Metal-enhanced fluorescence [[electronic resource] /] / edited by Chris D. Geddes
| Metal-enhanced fluorescence [[electronic resource] /] / edited by Chris D. Geddes |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
| Descrizione fisica | 1 online resource (655 p.) |
| Disciplina | 543/.56 |
| Altri autori (Persone) | GeddesChris D |
| Soggetto topico |
Fluorescence spectroscopy
Nanoparticles Radioactive decay Plasmons (Physics) |
| ISBN |
1-282-65373-3
9786612653735 0-470-64279-3 0-470-64278-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
METAL-ENHANCED FLUORESCENCE; CONTENTS; Preface; Contributors; Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description; Spectral Profile Modifications In Metal-Enhanced Fluorescence; The Role Of Plasmonic Engineering In Potential Surface-Enhanced Fluorescence; Importance of Spectral Overlap: Fluorescence Enhancement by Single Metal Nanoparticles; Near-IR Metal-Enhanced Fluorescence And Controlled Colloidal Aggregation; Optimisation Of Plasmonic Enhancement Of Fluorescence For Optical Biosensor Applications; Microwave-Accelerated Metal-Enhanced Fluorescence
Localized Surface Plasmon Coupled Fluorescence Fiber Optic Based BiosensingSurface Plasmon Enhanced Photochemistry; Metal-Enhanced Generation of Oxygen Rich Species; Synthesis Of Anisotropie Noble Metal Nanoparticles; Enhanced Fluorescence Detection Enabled By Zinc Oxide Nanomaterials; ZnO Platforms For Enhanced Directional Fluorescence Applications; E-Beam Lithography And Spontaneous Galvanic Displacement Reactions For Spatially Controlled MEF Applications; Metal-Enhanced Chemiluminescence; Enhanced Fluorescence From Gratings; Enhancing Fluorescence with Sub-Wavelength Metallic Apertures Enhanced Multi-Photon Excitation of Tryptophan-Silver ColloidPlasmon-enhanced radiative rates and applications to organic electronics; Fluorescent Quenching Gold Nanoparticles: Potential Biomedical Applications; Index |
| Record Nr. | UNINA-9910140557903321 |
| Hoboken, N.J., : Wiley, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Metal-enhanced fluorescence / / edited by Chris D. Geddes
| Metal-enhanced fluorescence / / edited by Chris D. Geddes |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
| Descrizione fisica | 1 online resource (655 p.) |
| Disciplina | 543/.56 |
| Altri autori (Persone) | GeddesChris D |
| Soggetto topico |
Fluorescence spectroscopy
Nanoparticles Radioactive decay Plasmons (Physics) |
| ISBN |
9786612653735
9781282653733 1282653733 9780470642795 0470642793 9780470642788 0470642785 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
METAL-ENHANCED FLUORESCENCE; CONTENTS; Preface; Contributors; Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description; Spectral Profile Modifications In Metal-Enhanced Fluorescence; The Role Of Plasmonic Engineering In Potential Surface-Enhanced Fluorescence; Importance of Spectral Overlap: Fluorescence Enhancement by Single Metal Nanoparticles; Near-IR Metal-Enhanced Fluorescence And Controlled Colloidal Aggregation; Optimisation Of Plasmonic Enhancement Of Fluorescence For Optical Biosensor Applications; Microwave-Accelerated Metal-Enhanced Fluorescence
