top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Autore Zieffler Andrew <1974->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (332 p.)
Disciplina 519.5/4
519.54
Altri autori (Persone) HarringJeffrey <1964->
LongJeffrey D. <1964->
Soggetto topico Bootstrap (Statistics)
Random data (Statistics)
Psychology - Data processing
R (Computer program language)
Distribution (Probability theory)
Soggetto genere / forma Electronic books.
ISBN 1-283-20383-9
9786613203830
1-118-06367-8
1-118-06368-6
1-118-06366-X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Comparing Groups: Randomization and Bootstrap Methods Using R; CONTENTS; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; 1 An Introduction to R; 1.1 Getting Started; 1.1.1 Windows OS; 1.1.2 Mac OS; 1.1.3 Add-On Packages; 1.2 Arithmetic: R as a Calculator; 1.3 Computations in R: Functions; 1.4 Connecting Computations; 1.4.1 Naming Conventions; 1.5 Data Structures: Vectors; 1.5.1 Creating Vectors in R; 1.5.2 Computation with Vectors; 1.5.3 Character and Logical Vectors; 1.6 Getting Help; 1.7 Alternative Ways to Run R; 1.8 Extension: Matrices and Matrix Operations
1.8.1 Computation with Matrices1.9 Further Reading; Problems; 2 Data Representation and Preparation; 2.1 Tabular Data; 2.1.1 External Formats for Storing Tabular Data; 2.2 Data Entry; 2.2.1 Data Codebooks; 2.3 Reading Delimited Data into R; 2.3.1 Identifying the Location of a File; 2.3.2 Examining the Data in a Text Editor; 2.3.3 Reading Delimited Separated Data: An Example; 2.4 Data Structure: Data Frames; 2.4.1 Examining the Data Read into R; 2.5 Recording Syntax using Script Files; 2.5.1 Documentation File; 2.6 Simple Graphing in R
2.6.1 Saving Graphics to Insert into a Word-Processing File2.7 Extension: Logical Expressions and Graphs for Categorical Variables; 2.7.1 Logical Operators; 2.7.2 Measurement Level and Analysis; 2.7.3 Categorical Data; 2.7.4 Plotting Categorical Data; 2.8 Further Reading; Problems; 3 Data Exploration: One Variable; 3.1 Reading In the Data; 3.2 Nonparametric Density Estimation; 3.2.1 Graphically Summarizing the Distribution; 3.2.2 Histograms; 3.2.3 Kernel Density Estimators; 3.2.4 Controlling the Density Estimation; 3.2.5 Plotting the Estimated Density; 3.3 Summarizing the Findings
3.3.1 Creating a Plot for Publication3.3.2 Writing Up the Results for Publication; 3.4 Extension: Variability Bands for Kernel Densities; 3.5 Further Reading; Problems; 4 Exploration of Multivariate Data: Comparing Two Groups; 4.1 Graphically Summarizing the Marginal Distribution; 4.2 Graphically Summarizing Conditional Distributions; 4.2.1 Indexing: Accessing Individuals or Subsets; 4.2.2 Indexing Using a Logical Expression; 4.2.3 Density Plots of the Conditional Distributions; 4.2.4 Side-by-Side Box-and-Whiskers Plots; 4.3 Numerical Summaries of Data: Estimates of the Population Parameters
4.3.1 Measuring Central Tendency4.3.2 Measuring Variation; 4.3.3 Measuring Skewness; 4.3.4 Kurtosis; 4.4 Summarizing the Findings; 4.4.1 Creating a Plot for Publication; 4.4.2 Using Color; 4.4.3 Selecting a Color Palette; 4.5 Extension: Robust Estimation; 4.5.1 Robust Estimate of Location: The Trimmed Mean; 4.5.2 Robust Estimate of Variation: The Winsorized Variance; 4.6 Further Reading; Problems; 5 Exploration of Multivariate Data: Comparing Many Groups; 5.1 Graphing Many Conditional Distributions; 5.1.1 Panel Plots; 5.1.2 Side-by-Side Box-and-Whiskers Plots
5.2 Numerically Summarizing the Data
Record Nr. UNINA-9910139630803321
Zieffler Andrew <1974->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Autore Zieffler Andrew <1974->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (332 p.)
