top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Metal-enhanced fluorescence [[electronic resource] /] / edited by Chris D. Geddes
Metal-enhanced fluorescence [[electronic resource] /] / edited by Chris D. Geddes
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2010
Descrizione fisica 1 online resource (655 p.)
Disciplina 543/.56
Altri autori (Persone) GeddesChris D
Soggetto topico Fluorescence spectroscopy
Nanoparticles
Radioactive decay
Plasmons (Physics)
ISBN 1-282-65373-3
9786612653735
0-470-64279-3
0-470-64278-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto METAL-ENHANCED FLUORESCENCE; CONTENTS; Preface; Contributors; Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description; Spectral Profile Modifications In Metal-Enhanced Fluorescence; The Role Of Plasmonic Engineering In Potential Surface-Enhanced Fluorescence; Importance of Spectral Overlap: Fluorescence Enhancement by Single Metal Nanoparticles; Near-IR Metal-Enhanced Fluorescence And Controlled Colloidal Aggregation; Optimisation Of Plasmonic Enhancement Of Fluorescence For Optical Biosensor Applications; Microwave-Accelerated Metal-Enhanced Fluorescence
Localized Surface Plasmon Coupled Fluorescence Fiber Optic Based BiosensingSurface Plasmon Enhanced Photochemistry; Metal-Enhanced Generation of Oxygen Rich Species; Synthesis Of Anisotropie Noble Metal Nanoparticles; Enhanced Fluorescence Detection Enabled By Zinc Oxide Nanomaterials; ZnO Platforms For Enhanced Directional Fluorescence Applications; E-Beam Lithography And Spontaneous Galvanic Displacement Reactions For Spatially Controlled MEF Applications; Metal-Enhanced Chemiluminescence; Enhanced Fluorescence From Gratings; Enhancing Fluorescence with Sub-Wavelength Metallic Apertures
Enhanced Multi-Photon Excitation of Tryptophan-Silver ColloidPlasmon-enhanced radiative rates and applications to organic electronics; Fluorescent Quenching Gold Nanoparticles: Potential Biomedical Applications; Index
Record Nr. UNINA-9910140557903321
Hoboken, N.J., : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal-enhanced fluorescence / / edited by Chris D. Geddes
Metal-enhanced fluorescence / / edited by Chris D. Geddes
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2010
Descrizione fisica 1 online resource (655 p.)
Disciplina 543/.56
Altri autori (Persone) GeddesChris D
Soggetto topico Fluorescence spectroscopy
Nanoparticles
Radioactive decay
Plasmons (Physics)
ISBN 9786612653735
9781282653733
1282653733
9780470642795
0470642793
9780470642788
0470642785
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto METAL-ENHANCED FLUORESCENCE; CONTENTS; Preface; Contributors; Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description; Spectral Profile Modifications In Metal-Enhanced Fluorescence; The Role Of Plasmonic Engineering In Potential Surface-Enhanced Fluorescence; Importance of Spectral Overlap: Fluorescence Enhancement by Single Metal Nanoparticles; Near-IR Metal-Enhanced Fluorescence And Controlled Colloidal Aggregation; Optimisation Of Plasmonic Enhancement Of Fluorescence For Optical Biosensor Applications; Microwave-Accelerated Metal-Enhanced Fluorescence
Localized Surface Plasmon Coupled Fluorescence Fiber Optic Based BiosensingSurface Plasmon Enhanced Photochemistry; Metal-Enhanced Generation of Oxygen Rich Species; Synthesis Of Anisotropie Noble Metal Nanoparticles; Enhanced Fluorescence Detection Enabled By Zinc Oxide Nanomaterials; ZnO Platforms For Enhanced Directional Fluorescence Applications; E-Beam Lithography And Spontaneous Galvanic Displacement Reactions For Spatially Controlled MEF Applications; Metal-Enhanced Chemiluminescence; Enhanced Fluorescence From Gratings; Enhancing Fluorescence with Sub-Wavelength Metallic Apertures
Enhanced Multi-Photon Excitation of Tryptophan-Silver ColloidPlasmon-enhanced radiative rates and applications to organic electronics; Fluorescent Quenching Gold Nanoparticles: Potential Biomedical Applications; Index
Record Nr. UNINA-9910812202403321
Hoboken, N.J., : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Operation Morning Light : An Operational History / / Ryan Dean
Operation Morning Light : An Operational History / / Ryan Dean
Pubbl/distr/stampa Antigonish, NS, CA : , : Mulroney Institute of Government, , 2018
Descrizione fisica 1 online resource (386 pages)
Altri autori (Persone) DeanRyan
LackenbauerP. Whitney