Localized Surface Plasmon Coupled Fluorescence Fiber Optic Based BiosensingSurface Plasmon Enhanced Photochemistry; Metal-Enhanced Generation of Oxygen Rich Species; Synthesis Of Anisotropie Noble Metal Nanoparticles; Enhanced Fluorescence Detection Enabled By Zinc Oxide Nanomaterials; ZnO Platforms For Enhanced Directional Fluorescence Applications; E-Beam Lithography And Spontaneous Galvanic Displacement Reactions For Spatially Controlled MEF Applications; Metal-Enhanced Chemiluminescence; Enhanced Fluorescence From Gratings; Enhancing Fluorescence with Sub-Wavelength Metallic Apertures Enhanced Multi-Photon Excitation of Tryptophan-Silver ColloidPlasmon-enhanced radiative rates and applications to organic electronics; Fluorescent Quenching Gold Nanoparticles: Potential Biomedical Applications; Index |
| Record Nr. | UNINA-9910812202403321 |
| Hoboken, N.J., : Wiley, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Operation Morning Light : An Operational History / / Ryan Dean
| Operation Morning Light : An Operational History / / Ryan Dean |
| Pubbl/distr/stampa | Antigonish, NS, CA : , : Mulroney Institute of Government, , 2018 |
| Descrizione fisica | 1 online resource (386 pages) |
| Altri autori (Persone) |
DeanRyan
LackenbauerP. Whitney |
| Collana | Arctic Operational Histories |
| Soggetto topico |
Kosmos (satellite)
Kosmos 954 Nuclear reactor Radioactive decay Satellite Space debris Human activities United states national security council United states department of energy Atmospheric entry |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910698537003321 |
| Antigonish, NS, CA : , : Mulroney Institute of Government, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Practical Gamma-Ray Spectrometry
| Practical Gamma-Ray Spectrometry |
| Autore | Gilmore Gordon |
| Edizione | [3rd ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (542 pages) |
| Disciplina | 537.5/352 |
| Altri autori (Persone) | JossDavid |
| Soggetto topico |
Gamma ray spectrometry
Radioactive decay |
| ISBN |
9781394286577
1394286570 9781119896104 111989610X 9781119896098 1119896096 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Internet Resources Within the Book -- About the Website -- Chapter 1 Radioactive Decay and the Origin of Gamma and X‐Radiation -- 1.1 Introduction -- 1.2 Beta Decay -- 1.2.1 β− or Negatron Decay -- 1.2.2 β+ or Positron Decay -- 1.2.3 Electron Capture (EC) -- 1.2.4 Multiple Stable Isotopes -- 1.3 Alpha Decay -- 1.4 Spontaneous Fission (SF) -- 1.5 Exotic Decay Modes -- 1.6 Gamma Emission -- 1.6.1 The Electromagnetic Spectrum -- 1.6.2 Some Properties of Nuclear Transitions -- 1.6.3 Lifetimes of Nuclear Energy Levels -- 1.6.4 Width of Nuclear Energy Levels -- 1.6.5 Internal Conversion -- 1.6.6 Abundance, Yield and Emission Probability -- 1.6.7 Ambiguity in Assignment of Nuclide Identity -- 1.7 Other Sources of Photons -- 1.7.1 Annihilation Radiation -- 1.7.2 Bremsstrahlung -- 1.7.3 Prompt Gamma‐Rays -- 1.7.4 X‐rays -- 1.7.4.1 X‐ray Nomenclature -- 1.7.4.2 X‐ray Energies -- 1.7.4.3 X‐rays and Identification -- 1.7.4.4 The Energy Widths of X‐rays -- 1.8 The Mathematics of Decay and Growth of Radioactivity -- 1.8.1 The Decay Equation -- 1.8.2 Growth of Activity in Reactors -- 1.8.3 Growth of Activity from Decay of a Parent -- 1.8.3.1 Transient Equilibrium - t1/2 Parent > -- t1/2 Daughter -- 1.8.3.2 Secular Equilibrium - t1/2 Parent & -- gg -- t1/2 Daughter -- 1.8.3.3 No Equilibrium - t1/2 Parent < -- t1/2 Daughter -- 1.8.3.4 Multiple Parent-Daughter Relationships -- 1.9 The Chart of the Nuclides -- 1.9.1 A Source of Nuclear Data -- 1.9.2 A Source of Generic Information -- 1.9.2.1 Thermal Neutron Capture (n, γ) -- 1.9.2.2 Fast Neutron Reactions, (n, p), etc. -- 1.9.2.3 Fission Reactions (n, f) -- Practical Points -- Further Reading -- Chapter 2 Interactions of Gamma Radiation with Matter.