Disciplina 519.5/4
519.54
Altri autori (Persone) HarringJeffrey <1964->
LongJeffrey D. <1964->
Soggetto topico Bootstrap (Statistics)
Random data (Statistics)
Psychology - Data processing
R (Computer program language)
Distribution (Probability theory)
ISBN 1-283-20383-9
9786613203830
1-118-06367-8
1-118-06368-6
1-118-06366-X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Comparing Groups: Randomization and Bootstrap Methods Using R; CONTENTS; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; 1 An Introduction to R; 1.1 Getting Started; 1.1.1 Windows OS; 1.1.2 Mac OS; 1.1.3 Add-On Packages; 1.2 Arithmetic: R as a Calculator; 1.3 Computations in R: Functions; 1.4 Connecting Computations; 1.4.1 Naming Conventions; 1.5 Data Structures: Vectors; 1.5.1 Creating Vectors in R; 1.5.2 Computation with Vectors; 1.5.3 Character and Logical Vectors; 1.6 Getting Help; 1.7 Alternative Ways to Run R; 1.8 Extension: Matrices and Matrix Operations
1.8.1 Computation with Matrices1.9 Further Reading; Problems; 2 Data Representation and Preparation; 2.1 Tabular Data; 2.1.1 External Formats for Storing Tabular Data; 2.2 Data Entry; 2.2.1 Data Codebooks; 2.3 Reading Delimited Data into R; 2.3.1 Identifying the Location of a File; 2.3.2 Examining the Data in a Text Editor; 2.3.3 Reading Delimited Separated Data: An Example; 2.4 Data Structure: Data Frames; 2.4.1 Examining the Data Read into R; 2.5 Recording Syntax using Script Files; 2.5.1 Documentation File; 2.6 Simple Graphing in R
2.6.1 Saving Graphics to Insert into a Word-Processing File2.7 Extension: Logical Expressions and Graphs for Categorical Variables; 2.7.1 Logical Operators; 2.7.2 Measurement Level and Analysis; 2.7.3 Categorical Data; 2.7.4 Plotting Categorical Data; 2.8 Further Reading; Problems; 3 Data Exploration: One Variable; 3.1 Reading In the Data; 3.2 Nonparametric Density Estimation; 3.2.1 Graphically Summarizing the Distribution; 3.2.2 Histograms; 3.2.3 Kernel Density Estimators; 3.2.4 Controlling the Density Estimation; 3.2.5 Plotting the Estimated Density; 3.3 Summarizing the Findings
3.3.1 Creating a Plot for Publication3.3.2 Writing Up the Results for Publication; 3.4 Extension: Variability Bands for Kernel Densities; 3.5 Further Reading; Problems; 4 Exploration of Multivariate Data: Comparing Two Groups; 4.1 Graphically Summarizing the Marginal Distribution; 4.2 Graphically Summarizing Conditional Distributions; 4.2.1 Indexing: Accessing Individuals or Subsets; 4.2.2 Indexing Using a Logical Expression; 4.2.3 Density Plots of the Conditional Distributions; 4.2.4 Side-by-Side Box-and-Whiskers Plots; 4.3 Numerical Summaries of Data: Estimates of the Population Parameters
4.3.1 Measuring Central Tendency4.3.2 Measuring Variation; 4.3.3 Measuring Skewness; 4.3.4 Kurtosis; 4.4 Summarizing the Findings; 4.4.1 Creating a Plot for Publication; 4.4.2 Using Color; 4.4.3 Selecting a Color Palette; 4.5 Extension: Robust Estimation; 4.5.1 Robust Estimate of Location: The Trimmed Mean; 4.5.2 Robust Estimate of Variation: The Winsorized Variance; 4.6 Further Reading; Problems; 5 Exploration of Multivariate Data: Comparing Many Groups; 5.1 Graphing Many Conditional Distributions; 5.1.1 Panel Plots; 5.1.2 Side-by-Side Box-and-Whiskers Plots
5.2 Numerically Summarizing the Data
Record Nr. UNINA-9910830144103321
Zieffler Andrew <1974->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Comparing groups : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Comparing groups : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Autore Zieffler Andrew <1974->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (332 p.)
