Analysis, geometry, and quantum field theory : international conference in honor of Steve Rosenberg's 60th birthday, September 26 - 30, 2011, University of Potsdam, Potsdam, Germany / / Clara L. Aldana, Maxim Braverman, Bruno Iochum, Carolina Neira Jiménez, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2012] |
Descrizione fisica | 1 online resource (270 pages) : illustrations |
Disciplina | 515 |
Collana | Contemporary mathematics |
Soggetto topico |
Differential equations, Parabolic
Global analysis (Mathematics) Quantum field theory - Mathematics |
Soggetto genere / forma | Electronic books. |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910480299103321 |
Providence, Rhode Island : , : American Mathematical Society, , [2012] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis, geometry, and quantum field theory : international conference in honor of Steve Rosenberg's 60th birthday, September 26 - 30, 2011, University of Potsdam, Potsdam, Germany / / Clara L. Aldana, Maxim Braverman, Bruno Iochum, Carolina Neira Jiménez, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2012] |
Descrizione fisica | 1 online resource (270 pages) : illustrations |
Disciplina | 515 |
Collana | Contemporary mathematics |
Soggetto topico |
Differential equations, Parabolic
Global analysis (Mathematics) Quantum field theory - Mathematics |
Classificazione | 58J3558D1758B2519L6481R6019K5622E6732L2546L8017B69 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910792481003321 |
Providence, Rhode Island : , : American Mathematical Society, , [2012] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis, geometry, and quantum field theory : international conference in honor of Steve Rosenberg's 60th birthday, September 26 - 30, 2011, University of Potsdam, Potsdam, Germany / / Clara L. Aldana, Maxim Braverman, Bruno Iochum, Carolina Neira Jiménez, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2012] |
Descrizione fisica | 1 online resource (270 pages) : illustrations |
Disciplina | 515 |
Collana | Contemporary mathematics |
Soggetto topico |
Differential equations, Parabolic
Global analysis (Mathematics) Quantum field theory - Mathematics |
Classificazione | 58J3558D1758B2519L6481R6019K5622E6732L2546L8017B69 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910822848303321 |
Providence, Rhode Island : , : American Mathematical Society, , [2012] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Factorization algebras in quantum field theory . Volume 1 / / Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max Planck Institute for Mathematics, Bonn |
Autore | Costello Kevin <1977-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2017 |
Descrizione fisica | 1 online resource (ix, 387 pages) : digital, PDF file(s) |
Disciplina | 530.14/30151272 |
Collana | New mathematical monographs |
Soggetto topico |
Quantum field theory - Mathematics
Factorization (Mathematics) Factors (Algebra) Geometric quantization Noncommutative algebras |
ISBN |
1-316-73209-6
1-316-73016-6 1-316-74367-5 1-316-67862-8 1-316-74560-0 1-316-74753-0 1-316-75332-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | From Gaussian measures to factorization algebras -- Prefactorization algebras and basic examples -- Free field theories -- Holomorphic field theories and vertex algebras -- Factorization algebras: definitions and constructions -- Formal aspects of factorization algebras -- Factorization algebras: examples. |
Record Nr. | UNINA-9910158982303321 |
Costello Kevin <1977->
![]() |
||
Cambridge : , : Cambridge University Press, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Feynman-Kac-type theorems and Gibbs measures on path space [[electronic resource] ] : with applications to rigorous quantum field theory / / by József Lörinczi, Fumio Hiroshima, Volker Betz |
Autore | Lörinczi József |
Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2011 |
Descrizione fisica | 1 online resource (520 p.) |
Disciplina | 515/.724 |
Altri autori (Persone) |
HiroshimaFumio
BetzVolker |
Collana | De gruyter studies in mathamatics |
Soggetto topico |
Integration, Functional
Stochastic analysis Quantum field theory - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-39679-3
9786613396792 |
Classificazione | SK 820 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. |
Record Nr. | UNINA-9910455563803321 |
Lörinczi József
![]() |
||
Berlin ; ; New York, : De Gruyter, c2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Feynman-Kac-type theorems and Gibbs measures on path space [[electronic resource] ] : with applications to rigorous quantum field theory / / by József Lörinczi, Fumio Hiroshima, Volker Betz |
Autore | Lörinczi József |
Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2011 |
Descrizione fisica | 1 online resource (520 p.) |
Disciplina | 515/.724 |
Altri autori (Persone) |
