The game of cops and robbers on graphs / Anthony Bonato, Richard J. Nowakowski |
Autore | Bonato, Anthony |
Pubbl/distr/stampa | Providence, R. I. : American Mathematical Society, c2011 |
Descrizione fisica | xix, 276 p. : ill. ; 22 cm |
Disciplina | 511.5 |
Altri autori (Persone) | Nowakowski, Richard J. |
Collana | Student mathematical library, 1520-9121 ; 61 |
Soggetto topico |
Graph theory
Random graphs Graph algorithms |
ISBN | 9780821853474 |
Classificazione |
AMS 05C57
AMS 05C75 AMS 91A43 LC QA166.B667 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001839209707536 |
Bonato, Anthony | ||
Providence, R. I. : American Mathematical Society, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Graphical evolution : an introduction to the theory of Random graphs, wherein the most relevant / Edgar M. Palmer |
Autore | Palmer, Edgar M. |
Descrizione fisica | xvii, 177 p. ; 24 cm. |
Disciplina | 511.5 |
Collana | Wiley-Interscience series in discrete mathematics |
Soggetto topico | Random graphs |
ISBN | 0471815772 |
Classificazione |
AMS 05C
AMS 05C80 QA166.17P35 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000959959707536 |
Palmer, Edgar M. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson |
Autore | Janson Svante |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1994 |
Descrizione fisica | 1 online resource (90 p.) |
Disciplina | 511/.5 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Random graphs
Central limit theorem Orthogonal decompositions |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0113-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""Chapter I. Foundations""; ""1. Introduction""; ""2. Preliminaries""; ""Graphs""; ""The Skorokhod topology""; ""Subsequences""; ""Continuous time martingales""; ""Semimartingales""; ""Wick products""; ""3. The basic limit theorem""; ""4. The orthogonal decomposition""; ""Chapter II. Limit theorems""; ""5. Limits for G[sub(n,p)]""; ""6. Limits for G[sub(n,m)]""; ""7. Moment convergence""; ""8. Functional convergence""; ""9. The maximum""; ""Chapter III. Examples""; ""10. Subgraph counts""; ""11. Vertex degrees""; ""12. Further examples""; ""References"" |
Record Nr. | UNINA-9910480746903321 |
Janson Svante | ||
Providence, Rhode Island : , : American Mathematical Society, , 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson |
Autore | Janson Svante |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1994 |
Descrizione fisica | 1 online resource (90 p.) |
Disciplina | 511/.5 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Random graphs
Central limit theorem Orthogonal decompositions |
ISBN | 1-4704-0113-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""Chapter I. Foundations""; ""1. Introduction""; ""2. Preliminaries""; ""Graphs""; ""The Skorokhod topology""; ""Subsequences""; ""Continuous time martingales""; ""Semimartingales""; ""Wick products""; ""3. The basic limit theorem""; ""4. The orthogonal decomposition""; ""Chapter II. Limit theorems""; ""5. Limits for G[sub(n,p)]""; ""6. Limits for G[sub(n,m)]""; ""7. Moment convergence""; ""8. Functional convergence""; ""9. The maximum""; ""Chapter III. Examples""; ""10. Subgraph counts""; ""11. Vertex degrees""; ""12. Further examples""; ""References"" |
Record Nr. | UNINA-9910788755303321 |
Janson Svante | ||
Providence, Rhode Island : , : American Mathematical Society, , 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson |
Autore | Janson Svante |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1994 |
Descrizione fisica | 1 online resource (90 p.) |
Disciplina | 511/.5 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Random graphs
Central limit theorem Orthogonal decompositions |
ISBN | 1-4704-0113-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""Chapter I. Foundations""; ""1. Introduction""; ""2. Preliminaries""; ""Graphs""; ""The Skorokhod topology""; ""Subsequences""; ""Continuous time martingales""; ""Semimartingales""; ""Wick products""; ""3. The basic limit theorem""; ""4. The orthogonal decomposition""; ""Chapter II. Limit theorems""; ""5. Limits for G[sub(n,p)]""; ""6. Limits for G[sub(n,m)]""; ""7. Moment convergence""; ""8. Functional convergence""; ""9. The maximum""; ""Chapter III. Examples""; ""10. Subgraph counts""; ""11. Vertex degrees""; ""12. Further examples""; ""References"" |
Record Nr. | UNINA-9910827873003321 |
Janson Svante | ||
Providence, Rhode Island : , : American Mathematical Society, , 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos |
Autore | Murat Cecile |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
Descrizione fisica | 1 online resource (269 p.) |
Disciplina |
511.6
519.2 |
Altri autori (Persone) | PaschosVangelis Th |
Collana | ISTE |
Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
Record Nr. | UNINA-9910143315903321 |
Murat Cecile | ||
London ; ; Newport Beach, CA, : ISTE, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos |
Autore | Murat Cecile |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
Descrizione fisica | 1 online resource (269 p.) |
Disciplina |
511.6
519.2 |
Altri autori (Persone) | PaschosVangelis Th |
Collana | ISTE |
Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
Record Nr. | UNISA-996216942703316 |
Murat Cecile | ||
London ; ; Newport Beach, CA, : ISTE, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos |
Autore | Murat Cecile |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
Descrizione fisica | 1 online resource (269 p.) |
Disciplina |
511.6
519.2 |
Altri autori (Persone) | PaschosVangelis Th |
Collana | ISTE |
Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
Record Nr. | UNINA-9910830041603321 |
Murat Cecile | ||
London ; ; Newport Beach, CA, : ISTE, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Probabilistic combinatorial optimization on graphs / / Cecile Murat and Vangelis Th. Paschos |
Autore | Murat Cecile |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
Descrizione fisica | 1 online resource (269 p.) |
Disciplina | 519.2 |
Altri autori (Persone) | PaschosVangelis Th |
Collana | ISTE |
Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
Record Nr. | UNINA-9910876632003321 |
Murat Cecile | ||
London ; ; Newport Beach, CA, : ISTE, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Probabilistic combinatorics and its applications / Béla Bollobás, editor ; [with contributions by] Fan R. K. Chung ... [et al.] |
Autore | Chung, Fan R. K. |
Pubbl/distr/stampa | Providence, R.I. : American Mathematical Society, c1991 |
Descrizione fisica | xv, 196 p. ; 27 cm |
Disciplina | 519.2 |
Altri autori (Persone) | Bollobás, Bélaauthor |
Collana | Proceedings of symposia in applied mathematics, 0160-7634 ; 44. AMS short course lecture notes |
Soggetto topico |
Combinatorial probabilities
Random graphs |
ISBN | 082185500X |
Classificazione |
AMS 60-06
AMS 60C05 QA273.45.P76 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001242839707536 |
Chung, Fan R. K. | ||
Providence, R.I. : American Mathematical Society, c1991 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|