Disciplina 519.5/4
Altri autori (Persone) HarringJeffrey <1964->
LongJeffrey D. <1964->
Soggetto topico Bootstrap (Statistics)
Random data (Statistics)
Psychology - Data processing
R (Computer program language)
Distribution (Probability theory)
ISBN 9786613203830
9781283203838
1283203839
9781118063675
1118063678
9781118063682
1118063686
9781118063668
111806366X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Comparing Groups: Randomization and Bootstrap Methods Using R; CONTENTS; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; 1 An Introduction to R; 1.1 Getting Started; 1.1.1 Windows OS; 1.1.2 Mac OS; 1.1.3 Add-On Packages; 1.2 Arithmetic: R as a Calculator; 1.3 Computations in R: Functions; 1.4 Connecting Computations; 1.4.1 Naming Conventions; 1.5 Data Structures: Vectors; 1.5.1 Creating Vectors in R; 1.5.2 Computation with Vectors; 1.5.3 Character and Logical Vectors; 1.6 Getting Help; 1.7 Alternative Ways to Run R; 1.8 Extension: Matrices and Matrix Operations
1.8.1 Computation with Matrices1.9 Further Reading; Problems; 2 Data Representation and Preparation; 2.1 Tabular Data; 2.1.1 External Formats for Storing Tabular Data; 2.2 Data Entry; 2.2.1 Data Codebooks; 2.3 Reading Delimited Data into R; 2.3.1 Identifying the Location of a File; 2.3.2 Examining the Data in a Text Editor; 2.3.3 Reading Delimited Separated Data: An Example; 2.4 Data Structure: Data Frames; 2.4.1 Examining the Data Read into R; 2.5 Recording Syntax using Script Files; 2.5.1 Documentation File; 2.6 Simple Graphing in R
2.6.1 Saving Graphics to Insert into a Word-Processing File2.7 Extension: Logical Expressions and Graphs for Categorical Variables; 2.7.1 Logical Operators; 2.7.2 Measurement Level and Analysis; 2.7.3 Categorical Data; 2.7.4 Plotting Categorical Data; 2.8 Further Reading; Problems; 3 Data Exploration: One Variable; 3.1 Reading In the Data; 3.2 Nonparametric Density Estimation; 3.2.1 Graphically Summarizing the Distribution; 3.2.2 Histograms; 3.2.3 Kernel Density Estimators; 3.2.4 Controlling the Density Estimation; 3.2.5 Plotting the Estimated Density; 3.3 Summarizing the Findings
3.3.1 Creating a Plot for Publication3.3.2 Writing Up the Results for Publication; 3.4 Extension: Variability Bands for Kernel Densities; 3.5 Further Reading; Problems; 4 Exploration of Multivariate Data: Comparing Two Groups; 4.1 Graphically Summarizing the Marginal Distribution; 4.2 Graphically Summarizing Conditional Distributions; 4.2.1 Indexing: Accessing Individuals or Subsets; 4.2.2 Indexing Using a Logical Expression; 4.2.3 Density Plots of the Conditional Distributions; 4.2.4 Side-by-Side Box-and-Whiskers Plots; 4.3 Numerical Summaries of Data: Estimates of the Population Parameters
4.3.1 Measuring Central Tendency4.3.2 Measuring Variation; 4.3.3 Measuring Skewness; 4.3.4 Kurtosis; 4.4 Summarizing the Findings; 4.4.1 Creating a Plot for Publication; 4.4.2 Using Color; 4.4.3 Selecting a Color Palette; 4.5 Extension: Robust Estimation; 4.5.1 Robust Estimate of Location: The Trimmed Mean; 4.5.2 Robust Estimate of Variation: The Winsorized Variance; 4.6 Further Reading; Problems; 5 Exploration of Multivariate Data: Comparing Many Groups; 5.1 Graphing Many Conditional Distributions; 5.1.1 Panel Plots; 5.1.2 Side-by-Side Box-and-Whiskers Plots
5.2 Numerically Summarizing the Data
Record Nr. UNINA-9911019130503321
Zieffler Andrew <1974->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Autore Zhou Shiyu <1970->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (353 pages)
Disciplina 658.00727
Soggetto topico Random data (Statistics)
Industrial management - Mathematics
Industrial engineering - Statistical methods
Soggetto genere / forma Electronic books.