2.1 Introduction -- 2.2 Mechanisms of Interaction -- 2.2.1 Photoelectric Absorption -- 2.2.2 Compton Scattering -- 2.2.3 Pair Production -- 2.3 Total Attenuation Coefficients -- 2.4 Interactions Within the Detector -- 2.4.1 The Very Large Detector -- 2.4.2 The Very Small Detector -- 2.4.3 The 'Real' Detector -- 2.4.4 Summary -- 2.5 Interactions Within the Shielding -- 2.5.1 Photoelectric Interactions -- 2.5.2 Compton Scattering -- 2.5.3 Pair Production -- 2.6 Bremsstrahlung -- 2.7 Attenuation of Gamma Radiation -- 2.8 The Design of Detector Shielding -- Practical Points -- Further Reading -- Chapter 3 Semiconductor Detectors for Gamma‐Ray Spectrometry -- 3.1 Introduction -- 3.2 Semiconductors and Gamma‐Ray Detection -- 3.2.1 The Band Structure of Solids -- 3.2.2 Mobility of Holes -- 3.2.3 Creation of Charge Carriers by Gamma Radiation -- 3.2.4 Suitable Semiconductors for Gamma‐Ray Detectors -- 3.2.5 Newer Semiconductor Materials -- 3.3 The Nature of Semiconductors -- 3.4 The Manufacture of Germanium Detectors -- 3.4.1 Introduction -- 3.4.2 The Manufacturing Process -- 3.4.3 Lithium‐Drifted Detectors -- 3.4.4 Detector Configurations -- 3.4.5 Absorption in Detector Caps and Dead Layers -- 3.4.6 Detectors for Low‐Energy Measurements -- 3.4.7 Well Detectors -- 3.5 Detector Capacitance -- 3.5.1 Microphonic Noise -- 3.6 Charge Collection in Detectors -- 3.6.1 Charge Collection Time -- 3.6.2 Shape of the Detector Pulse -- 3.6.3 Timing Signals from Germanium Detectors -- 3.6.4 Electric Field Variations Across the Detector -- 3.6.5 Removing Weak Field Regions from Detectors -- 3.6.6 Trapping of Charge Carriers -- 3.6.7 Radiation Damage -- 3.7 Packaging of Detectors -- 3.7.1 Construction of the Detector Mounting -- 3.7.2 Loss of Coolant -- 3.7.3 Demountable Detectors -- 3.7.4 Electrical Cooling of Detectors -- 3.8 Position‐Sensitive Detectors. 3.8.1 Segmentation -- 3.8.2 Gamma‐Ray Tracking -- Practical Points -- Further Reading -- Chapter 4 Electronics for Gamma‐Ray Spectrometry -- 4.1 The General Electronic System -- 4.1.1 Introduction -- 4.1.2 Electronic Noise and Its Implications for Spectrum Resolution -- 4.1.3 Pulse Shapes in Gamma Spectrometry Systems -- 4.1.4 Impedance - Inputs and Outputs -- 4.1.5 The Impedance of Cabling -- 4.1.6 Impedance Matching -- 4.2 Detector Bias Supplies -- 4.3 Preamplifiers -- 4.3.1 Resistive Feedback Preamplifiers -- 4.3.2 Reset Preamplifiers -- 4.3.3 The Noise Contribution of Preamplifiers -- 4.3.4 The Rise Time of Preamplifiers -- 4.3.5 Intelligent Preamplifiers and High‐Voltage Supplies -- 4.4 Amplifiers and Pulse Processors -- 4.4.1 The Functions of the Amplifier -- 4.4.2 Pulse Shaping -- 4.4.3 The Optimum Pulse Shape -- 4.4.4 The Optimum Pulse Shaping Time Constant -- 4.4.5 The Gated Integrator Amplifier -- 4.4.6 Pole‐zero Cancellation -- 4.4.7 Baseline Shift -- 4.4.8 Pile‐up Rejection -- 4.4.9 Amplifier Gain and Overview -- 4.5 Resolution Enhancement -- 4.5.1 