings -- 4.2 Results on ImageNet -- 4.3 The Impact of Number k -- 4.4 Convergence Speed of k-NN Attention -- 4.5 Other Properties of k-NN Attention -- 4.6 Comparisons with Temperature in Softmax -- 4.7 Visualization -- 4.8 Object Detection and Semantic Segmentation -- 5 Conclusion -- References -- Registration Based Few-Shot Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 Anomaly Detection -- 2.2 Few-Shot Learning -- 2.3 Few-Shot Anomaly Detection -- 3 Problem Setting -- 4 Method -- 4.1 Feature Registration Network -- 4.2 Normal Distribution Estimation -- 4.3 Inference -- 5 Experiments -- 5.1 Experimental Setups -- 5.2 Comparison with State-of-the-Art Methods -- 5.3 Ablation Studies -- 5.4 Visualization Analysis -- 6 Conclusion -- References -- Improving Robustness by Enhancing Weak Subnets -- 1 Introduction -- 2 Related Work -- 3 EWS: Training by Enhancing Weak Subnets -- 3.1 Subnet Construction and Impact on Overall Performance -- 3.2 Finding Particularly Weak Subnets -- 3.3 EWS: Enhancing Weak Subnets with Knowledge Distillation -- 3.4 Combining EWS with Adversarial Training -- 4 Experiments -- 4.1 Improving Corruption Robustness -- 4.2 Improving Adversarial Robustness -- 5 Ablation and Discussions -- 5.1 Search Strategies and Hyper-Parameters -- 5.2 Vulnerability of Blocks and Layers -- 6 Conclusion -- References. Learning Invariant Visual Representations for Compositional Zero-Shot Learning. |
| Record Nr. | UNINA-9910629291203321 |
Avidan Shai
|
||
| Cham : , : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||