ISBN 1-5231-4353-3
1-119-66630-9
1-119-66627-9
1-119-66629-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Industrial Data Analytics for Diagnosis and Prognosis -- Contents -- Preface -- Acknowledgments -- Acronyms -- Table of Notation -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Scope and Organization of the Book -- 1.3 How to Use This Book -- Bibliographic Note -- Part 1 Statistical Methods and Foundation for Industrial Data Analytics -- 2 Introduction to Data Visualization and Characterization -- 2.1 Data Visualization -- 2.1.1 Distribution Plots for a Single Variable -- 2.1.2 Plots for Relationship Between Two Variables -- 2.1.3 Plots for More than Two Variables -- 2.2 Summary Statistics -- 2.2.1 Sample Mean, Variance, and Covariance -- 2.2.2 Sample Mean Vector and Sample Covariance Matrix -- 2.2.3 Linear Combination of Variables -- Bibliographic Notes -- Exercises -- 3 Random Vectors and the Multivariate Normal Distribution -- 3.1 Random Vectors -- 3.2 Density Function and Properties of Multivariate Normal Distribution -- 3.3 Maximum Likelihood Estimation for Multivariate Normal Distribution -- 3.4 Hypothesis Testing on Mean Vectors -- 3.5 Bayesian Inference for Normal Distribution -- Bibliographic Notes -- Exercises -- 4 Explaining Covariance Structure: Principal Components -- 4.1 Introduction to Principal Component Analysis -- 4.1.1 Principal Components for More Than Two Variables -- 4.1.2 PCA with Data Normalization -- 4.1.3 Visualization of Principal Components -- 4.1.4 Number of Principal Components to Retain -- 4.2 Mathematical Formulation of Principal Components -- 4.2.1 Proportion of Variance Explained -- 4.2.2 Principal Components Obtained from the Correlation Matrix -- 4.3 Geometric Interpretation of Principal Components -- 4.3.1 Interpretation Based on Rotation -- 4.3.2 Interpretation Based on Low-Dimensional Approximation -- Bibliographic Notes -- Exercises.
5 Linear Model for Numerical and Categorical Response Variables -- 5.1 Numerical Response - Linear Regression Models -- 5.1.1 General Formulation of Linear Regression Model -- 5.1.2 Significance and Interpretation of Regression Coefficients -- 5.1.3 Other Types of Predictors in Linear Models -- 5.2 Estimation and Inferences of Model Parameters for Linear Regression -- 5.2.1 Least Squares Estimation -- 5.2.2 Maximum Likelihood Estimation -- 5.2.3 Variable Selection in Linear Regression -- 5.2.4 Hypothesis Testing -- 5.3 Categorical Response - Logistic Regression Model -- 5.3.1 General Formulation of Logistic Regression Model -- 5.3.2 Significance and Interpretation of Model Coefficients -- 5.3.3 Maximum Likelihood Estimation for Logistic Regression -- Bibliographic Notes -- Exercises -- 6 Linear Mixed Effects Model -- 6.1 Model Structure -- 6.2 Parameter Estimation for LME Model -- 6.2.1 Maximum Likelihood Estimation Method -- 6.2.2 Distribution-Free Estimation Methods -- 6.3 Hypothesis Testing -- 6.3.1 Testing for Fixed Effects -- 6.3.2 Testing for Variance-Covariance Parameters -- Bibliographic Notes -- Exercises -- Part 2 Random Effects Approaches for Diagnosis and Prognosis -- 7 Diagnosis of Variation Source Using PCA -- 7.1 Linking Variation Sources to PCA -- 7.2 Diagnosis of Single Variation Source -- 7.3 Diagnosis of Multiple Variation Sources -- 7.4 Data Driven Method for Diagnosing Variation Sources -- Bibliographic Notes -- Exercises -- 8 Diagnosis of Variation Sources Through Random Effects Estimation -- 8.1 Estimation of Variance Components -- 8.2 Properties of Variation Source Estimators -- 8.3 Performance Comparison of Variance Component Estimators -- Bibliographic Notes -- Exercises -- 9 Analysis of System Diagnosability -- 9.1 Diagnosability of Linear Mixed Effects Model -- 9.2 Minimal Diagnosable Class.