Collana Arctic Operational Histories
Soggetto topico Kosmos (satellite)
Kosmos 954
Nuclear reactor
Radioactive decay
Satellite
Space debris
Human activities
United states national security council
United states department of energy
Atmospheric entry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910698537003321
Antigonish, NS, CA : , : Mulroney Institute of Government, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical Gamma-Ray Spectrometry
Practical Gamma-Ray Spectrometry
Autore Gilmore Gordon
Edizione [3rd ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (542 pages)
Disciplina 537.5/352
Altri autori (Persone) JossDavid
Soggetto topico Gamma ray spectrometry
Radioactive decay
ISBN 9781394286577
1394286570
9781119896104
111989610X
9781119896098
1119896096
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Internet Resources Within the Book -- About the Website -- Chapter 1 Radioactive Decay and the Origin of Gamma and X‐Radiation -- 1.1 Introduction -- 1.2 Beta Decay -- 1.2.1 β− or Negatron Decay -- 1.2.2 β+ or Positron Decay -- 1.2.3 Electron Capture (EC) -- 1.2.4 Multiple Stable Isotopes -- 1.3 Alpha Decay -- 1.4 Spontaneous Fission (SF) -- 1.5 Exotic Decay Modes -- 1.6 Gamma Emission -- 1.6.1 The Electromagnetic Spectrum -- 1.6.2 Some Properties of Nuclear Transitions -- 1.6.3 Lifetimes of Nuclear Energy Levels -- 1.6.4 Width of Nuclear Energy Levels -- 1.6.5 Internal Conversion -- 1.6.6 Abundance, Yield and Emission Probability -- 1.6.7 Ambiguity in Assignment of Nuclide Identity -- 1.7 Other Sources of Photons -- 1.7.1 Annihilation Radiation -- 1.7.2 Bremsstrahlung -- 1.7.3 Prompt Gamma‐Rays -- 1.7.4 X‐rays -- 1.7.4.1 X‐ray Nomenclature -- 1.7.4.2 X‐ray Energies -- 1.7.4.3 X‐rays and Identification -- 1.7.4.4 The Energy Widths of X‐rays -- 1.8 The Mathematics of Decay and Growth of Radioactivity -- 1.8.1 The Decay Equation -- 1.8.2 Growth of Activity in Reactors -- 1.8.3 Growth of Activity from Decay of a Parent -- 1.8.3.1 Transient Equilibrium - t1/2 Parent > -- t1/2 Daughter -- 1.8.3.2 Secular Equilibrium - t1/2 Parent & -- gg -- t1/2 Daughter -- 1.8.3.3 No Equilibrium - t1/2 Parent < -- t1/2 Daughter -- 1.8.3.4 Multiple Parent-Daughter Relationships -- 1.9 The Chart of the Nuclides -- 1.9.1 A Source of Nuclear Data -- 1.9.2 A Source of Generic Information -- 1.9.2.1 Thermal Neutron Capture (n, γ) -- 1.9.2.2 Fast Neutron Reactions, (n, p), etc. -- 1.9.2.3 Fission Reactions (n, f) -- Practical Points -- Further Reading -- Chapter 2 Interactions of Gamma Radiation with Matter.
2.1 Introduction -- 2.2 Mechanisms of Interaction -- 2.2.1 Photoelectric Absorption -- 2.2.2 Compton Scattering -- 2.2.3 Pair Production -- 2.3 Total Attenuation Coefficients -- 2.4 Interactions Within the Detector -- 2.4.1 The Very Large Detector -- 2.4.2 The Very Small Detector -- 2.4.3 The 'Real' Detector -- 2.4.4 Summary -- 2.5 Interactions Within the Shielding -- 2.5.1 Photoelectric Interactions -- 2.5.2 Compton Scattering -- 2.5.3 Pair Production -- 2.6 Bremsstrahlung -- 2.7 Attenuation of Gamma Radiation -- 2.8 The Design of Detector Shielding -- Practical Points -- Further Reading -- Chapter 3 Semiconductor Detectors for Gamma‐Ray Spectrometry -- 3.1 Introduction -- 3.2 Semiconductors and Gamma‐Ray Detection -- 3.2.1 The Band Structure of Solids -- 3.2.2 Mobility of Holes -- 3.2.3 Creation of Charge Carriers by Gamma Radiation -- 3.2.4 Suitable Semiconductors for Gamma‐Ray Detectors -- 3.2.5 Newer Semiconductor Materials -- 3.3 The Nature of Semiconductors -- 3.4 The Manufacture of Germanium Detectors -- 3.4.1 Introduction -- 3.4.2 The Manufacturing Process -- 3.4.3 Lithium‐Drifted Detectors -- 3.4.4 Detector Configurations -- 3.4.5 Absorption in Detector Caps and Dead Layers -- 3.4.6 Detectors for Low‐Energy Measurements -- 3.4.7 Well Detectors -- 3.5 Detector Capacitance -- 3.5.1 Microphonic Noise -- 3.6 Charge Collection in Detectors -- 3.6.1 Charge Collection Time -- 3.6.2 Shape of the Detector Pulse -- 3.6.3 Timing Signals from Germanium Detectors -- 3.6.4 Electric Field Variations Across the Detector -- 3.6.5 Removing Weak Field Regions from Detectors -- 3.6.6 Trapping of Charge Carriers -- 3.6.7 Radiation Damage -- 3.7 Packaging of Detectors -- 3.7.1 Construction of the Detector Mounting -- 3.7.2 Loss of Coolant -- 3.7.3 Demountable Detectors -- 3.7.4 Electrical Cooling of Detectors -- 3.8 Position‐Sensitive Detectors.
