top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The game of cops and robbers on graphs / Anthony Bonato, Richard J. Nowakowski
The game of cops and robbers on graphs / Anthony Bonato, Richard J. Nowakowski
Autore Bonato, Anthony
Pubbl/distr/stampa Providence, R. I. : American Mathematical Society, c2011
Descrizione fisica xix, 276 p. : ill. ; 22 cm
Disciplina 511.5
Altri autori (Persone) Nowakowski, Richard J.
Collana Student mathematical library, 1520-9121 ; 61
Soggetto topico Graph theory
Random graphs
Graph algorithms
ISBN 9780821853474
Classificazione AMS 05C57
AMS 05C75
AMS 91A43
LC QA166.B667
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001839209707536
Bonato, Anthony  
Providence, R. I. : American Mathematical Society, c2011
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Graphical evolution : an introduction to the theory of Random graphs, wherein the most relevant / Edgar M. Palmer
Graphical evolution : an introduction to the theory of Random graphs, wherein the most relevant / Edgar M. Palmer
Autore Palmer, Edgar M.
Descrizione fisica xvii, 177 p. ; 24 cm.
Disciplina 511.5
Collana Wiley-Interscience series in discrete mathematics
Soggetto topico Random graphs
ISBN 0471815772
Classificazione AMS 05C
AMS 05C80
QA166.17P35
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000959959707536
Palmer, Edgar M.  
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson
Autore Janson Svante
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1994
Descrizione fisica 1 online resource (90 p.)
Disciplina 511/.5
Collana Memoirs of the American Mathematical Society
Soggetto topico Random graphs
Central limit theorem
Orthogonal decompositions
Soggetto genere / forma Electronic books.
ISBN 1-4704-0113-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter I. Foundations""; ""1. Introduction""; ""2. Preliminaries""; ""Graphs""; ""The Skorokhod topology""; ""Subsequences""; ""Continuous time martingales""; ""Semimartingales""; ""Wick products""; ""3. The basic limit theorem""; ""4. The orthogonal decomposition""; ""Chapter II. Limit theorems""; ""5. Limits for G[sub(n,p)]""; ""6. Limits for G[sub(n,m)]""; ""7. Moment convergence""; ""8. Functional convergence""; ""9. The maximum""; ""Chapter III. Examples""; ""10. Subgraph counts""; ""11. Vertex degrees""; ""12. Further examples""; ""References""
Record Nr. UNINA-9910480746903321
Janson Svante  
Providence, Rhode Island : , : American Mathematical Society, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson
Autore Janson Svante
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1994
Descrizione fisica 1 online resource (90 p.)
Disciplina 511/.5
Collana Memoirs of the American Mathematical Society
Soggetto topico Random graphs
Central limit theorem
Orthogonal decompositions
ISBN 1-4704-0113-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter I. Foundations""; ""1. Introduction""; ""2. Preliminaries""; ""Graphs""; ""The Skorokhod topology""; ""Subsequences""; ""Continuous time martingales""; ""Semimartingales""; ""Wick products""; ""3. The basic limit theorem""; ""4. The orthogonal decomposition""; ""Chapter II. Limit theorems""; ""5. Limits for G[sub(n,p)]""; ""6. Limits for G[sub(n,m)]""; ""7. Moment convergence""; ""8. Functional convergence""; ""9. The maximum""; ""Chapter III. Examples""; ""10. Subgraph counts""; ""11. Vertex degrees""; ""12. Further examples""; ""References""
Record Nr. UNINA-9910788755303321
Janson Svante  
Providence, Rhode Island : , : American Mathematical Society, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson
Orthogonal decompositions and functional limit theorems for random graph statistics / / Svante Janson
Autore Janson Svante
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1994
Descrizione fisica 1 online resource (90 p.)
Disciplina 511/.5
Collana Memoirs of the American Mathematical Society
Soggetto topico Random graphs
Central limit theorem
Orthogonal decompositions
ISBN 1-4704-0113-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter I. Foundations""; ""1. Introduction""; ""2. Preliminaries""; ""Graphs""; ""The Skorokhod topology""; ""Subsequences""; ""Continuous time martingales""; ""Semimartingales""; ""Wick products""; ""3. The basic limit theorem""; ""4. The orthogonal decomposition""; ""Chapter II. Limit theorems""; ""5. Limits for G[sub(n,p)]""; ""6. Limits for G[sub(n,m)]""; ""7. Moment convergence""; ""8. Functional convergence""; ""9. The maximum""; ""Chapter III. Examples""; ""10. Subgraph counts""; ""11. Vertex degrees""; ""12. Further examples""; ""References""
Record Nr. UNINA-9910827873003321
Janson Svante  
Providence, Rhode Island : , : American Mathematical Society, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 511.6
519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
Soggetto genere / forma Electronic books.
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNINA-9910143315903321
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 511.6
519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNISA-996216942703316
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 511.6
519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNINA-9910830041603321
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs / / Cecile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs / / Cecile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNINA-9910876632003321
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilistic combinatorics and its applications / Béla Bollobás, editor ; [with contributions by] Fan R. K. Chung ... [et al.]
Probabilistic combinatorics and its applications / Béla Bollobás, editor ; [with contributions by] Fan R. K. Chung ... [et al.]
Autore Chung, Fan R. K.
Pubbl/distr/stampa Providence, R.I. : American Mathematical Society, c1991
Descrizione fisica xv, 196 p. ; 27 cm
Disciplina 519.2
Altri autori (Persone) Bollobás, Bélaauthor
Collana Proceedings of symposia in applied mathematics, 0160-7634 ; 44. AMS short course lecture notes
Soggetto topico Combinatorial probabilities
Random graphs
ISBN 082185500X
Classificazione AMS 60-06
AMS 60C05
QA273.45.P76
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001242839707536
Chung, Fan R. K.  
Providence, R.I. : American Mathematical Society, c1991
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui