Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations / / Moshé Flato, Jacques C.H. Simon, Erik Taflin
| Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations / / Moshé Flato, Jacques C.H. Simon, Erik Taflin |
| Autore | Flato M (Moshé), <1937-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (328 p.) |
| Disciplina |
510 s
537.6/7/01515353 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Quantum electrodynamics - Mathematics
Evolution equations - Asymptotic theory Maxwell equations Dirac equation |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0191-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910480934103321 |
Flato M (Moshé), <1937->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations / / Moshé Flato, Jacques C.H. Simon, Erik Taflin
| Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations / / Moshé Flato, Jacques C.H. Simon, Erik Taflin |
| Autore | Flato M (Moshé), <1937-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (328 p.) |
| Disciplina |
510 s
537.6/7/01515353 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Quantum electrodynamics - Mathematics
Evolution equations - Asymptotic theory Maxwell equations Dirac equation |
| ISBN | 1-4704-0191-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910788731903321 |
Flato M (Moshé), <1937->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations / / Moshé Flato, Jacques C.H. Simon, Erik Taflin
| Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations / / Moshé Flato, Jacques C.H. Simon, Erik Taflin |
| Autore | Flato M (Moshé), <1937-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (328 p.) |
| Disciplina |
510 s
537.6/7/01515353 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Quantum electrodynamics - Mathematics
Evolution equations - Asymptotic theory Maxwell equations Dirac equation |
| ISBN | 1-4704-0191-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910812407903321 |
Flato M (Moshé), <1937->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Complex quantum systems [[electronic resource] ] : analysis of large Coulomb systems / / editor: Heinz Siedentop
| Complex quantum systems [[electronic resource] ] : analysis of large Coulomb systems / / editor: Heinz Siedentop |
| Pubbl/distr/stampa | [Hackensack], NJ, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (303 p.) |
| Disciplina | 530.12 |
| Altri autori (Persone) | SiedentopHeinz |
| Collana | Lecture notes series |
| Soggetto topico |
Quantum statistics
Quantum electrodynamics - Mathematics |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4460-15-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Foreword; Preface; Stability of Matter Rafael D. Benguria and Benjamın A. Loewe; 1. Introduction: The stability of quantum systems: A historical overview; 2. Stability of Matter: The classical proof of Lieb and Thirring; 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics; 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics; 2.3. Stability of a many particle system via Thomas-Fermi theory; 2.4. Bibliographical remarks; 3. Lieb-Thirring Inequalities
3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 13.2. The Eden-Foias bound ([46]); 3.3. Bibliographical remarks; 4. Electrostatic Inequalities; 5. The Maximum Number of Electrons an Atom Can Bind; 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model; 5.2. Bound on Nc(Z) for the TFW model in the atomic case; 6. The Stability of Matter for a Relativistic Toy Model; 6.1. Bibliographical remarks; 7. A New Lieb-Oxford Bound with Gradient Corrections; Acknowledgments; Appendix: A Short History of the Atom; References Mathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach1. Introduction; 2. Exchange Correlation and LDA; 3. Kinetic Energy and Lieb-Thirring Inequality; 4. Thomas-Fermi Theory and Stability of Matter; 5. Hartree-Fock Theory; 6. Correlation Estimate Improving the Lieb-Oxford Inequality; 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms; 8. N-Representability; Acknowledgments; References; On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen; 1. Introduction; Acknowledgment ReferencesOn the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej; 1. Introduction; Acknowledgments; 2. Preliminaries; 2.1. 2nd quantization; 2.2. Wick quantization; 2.3. Bogoliubov transformations; 2.4. Pure Gaussian states; 3. Main Result; References; Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa; 1. Introduction; 2. The Reduced-Density-Matrix Method; 2.1. Pure states and ensemble states 2.2. The first-order and second-order reduced density matrices |
| Record Nr. | UNINA-9910452287103321 |
| [Hackensack], NJ, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Complex quantum systems : analysis of large coulomb systems / / editor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany
| Complex quantum systems : analysis of large coulomb systems / / editor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany |
| Pubbl/distr/stampa | [Hackensack], NJ, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (xi, 290 pages) : illustrations |
| Disciplina | 530.12 |
| Collana | Lecture notes series |
| Soggetto topico |
Quantum electrodynamics - Mathematics
Quantum theory |
| ISBN | 981-4460-15-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Foreword; Preface; Stability of Matter Rafael D. Benguria and Benjamın A. Loewe; 1. Introduction: The stability of quantum systems: A historical overview; 2. Stability of Matter: The classical proof of Lieb and Thirring; 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics; 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics; 2.3. Stability of a many particle system via Thomas-Fermi theory; 2.4. Bibliographical remarks; 3. Lieb-Thirring Inequalities
3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 13.2. The Eden-Foias bound ([46]); 3.3. Bibliographical remarks; 4. Electrostatic Inequalities; 5. The Maximum Number of Electrons an Atom Can Bind; 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model; 5.2. Bound on Nc(Z) for the TFW model in the atomic case; 6. The Stability of Matter for a Relativistic Toy Model; 6.1. Bibliographical remarks; 7. A New Lieb-Oxford Bound with Gradient Corrections; Acknowledgments; Appendix: A Short History of the Atom; References Mathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach1. Introduction; 2. Exchange Correlation and LDA; 3. Kinetic Energy and Lieb-Thirring Inequality; 4. Thomas-Fermi Theory and Stability of Matter; 5. Hartree-Fock Theory; 6. Correlation Estimate Improving the Lieb-Oxford Inequality; 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms; 8. N-Representability; Acknowledgments; References; On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen; 1. Introduction; Acknowledgment ReferencesOn the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej; 1. Introduction; Acknowledgments; 2. Preliminaries; 2.1. 2nd quantization; 2.2. Wick quantization; 2.3. Bogoliubov transformations; 2.4. Pure Gaussian states; 3. Main Result; References; Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa; 1. Introduction; 2. The Reduced-Density-Matrix Method; 2.1. Pure states and ensemble states 2.2. The first-order and second-order reduced density matrices |
| Record Nr. | UNINA-9910779883503321 |
| [Hackensack], NJ, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Complex quantum systems : analysis of large coulomb systems / / editor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany
| Complex quantum systems : analysis of large coulomb systems / / editor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany |
| Pubbl/distr/stampa | [Hackensack], NJ, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (xi, 290 pages) : illustrations |
| Disciplina | 530.12 |
| Collana | Lecture notes series |
| Soggetto topico |
Quantum electrodynamics - Mathematics
Quantum theory |
| ISBN | 981-4460-15-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Foreword; Preface; Stability of Matter Rafael D. Benguria and Benjamın A. Loewe; 1. Introduction: The stability of quantum systems: A historical overview; 2. Stability of Matter: The classical proof of Lieb and Thirring; 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics; 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics; 2.3. Stability of a many particle system via Thomas-Fermi theory; 2.4. Bibliographical remarks; 3. Lieb-Thirring Inequalities
3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 13.2. The Eden-Foias bound ([46]); 3.3. Bibliographical remarks; 4. Electrostatic Inequalities; 5. The Maximum Number of Electrons an Atom Can Bind; 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model; 5.2. Bound on Nc(Z) for the TFW model in the atomic case; 6. The Stability of Matter for a Relativistic Toy Model; 6.1. Bibliographical remarks; 7. A New Lieb-Oxford Bound with Gradient Corrections; Acknowledgments; Appendix: A Short History of the Atom; References Mathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach1. Introduction; 2. Exchange Correlation and LDA; 3. Kinetic Energy and Lieb-Thirring Inequality; 4. Thomas-Fermi Theory and Stability of Matter; 5. Hartree-Fock Theory; 6. Correlation Estimate Improving the Lieb-Oxford Inequality; 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms; 8. N-Representability; Acknowledgments; References; On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen; 1. Introduction; Acknowledgment ReferencesOn the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej; 1. Introduction; Acknowledgments; 2. Preliminaries; 2.1. 2nd quantization; 2.2. Wick quantization; 2.3. Bogoliubov transformations; 2.4. Pure Gaussian states; 3. Main Result; References; Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa; 1. Introduction; 2. The Reduced-Density-Matrix Method; 2.1. Pure states and ensemble states 2.2. The first-order and second-order reduced density matrices |
| Record Nr. | UNINA-9910815775503321 |
| [Hackensack], NJ, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Complex quantum systems : analysis of large Coulomb systems / / editor: Heinz Siedentop
| Complex quantum systems : analysis of large Coulomb systems / / editor: Heinz Siedentop |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | [Hackensack], NJ, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (303 pages) |
| Disciplina | 530.12 |
| Altri autori (Persone) | SiedentopHeinz |
| Collana | Lecture notes series |
| Soggetto topico |
Quantum statistics
Quantum electrodynamics - Mathematics |
| ISBN |
9789814460156
981446015X 9789814460149 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- CONTENTS -- Foreword -- Preface -- Stability of Matter Rafael D. Benguria and Benjamın A. Loewe -- 1. Introduction: The stability of quantum systems: A historical overview -- 2. Stability of Matter: The classical proof of Lieb and Thirring -- 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics -- 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics -- 2.3. Stability of a many particle system via Thomas-Fermi theory -- 2.4. Bibliographical remarks -- 3. Lieb-Thirring Inequalities -- 3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 1 -- 3.2. The Eden-Foias bound ([46]) -- 3.3. Bibliographical remarks -- 4. Electrostatic Inequalities -- 5. The Maximum Number of Electrons an Atom Can Bind -- 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model -- 5.2. Bound on Nc(Z) for the TFW model in the atomic case -- 6. The Stability of Matter for a Relativistic Toy Model -- 6.1. Bibliographical remarks -- 7. A New Lieb-Oxford Bound with Gradient Corrections -- Acknowledgments -- Appendix: A Short History of the Atom -- References -- Mathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach -- 1. Introduction -- 2. Exchange Correlation and LDA -- 3. Kinetic Energy and Lieb-Thirring Inequality -- 4. Thomas-Fermi Theory and Stability of Matter -- 5. Hartree-Fock Theory -- 6. Correlation Estimate Improving the Lieb-Oxford Inequality -- 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms -- 8. N-Representability -- Acknowledgments -- References -- On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen -- 1. Introduction -- Acknowledgment -- 2. Fermi Gas in a Random Medium -- 2.1. Statement of the main results.