3.8.1 Segmentation -- 3.8.2 Gamma‐Ray Tracking -- Practical Points -- Further Reading -- Chapter 4 Electronics for Gamma‐Ray Spectrometry -- 4.1 The General Electronic System -- 4.1.1 Introduction -- 4.1.2 Electronic Noise and Its Implications for Spectrum Resolution -- 4.1.3 Pulse Shapes in Gamma Spectrometry Systems -- 4.1.4 Impedance - Inputs and Outputs -- 4.1.5 The Impedance of Cabling -- 4.1.6 Impedance Matching -- 4.2 Detector Bias Supplies -- 4.3 Preamplifiers -- 4.3.1 Resistive Feedback Preamplifiers -- 4.3.2 Reset Preamplifiers -- 4.3.3 The Noise Contribution of Preamplifiers -- 4.3.4 The Rise Time of Preamplifiers -- 4.3.5 Intelligent Preamplifiers and High‐Voltage Supplies -- 4.4 Amplifiers and Pulse Processors -- 4.4.1 The Functions of the Amplifier -- 4.4.2 Pulse Shaping -- 4.4.3 The Optimum Pulse Shape -- 4.4.4 The Optimum Pulse Shaping Time Constant -- 4.4.5 The Gated Integrator Amplifier -- 4.4.6 Pole‐zero Cancellation -- 4.4.7 Baseline Shift -- 4.4.8 Pile‐up Rejection -- 4.4.9 Amplifier Gain and Overview -- 4.5 Resolution Enhancement -- 4.5.1 New Semiconductor Materials -- 4.6 Multichannel Analysers and Their Analogue‐to‐Digital Converters -- 4.6.1 Introduction -- 4.6.2 Pulse Range Selection -- 4.6.3 The ADC Input Gate -- 4.6.4 The ADC -- 4.6.4.1 The Wilkinson ADC -- 4.6.4.2 The Successive Approximation ADC -- 4.6.5 MCA Conversion Time and Dead Time -- 4.6.6 Choosing an ADC -- 4.6.7 Linearity in MCAs -- 4.6.8 Optimum Spectrum Size -- 4.6.9 MCA Terms and Definitions -- 4.6.10 A Short History of MCA Systems -- 4.6.11 Simple MCA Analysis Functions -- 4.7 Live Time Correction and Loss‐Free Counting -- 4.7.1 Live Time Clock Correction -- 4.7.2 The Gedcke-Hale Method -- 4.7.3 Use of a Pulser -- 4.7.4 Loss‐Free Counting (LFC) -- 4.7.5 MCA Throughput -- 4.8 Spectrum Stabilization -- 4.8.1 Analogue Stabilization.
4.8.2 Digital Stabilization -- 4.9 Coincidence and Anticoincidence Gating -- 4.10 Multiplexing and Multiscaling -- 4.11 Digital Pulse Processing Systems -- Practical Points -- Further Reading -- Chapter 5 Statistics of Counting -- 5.1 Introduction -- 5.1.1 Statistical Statements -- 5.2 Counting Distributions -- 5.2.1 The Binomial Distribution -- 5.2.2 The Poisson and Gaussian Distributions -- 5.3 Sampling Statistics -- 5.3.1 Confidence Limits -- 5.3.2 Combining the Results from Different Measurements -- 5.3.3 Propagation of Uncertainty -- 5.4 Peak Area Measurement -- 5.4.1 Simple Peak Integration -- 5.4.2 Peaked‐Background Correction -- 5.5 Counting Decision Limits -- 5.5.1 Critical Limit (LC): 'Is the Net Count Significant?' -- 5.5.2 Upper Limit (LU): 'Given That This Count Is Not Statistically Significant, What Is the Maximum Statistically Reasonable Count?' -- 5.5.3 Confidence Limits -- 5.5.4 Detection Limit (LD): 'What Is the Minimum Number of Counts that I Can Be Confident of Detecting?' -- 5.5.5 Determination Limit (LQ): 'How Many Counts Would I Have to Have to Achieve a Particular Statistical Uncertainty?' -- 5.5.6 Other Calculation Options -- 5.5.7 Minimum Detectable Activity (MDA): 'What Is the Least Amount of Activity I Can Be Confident of Measuring?' -- 5.5.8 Uncertainty of the LU and MDA -- 5.5.9 An Example by Way of Summary -- 5.6 Special Counting Situations -- 5.6.1 Non‐Poisson Counting -- 5.6.2 Low Numbers of Counts -- 5.6.3 Non‐Poisson Statistics Due to Pile‐up Rejection and Loss‐Free Counting -- 5.7 Optimizing Counting Conditions -- 5.7.1 Optimum Background Width -- 5.7.2 Optimum Peak Width -- 5.7.3 Optimum Spectrum Size -- 5.7.4 Optimum Counting Time -- 5.8 Uncertainty Budgets -- 5.8.1 Introduction -- 5.8.2 Accuracy and Precision -- 5.8.3 Types of Uncertainty -- 5.8.4 Types of Distribution -- 5.8.5 Uncertainty on Sample Preparation.