New Semiconductor Materials -- 4.6 Multichannel Analysers and Their Analogue‐to‐Digital Converters -- 4.6.1 Introduction -- 4.6.2 Pulse Range Selection -- 4.6.3 The ADC Input Gate -- 4.6.4 The ADC -- 4.6.4.1 The Wilkinson ADC -- 4.6.4.2 The Successive Approximation ADC -- 4.6.5 MCA Conversion Time and Dead Time -- 4.6.6 Choosing an ADC -- 4.6.7 Linearity in MCAs -- 4.6.8 Optimum Spectrum Size -- 4.6.9 MCA Terms and Definitions -- 4.6.10 A Short History of MCA Systems -- 4.6.11 Simple MCA Analysis Functions -- 4.7 Live Time Correction and Loss‐Free Counting -- 4.7.1 Live Time Clock Correction -- 4.7.2 The Gedcke-Hale Method -- 4.7.3 Use of a Pulser -- 4.7.4 Loss‐Free Counting (LFC) -- 4.7.5 MCA Throughput -- 4.8 Spectrum Stabilization -- 4.8.1 Analogue Stabilization. 4.8.2 Digital Stabilization -- 4.9 Coincidence and Anticoincidence Gating -- 4.10 Multiplexing and Multiscaling -- 4.11 Digital Pulse Processing Systems -- Practical Points -- Further Reading -- Chapter 5 Statistics of Counting -- 5.1 Introduction -- 5.1.1 Statistical Statements -- 5.2 Counting Distributions -- 5.2.1 The Binomial Distribution -- 5.2.2 The Poisson and Gaussian Distributions -- 5.3 Sampling Statistics -- 5.3.1 Confidence Limits -- 5.3.2 Combining the Results from Different Measurements -- 5.3.3 Propagation of Uncertainty -- 5.4 Peak Area Measurement -- 5.4.1 Simple Peak Integration -- 5.4.2 Peaked‐Background Correction -- 5.5 Counting Decision Limits -- 5.5.1 Critical Limit (LC): 'Is the Net Count Significant?' -- 5.5.2 Upper Limit (LU): 'Given That This Count Is Not Statistically Significant, What Is the Maximum Statistically Reasonable Count?' -- 5.5.3 Confidence Limits -- 5.5.4 Detection Limit (LD): 'What Is the Minimum Number of Counts that I Can Be Confident of Detecting?' -- 5.5.5 Determination Limit (LQ): 'How Many Counts Would I Have to Have to Achieve a Particular Statistical Uncertainty?' -- 5.5.6 Other Calculation Options -- 5.5.7 Minimum Detectable Activity (MDA): 'What Is the Least Amount of Activity I Can Be Confident of Measuring?' -- 5.5.8 Uncertainty of the LU and MDA -- 5.5.9 An Example by Way of Summary -- 5.6 Special Counting Situations -- 5.6.1 Non‐Poisson Counting -- 5.6.2 Low Numbers of Counts -- 5.6.3 Non‐Poisson Statistics Due to Pile‐up Rejection and Loss‐Free Counting -- 5.7 Optimizing Counting Conditions -- 5.7.1 Optimum Background Width -- 5.7.2 Optimum Peak Width -- 5.7.3 Optimum Spectrum Size -- 5.7.4 Optimum Counting Time -- 5.8 Uncertainty Budgets -- 5.8.1 Introduction -- 5.8.2 Accuracy and Precision -- 5.8.3 Types of Uncertainty -- 5.8.4 Types of Distribution -- 5.8.5 Uncertainty on Sample Preparation. 