HiroshimaFumio
BetzVolker |
Collana | De gruyter studies in mathamatics |
Soggetto topico |
Integration, Functional
Stochastic analysis Quantum field theory - Mathematics |
Soggetto non controllato |
Brownian Motion
Feynman-Kac-TypeTheorems Gibbs Measures Quantum Field Theory |
ISBN |
1-283-39679-3
9786613396792 |
Classificazione | SK 820 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. |
Record Nr. | UNINA-9910780707003321 |
Lörinczi József
![]() |
||
Berlin ; ; New York, : De Gruyter, c2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometric and topological methods for quantum field theory : proceedings of the 2009 Villa de Leyva summer school / / edited by Alexander Cardona, Universidad de los Andes, Iván Contreras, University of Zurich, Andrés F. Reyes-Lega, Universidad de los Andes [[electronic resource]] |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2013 |
Descrizione fisica | 1 online resource (x, 383 pages) : digital, PDF file(s) |
Disciplina | 530.14/301516 |
Soggetto topico |
Geometric quantization
Quantum field theory - Mathematics |
ISBN |
1-107-23668-1
1-107-34432-8 1-107-34912-5 1-107-35769-1 1-107-34807-2 1-107-34557-X 1-139-20864-0 1-107-34182-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues
1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises 2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle 3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern--Weil forms; discrepancies 3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern--Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation 4.4 Loop integration in D dimensions |
Altri titoli varianti | Geometric & Topological Methods for Quantum Field Theory |
Record Nr. | UNINA-9910462938203321 |
Cambridge : , : Cambridge University Press, , 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometric and topological methods for quantum field theory : proceedings of the 2009 Villa de Leyva summer school / / edited by Alexander Cardona, Universidad de los Andes, Iván Contreras, University of Zurich, Andrés F. Reyes-Lega, Universidad de los Andes [[electronic resource]] |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2013 |
Descrizione fisica | 1 online resource (x, 383 pages) : digital, PDF file(s) |
Disciplina | 530.14/301516 |
Soggetto topico |
Geometric quantization
Quantum field theory - Mathematics |
ISBN |
1-107-23668-1
1-107-34432-8 1-107-34912-5 1-107-35769-1 1-107-34807-2 1-107-34557-X 1-139-20864-0 1-107-34182-5 |
Classificazione | SCI040000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues
1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises 2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle 3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern--Weil forms; discrepancies 3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern--Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation 4.4 Loop integration in D dimensions |
Altri titoli varianti | Geometric & Topological Methods for Quantum Field Theory |
Record Nr. | UNINA-9910786725703321 |
Cambridge : , : Cambridge University Press, , 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometric and topological methods for quantum field theory : proceedings of the 2009 Villa de Leyva summer school / / edited by Alexander Cardona, Universidad de los Andes, Iván Contreras, University of Zurich, Andrés F. Reyes-Lega, Universidad de los Andes [[electronic resource]] |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2013 |
Descrizione fisica | 1 online resource (x, 383 pages) : digital, PDF file(s) |
Disciplina | 530.14/301516 |
Soggetto topico |
Geometric quantization
Quantum field theory - Mathematics |
ISBN |
1-107-23668-1
1-107-34432-8 1-107-34912-5 1-107-35769-1 1-107-34807-2 1-107-34557-X 1-139-20864-0 1-107-34182-5 |
Classificazione | SCI040000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues
1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises 2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle 3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern--Weil forms; discrepancies 3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern--Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation 4.4 Loop integration in D dimensions |
Altri titoli varianti | Geometric & Topological Methods for Quantum Field Theory |
Record Nr. | UNINA-9910810511103321 |
Cambridge : , : Cambridge University Press, , 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometric approaches to quantum field theory / / Kieran Finn |
Autore | Finn Kieran |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (212 pages) |
Disciplina | 530.143 |
Collana | Springer theses |
Soggetto topico | Quantum field theory - Mathematics |
ISBN | 3-030-85269-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910502657603321 |
Finn Kieran
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|