5.8.6 Counting Uncertainties -- 5.8.7 Calibration Uncertainties -- 5.8.7.1 Nuclear Data Uncertainty -- 5.8.7.2 Uncertainty on Efficiency Calibration Standards -- 5.8.8 An Example of an Uncertainty Budget -- Practical Points -- Further Reading -- Chapter 6 Resolution: Origins and Control -- 6.1 Introduction -- 6.2 Charge Production - ωP -- 6.2.1 Germanium Versus Silicon -- 6.2.2 Germanium Versus Sodium Iodide -- 6.2.3 Temperature Dependence of Resolution -- 6.3 Charge Collection - ωC -- 6.3.1 Mathematical Form of ωC -- 6.4 Electronic Noise - ωE -- 6.4.1 Parallel Noise -- 6.4.2 Series Noise -- 6.4.3 Flicker Noise -- 6.4.4 Total Electronic Noise and Shaping Time -- 6.5 Resolving the Peak Width Calibration -- Practical Points -- Further Reading -- Chapter 7 Spectrometer Calibration -- 7.1 Introduction -- 7.2 Reference Data for Calibration -- 7.3 Sources for Calibration -- 7.4 Energy Calibration -- 7.4.1 Errors in Peak Energy Determination -- 7.5 Peak Width Calibration -- 7.5.1 Factors Affecting Peak Width -- 7.5.2 Algorithms for Peak Width Estimation -- 7.5.3 Estimation of the Peak Height -- 7.5.4 Anomalous Peak Widths -- 7.6 Efficiency Calibration -- 7.6.1 Which Efficiency? -- 7.6.2 Full‐energy Peak Efficiency -- 7.6.3 Is an Efficiency Calibration Curve Necessary? -- 7.6.4 The Effect of Source‐to‐Detector Distance -- 7.6.5 Calibration Errors Due to Difference in Sample Geometry -- 7.6.6 An Empirical Correction for Sample Height -- 7.6.7 Effect of Source Density on Efficiency -- 7.6.7.1 Corrections Based on Estimated Mass Attenuation Coefficients -- 7.6.7.2 Empirical Correction for Self‐absorption -- 7.6.8 Efficiency Loss Due to Random Summing (Pile‐up) -- 7.6.9 True Coincidence Summing -- 7.6.10 Corrections for Radioactive Decay -- 7.6.11 Electronic Timing Problems -- 7.7 Absolute Total Efficiency -- 7.8 Mathematical Efficiency Calibration.
7.8.1 Empirical Mathematics.
Record Nr. UNINA-9911020104403321
Gilmore Gordon  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory of particle and cluster emission / / Doru S. Delion
Theory of particle and cluster emission / / Doru S. Delion
Autore Delion Doru
Edizione [1st ed. 2010.]
Pubbl/distr/stampa Heidelberg ; ; New York, : Springer, 2010
Descrizione fisica 1 online resource (XIV, 306 p. 66 illus.)
Disciplina 539.7548
Collana Lecture Notes in Physics
Soggetto topico Photon emission
Radioactive decay
ISBN 9786613560100
9781280382192
1280382198
9783642144066
3642144063
Classificazione 530
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Phenomenological Description of Emission Processes -- Binary Emission Processes -- Core-Angular Harmonics -- Coupled Channels Methods -- Semiclassical Approach -- Fine Structure of Emission Processes -- Ternary Emission Processes -- Microscopic Description of Emission Processes -- Microscopic Emission Theories -- Preformation Amplitude -- Selfconsistent Emission Theory -- QRPA Description of the ?-Decay to Excited States -- Heavy Cluster Decays -- Conclusions -- Appendices.
Record Nr. UNINA-9910140897903321
Delion Doru  
Heidelberg ; ; New York, : Springer, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...