9.3 Measurement System Evaluation Based on System Diagnosability -- Bibliographic Notes -- Exercises -- Appendix -- 10 Prognosis Through Mixed Effects Models for Longitudinal Data -- 10.1 Mixed Effects Model for Longitudinal Data -- 10.2 Random Effects Estimation and Prediction for an Individual Unit -- 10.3 Estimation of Time-to-Failure Distribution -- 10.4 Mixed Effects Model with Mixture Prior Distribution -- 10.4.1 Mixture Distribution -- 10.4.2 Mixed Effects Model with Mixture Prior for Longitudinal Data -- 10.5 Recursive Estimation of Random Effects Using Kalman Filter -- 10.5.1 Introduction to the Kalman Filter -- 10.5.2 Random Effects Estimation Using the Kalman Filter -- Biographical Notes -- Exercises -- Appendix -- 11 Prognosis Using Gaussian Process Model -- 11.1 Introduction to Gaussian Process Model -- 11.2 GP Parameter Estimation and GP Based Prediction -- 11.3 Pairwise Gaussian Process Model -- 11.3.1 Introduction to Multi-output Gaussian Process -- 11.3.2 Pairwise GP Modeling Through Convolution Process -- 11.4 Multiple Output Gaussian Process for Multiple Signals -- 11.4.1 Model Structure -- 11.4.2 Model Parameter Estimation and Prediction -- 11.4.3 Time-to-Failure Distribution Based on GP Predictions -- Bibliographical Notes -- Exercises -- 12 Prognosis Through Mixed Effects Models for Time-to-Event Data -- 12.1 Models for Time-to-Event Data Without Covariates -- 12.1.1 Parametric Models for Time-to-Event Data -- 12.1.2 Non-parametric Models for Time-to-Event Data -- 12.2 Survival Regression Models -- 12.2.1 Cox PH Model with Fixed Covariates -- 12.2.2 Cox PH Model with Time Varying Covariates -- 12.2.3 Assessing Goodness of Fit -- 12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data -- 12.3.1 Structure of Joint Model and Parameter Estimation -- 12.3.2 Online Event Prediction for a New Unit.
12.4 Cox PH Model with Frailty Term for Recurrent Events -- Bibliographical Notes -- Exercises -- Appendix -- Appendix: Basics of Vectors, Matrices, and Linear Vector Space -- References -- Index.
Record Nr. UNINA-9910555198203321
Zhou Shiyu <1970->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Autore Zhou Shiyu <1970->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (353 pages)
Disciplina 658.00727
Soggetto topico Random data (Statistics)
Industrial management - Mathematics
Industrial engineering - Statistical methods
ISBN 1-5231-4353-3
1-119-66630-9
1-119-66627-9
1-119-66629-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Industrial Data Analytics for Diagnosis and Prognosis -- Contents -- Preface -- Acknowledgments -- Acronyms -- Table of Notation -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Scope and Organization of the Book -- 1.3 How to Use This Book -- Bibliographic Note -- Part 1 Statistical Methods and Foundation for Industrial Data Analytics -- 2 Introduction to Data Visualization and Characterization -- 2.1 Data Visualization -- 2.1.1 Distribution Plots for a Single Variable -- 2.1.2 Plots for Relationship Between Two Variables -- 2.1.3 Plots for More than Two Variables -- 2.2 Summary Statistics -- 2.2.1 Sample Mean, Variance, and Covariance -- 2.2.2 Sample Mean Vector and Sample Covariance Matrix -- 2.2.3 Linear Combination of Variables -- Bibliographic Notes -- Exercises -- 3 Random Vectors and the Multivariate Normal Distribution -- 3.1 Random Vectors -- 3.2 Density Function and Properties of Multivariate Normal Distribution -- 3.3 Maximum Likelihood Estimation for Multivariate Normal Distribution -- 3.4 Hypothesis Testing on Mean Vectors -- 3.5 Bayesian Inference for Normal Distribution -- Bibliographic Notes -- Exercises -- 4 Explaining Covariance Structure: Principal Components -- 4.1 Introduction to Principal Component Analysis -- 4.1.1 Principal Components for More Than Two Variables -- 4.1.2 PCA with Data Normalization -- 4.1.3 Visualization of Principal Components -- 4.1.4 Number of Principal Components to Retain -- 4.2 Mathematical Formulation of Principal Components -- 4.2.1 Proportion of Variance Explained -- 4.2.2 Principal Components Obtained from the Correlation Matrix -- 4.3 Geometric Interpretation of Principal Components -- 4.3.1 Interpretation Based on Rotation -- 4.3.2 Interpretation Based on Low-Dimensional Approximation -- Bibliographic Notes -- Exercises.