2.2. Boltzmann limit of the momentum distribution function -- 2.3. Outline of the proof -- 2.4. Feynman graph expansion -- 2.5. Classification of graphs -- 2.6. Discussion of the result -- 3. Persistence of Quasifreeness in the Boltzmann Limit -- 3.1. Outline of the proof of Theorem 3.1 -- 3.1.1. Completely disconnected graphs -- 3.1.2. Non-disconnected graphs -- 4. Fermi Gas with Dynamical Hartree-Fock Interactions -- 4.1. Statement of main results -- 4.1.1. The regime λ ≤ Cη2 -- 4.1.2. The regime η = o(√λ) -- 4.1.3. The regime t = T/η2 and λ = Oη(1) -- References -- On the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej -- 1. Introduction -- Acknowledgments -- 2. Preliminaries -- 2.1. 2nd quantization -- 2.2. Wick quantization -- 2.3. Bogoliubov transformations -- 2.4. Pure Gaussian states -- 3. Main Result -- References -- Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa -- 1. Introduction -- 2. The Reduced-Density-Matrix Method -- 2.1. Pure states and ensemble states -- 2.2. The first-order and second-order reduced density matrices -- 2.2.1. Coordinate representation -- 2.2.2. Second-quantized representation -- 2.2.3. Equivalence between the coordinate and second-quantized representations -- 2.2.4. Some properties of 1- and 2-RDMs -- 2.3. Solving the ground state problem using 1- and 2-RDMs -- 2.4. The N-representability problem and the N-representability conditions -- 2.5. On the complete N-representability conditions -- 2.6. Formulating the variational problem and its geometrical representation -- 2.7. Some of the known necessary N-representability conditions -- 2.8. The reduced-density-matrix method -- 2.9. Interpreting the conditions. 3. Formulating the RDM Problem as a Semidefinite Program and its Solution Using the Interior-Point Method -- 3.1. Semidefinite program -- 3.2. Formulation of the RDM problem as an SDP -- 3.3. Theoretical computational complexity of the primal-dual interior-point method -- 4. Some Historical Remarks -- 5. Numerical Results for the RDM Method -- 5.1. New numerical results for larger systems -- 5.2. Summary of the numerical experiments -- 6. Concluding Remarks -- Acknowledgments -- References -- Fermionic Quantum Many-Body Systems: A Quantum Information Approach Christina V. Kraus -- 1. Introduction -- 2. Pairing in Fermionic Systems: A Quantum Information Perspective -- 2.1. Motivation -- 2.2. Pairing theory -- 2.3. Detection and quantification of pairing -- 2.3.1. Detection of pairing -- 2.4. Examples: Fermionic Gaussian states and number-conserving states -- 2.4.1. Pairing of Gaussian states -- 2.4.2. Pairing of number-conserving states -- 2.5. Pairing as a resource -- 3. Fermionic Projected Entangled Pair State -- 3.1. A review of the PEPS-construction -- 3.2. Construction of fPEPS -- 3.3. Relation between fPEPS and PEPS -- 3.4. Examples -- 4. Conclusion and Outlook -- Acknowledgments -- References -- Hydrogen-Like Atoms in Relativistic QED Martin Konenberg, Oliver Matte, and Edgardo Stockmeyer -- 1. Introduction -- 2. Definition of the Models -- 2.1. Operators in Fock-space -- 2.2. Interaction term -- 2.3. The semi-relativistic Pauli-Fierz and no-pair Hamiltonians -- 2.4. How to deal with the non-local terms -- 3. Self-Adjointness -- 3.1. Diamagnetic inequalities in QED -- 3.2. Semi-boundedness -- 4. Bounds on the Ionization Energy -- 5. Exponential Localization -- 5.1. A general strategy to prove the localization of spectral subspaces -- 5.2. Choice of the comparison operator Y -- 5.3. Conjugation of Y with exponential weights. 6. Existence of Ground States with Mass -- 6.1. Operators with photon mass -- 6.2. Discretization of the photon momenta -- 6.3. Comparison of operators with different coupling functions -- 6.4. Higher order estimates and their consequences -- 6.5. Continuity of the ionization thresholds and ground state energies -- 6.6. Proofs of the existence of ground states with mass -- 7. Infra-Red Bounds -- 7.1. The gauge transformed operator -- 7.2. Soft photon bound for the semi-relativistic Pauli-Fierz operator -- 8. Existence of Ground States -- 8.1. Ground states without photon mass -- 8.2. Ground state degeneracy -- 9. Commutator Estimates -- 9.1. Basic estimates -- 9.2. Commuting projections with the field energy -- 9.3. Double commutators -- Acknowledgments -- References. |
| Altri titoli varianti |
Quantum systems
Coulomb systems |
| Record Nr. | UNINA-9910993973603321 |
| [Hackensack], NJ, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||