5.8.6 Counting Uncertainties -- 5.8.7 Calibration Uncertainties -- 5.8.7.1 Nuclear Data Uncertainty -- 5.8.7.2 Uncertainty on Efficiency Calibration Standards -- 5.8.8 An Example of an Uncertainty Budget -- Practical Points -- Further Reading -- Chapter 6 Resolution: Origins and Control -- 6.1 Introduction -- 6.2 Charge Production - ωP -- 6.2.1 Germanium Versus Silicon -- 6.2.2 Germanium Versus Sodium Iodide -- 6.2.3 Temperature Dependence of Resolution -- 6.3 Charge Collection - ωC -- 6.3.1 Mathematical Form of ωC -- 6.4 Electronic Noise - ωE -- 6.4.1 Parallel Noise -- 6.4.2 Series Noise -- 6.4.3 Flicker Noise -- 6.4.4 Total Electronic Noise and Shaping Time -- 6.5 Resolving the Peak Width Calibration -- Practical Points -- Further Reading -- Chapter 7 Spectrometer Calibration -- 7.1 Introduction -- 7.2 Reference Data for Calibration -- 7.3 Sources for Calibration -- 7.4 Energy Calibration -- 7.4.1 Errors in Peak Energy Determination -- 7.5 Peak Width Calibration -- 7.5.1 Factors Affecting Peak Width -- 7.5.2 Algorithms for Peak Width Estimation -- 7.5.3 Estimation of the Peak Height -- 7.5.4 Anomalous Peak Widths -- 7.6 Efficiency Calibration -- 7.6.1 Which Efficiency? -- 7.6.2 Full‐energy Peak Efficiency -- 7.6.3 Is an Efficiency Calibration Curve Necessary? -- 7.6.4 The Effect of Source‐to‐Detector Distance -- 7.6.5 Calibration Errors Due to Difference in Sample Geometry -- 7.6.6 An Empirical Correction for Sample Height -- 7.6.7 Effect of Source Density on Efficiency -- 7.6.7.1 Corrections Based on Estimated Mass Attenuation Coefficients -- 7.6.7.2 Empirical Correction for Self‐absorption -- 7.6.8 Efficiency Loss Due to Random Summing (Pile‐up) -- 7.6.9 True Coincidence Summing -- 7.6.10 Corrections for Radioactive Decay -- 7.6.11 Electronic Timing Problems -- 7.7 Absolute Total Efficiency -- 7.8 Mathematical Efficiency Calibration. 7.8.1 Empirical Mathematics. |
| Record Nr. | UNINA-9911020104403321 |
Gilmore Gordon
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theory of particle and cluster emission / / Doru S. Delion
| Theory of particle and cluster emission / / Doru S. Delion |
| Autore | Delion Doru |
| Edizione | [1st ed. 2010.] |
| Pubbl/distr/stampa | Heidelberg ; ; New York, : Springer, 2010 |
| Descrizione fisica | 1 online resource (XIV, 306 p. 66 illus.) |
| Disciplina | 539.7548 |
| Collana | Lecture Notes in Physics |
| Soggetto topico |
Photon emission
Radioactive decay |
| ISBN |
9786613560100
9781280382192 1280382198 9783642144066 3642144063 |
| Classificazione | 530 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Phenomenological Description of Emission Processes -- Binary Emission Processes -- Core-Angular Harmonics -- Coupled Channels Methods -- Semiclassical Approach -- Fine Structure of Emission Processes -- Ternary Emission Processes -- Microscopic Description of Emission Processes -- Microscopic Emission Theories -- Preformation Amplitude -- Selfconsistent Emission Theory -- QRPA Description of the ?-Decay to Excited States -- Heavy Cluster Decays -- Conclusions -- Appendices. |
| Record Nr. | UNINA-9910140897903321 |
Delion Doru
|
||
| Heidelberg ; ; New York, : Springer, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||