5 Linear Model for Numerical and Categorical Response Variables -- 5.1 Numerical Response - Linear Regression Models -- 5.1.1 General Formulation of Linear Regression Model -- 5.1.2 Significance and Interpretation of Regression Coefficients -- 5.1.3 Other Types of Predictors in Linear Models -- 5.2 Estimation and Inferences of Model Parameters for Linear Regression -- 5.2.1 Least Squares Estimation -- 5.2.2 Maximum Likelihood Estimation -- 5.2.3 Variable Selection in Linear Regression -- 5.2.4 Hypothesis Testing -- 5.3 Categorical Response - Logistic Regression Model -- 5.3.1 General Formulation of Logistic Regression Model -- 5.3.2 Significance and Interpretation of Model Coefficients -- 5.3.3 Maximum Likelihood Estimation for Logistic Regression -- Bibliographic Notes -- Exercises -- 6 Linear Mixed Effects Model -- 6.1 Model Structure -- 6.2 Parameter Estimation for LME Model -- 6.2.1 Maximum Likelihood Estimation Method -- 6.2.2 Distribution-Free Estimation Methods -- 6.3 Hypothesis Testing -- 6.3.1 Testing for Fixed Effects -- 6.3.2 Testing for Variance-Covariance Parameters -- Bibliographic Notes -- Exercises -- Part 2 Random Effects Approaches for Diagnosis and Prognosis -- 7 Diagnosis of Variation Source Using PCA -- 7.1 Linking Variation Sources to PCA -- 7.2 Diagnosis of Single Variation Source -- 7.3 Diagnosis of Multiple Variation Sources -- 7.4 Data Driven Method for Diagnosing Variation Sources -- Bibliographic Notes -- Exercises -- 8 Diagnosis of Variation Sources Through Random Effects Estimation -- 8.1 Estimation of Variance Components -- 8.2 Properties of Variation Source Estimators -- 8.3 Performance Comparison of Variance Component Estimators -- Bibliographic Notes -- Exercises -- 9 Analysis of System Diagnosability -- 9.1 Diagnosability of Linear Mixed Effects Model -- 9.2 Minimal Diagnosable Class.
9.3 Measurement System Evaluation Based on System Diagnosability -- Bibliographic Notes -- Exercises -- Appendix -- 10 Prognosis Through Mixed Effects Models for Longitudinal Data -- 10.1 Mixed Effects Model for Longitudinal Data -- 10.2 Random Effects Estimation and Prediction for an Individual Unit -- 10.3 Estimation of Time-to-Failure Distribution -- 10.4 Mixed Effects Model with Mixture Prior Distribution -- 10.4.1 Mixture Distribution -- 10.4.2 Mixed Effects Model with Mixture Prior for Longitudinal Data -- 10.5 Recursive Estimation of Random Effects Using Kalman Filter -- 10.5.1 Introduction to the Kalman Filter -- 10.5.2 Random Effects Estimation Using the Kalman Filter -- Biographical Notes -- Exercises -- Appendix -- 11 Prognosis Using Gaussian Process Model -- 11.1 Introduction to Gaussian Process Model -- 11.2 GP Parameter Estimation and GP Based Prediction -- 11.3 Pairwise Gaussian Process Model -- 11.3.1 Introduction to Multi-output Gaussian Process -- 11.3.2 Pairwise GP Modeling Through Convolution Process -- 11.4 Multiple Output Gaussian Process for Multiple Signals -- 11.4.1 Model Structure -- 11.4.2 Model Parameter Estimation and Prediction -- 11.4.3 Time-to-Failure Distribution Based on GP Predictions -- Bibliographical Notes -- Exercises -- 12 Prognosis Through Mixed Effects Models for Time-to-Event Data -- 12.1 Models for Time-to-Event Data Without Covariates -- 12.1.1 Parametric Models for Time-to-Event Data -- 12.1.2 Non-parametric Models for Time-to-Event Data -- 12.2 Survival Regression Models -- 12.2.1 Cox PH Model with Fixed Covariates -- 12.2.2 Cox PH Model with Time Varying Covariates -- 12.2.3 Assessing Goodness of Fit -- 12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data -- 12.3.1 Structure of Joint Model and Parameter Estimation -- 12.3.2 Online Event Prediction for a New Unit.
12.4 Cox PH Model with Frailty Term for Recurrent Events -- Bibliographical Notes -- Exercises -- Appendix -- Appendix: Basics of Vectors, Matrices, and Linear Vector Space -- References -- Index.
Record Nr. UNINA-9910830968103321
Zhou Shiyu <1970->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui