top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lattice methods for quantum chromodynamics [[electronic resource] /] / Thomas DeGrand, Carleton DeTar
Lattice methods for quantum chromodynamics [[electronic resource] /] / Thomas DeGrand, Carleton DeTar
Autore DeGrand T (Thomas)
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2006
Descrizione fisica 1 online resource (xv, 345 p. ) : ill
Disciplina 539.7548
Altri autori (Persone) DeTarCarleton
Soggetto topico Lattice gauge theories - Mathematical models
Quantum chromodynamics - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-281-91922-5
9786611919221
981-277-398-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy.
Record Nr. UNINA-9910450958603321
DeGrand T (Thomas)  
Hackensack, NJ, : World Scientific, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lattice methods for quantum chromodynamics [[electronic resource] /] / Thomas DeGrand, Carleton DeTar
Lattice methods for quantum chromodynamics [[electronic resource] /] / Thomas DeGrand, Carleton DeTar
Autore DeGrand T (Thomas)
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2006
Descrizione fisica 1 online resource (xv, 345 p. ) : ill
Disciplina 539.7548
Altri autori (Persone) DeTarCarleton
Soggetto topico Lattice gauge theories - Mathematical models
Quantum chromodynamics - Mathematical models
ISBN 1-281-91922-5
9786611919221
981-277-398-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy.
Record Nr. UNINA-9910785084703321
DeGrand T (Thomas)  
Hackensack, NJ, : World Scientific, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lattice methods for quantum chromodynamics [[electronic resource] /] / Thomas DeGrand, Carleton DeTar
Lattice methods for quantum chromodynamics [[electronic resource] /] / Thomas DeGrand, Carleton DeTar
Autore DeGrand T (Thomas)
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2006
Descrizione fisica 1 online resource (xv, 345 p. ) : ill
Disciplina 539.7548
Altri autori (Persone) DeTarCarleton
Soggetto topico Lattice gauge theories - Mathematical models
Quantum chromodynamics - Mathematical models
ISBN 1-281-91922-5
9786611919221
981-277-398-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy.
Record Nr. UNINA-9910811749203321
DeGrand T (Thomas)  
Hackensack, NJ, : World Scientific, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Understanding the origin of matter : perspectives in quantum chromodynamics / / David Blaschke [and three others]
Understanding the origin of matter : perspectives in quantum chromodynamics / / David Blaschke [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (397 pages)
Disciplina 539.7548
Collana Lecture Notes in Physics
Soggetto topico Quantum chromodynamics
Quantum chromodynamics - Mathematical models
ISBN 3-030-95491-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Contributors -- Acronyms -- Introduction -- Group Photo from the 53rd Karpacz Winter School on Theoretical Physics -- Part I Ultrarelativistic Heavy-Ion Collisions -- 1 Probing the QCD Phase Diagram with Heavy-Ion Collision Experiments -- 1.1 Introduction -- 1.2 QCD Phase Diagram -- 1.3 BES at RHIC -- 1.4 STAR Experiment at RHIC -- 1.5 Results -- 1.5.1 Global Properties of Created Nuclear Matter -- 1.5.2 Onset of the QGP-Disappearance of Characteristic Signals of the Plasma Phase -- 1.5.3 Critical Point Search -- 1.5.4 Search for the First-Order Phase Transition -- 1.5.5 A Short Summary of What Have We Learned from BES I -- 1.6 Fixed-Target Mode -- 1.7 Beam Energy Scan Phase II (BES II) -- 1.8 In to the Future ... -- References -- 2 The Early Stage of Heavy-Ion Collisions -- 2.1 Introduction -- 2.2 Hadron Wave Function -- 2.2.1 Deep Inelastic Scattering -- 2.2.2 DGLAP Evolution Equation -- 2.2.3 Collinear Factorization -- 2.2.4 BFKL Evolution Equation -- 2.2.5 Saturation Momentum -- 2.3 Propagation of Fast Partons in Dense QCD Matter -- 2.3.1 Eikonal Approximation, Wilson Lines -- 2.3.2 Deep Inelastic Scattering in Dipole Frame -- 2.3.3 The Dipole-Nucleon S-Matrix -- 2.3.4 Multiple Scattering, Momentum Broadening,Saturation -- 2.3.5 Phenomenological Dipole Model -- 2.4 Propagation in Random Fields -- 2.4.1 McLerran-Venugopalan Model -- 2.5 Non-linear Evolution Equations -- 2.5.1 Dipole Operator in a Fixed Background -- 2.5.2 Balitsky-Kovchegov Equation -- 2.6 Conclusions -- References -- 3 Hydrodynamic Description of Ultrarelativistic Heavy-IonCollisions -- 3.1 Introduction -- 3.1.1 Standard Model of Heavy-Ion Collisions -- 3.1.2 Basic Hydrodynamic Concepts -- 3.1.3 From Global to Local Equilibrium -- 3.1.3.1 Landau and Bjorken Models -- 3.1.4 Navier-Stokes Hydrodynamics.
3.1.5 Insights from AdS/CFT -- 3.1.6 RTA Kinetic Equation -- 3.2 Basic Dictionary for Phenomenology -- 3.2.1 Glauber Model -- 3.2.2 Harmonic Flows -- 3.3 Viscous Fluid Dynamics -- 3.3.1 Müller-Israel-Stewart Theory -- 3.3.2 DNMR Theory -- 3.3.3 BRSSS Theory -- 3.3.4 Anisotropic Hydrodynamics -- 3.4 Gradient Expansion -- 3.4.1 Formal Aspects -- 3.4.2 RTA Kinetic Model with Bjorken Geometry -- 3.5 Closing Remarks -- References -- Part II Aspects of Quantum Chromodynamics -- 4 Three Lectures on QCD Phase Transitions -- 4.1 Chiral Symmetry and Phase Transitions in QCD -- 4.1.1 Flavor and Chiral Symmetries -- 4.1.1.1 Flavor Symmetries -- 4.1.1.2 Chiral Symmetry -- 4.1.2 Second-Order Transitions for Two Flavors -- 4.1.2.1 Chiral Phase Transition for Massless Pions -- 4.1.2.2 Chiral Phase Transition with Massive Pions -- 4.1.2.3 Complete Theory for Two Flavors -- 4.1.2.4 Axial Anomaly for Two Flavors -- 4.1.2.5 Chiral Symmetry for Three Flavors -- 4.1.2.6 Sigma Models for χ Symmetry -- 4.1.3 Three Flavors: Cubic Terms Rule the Roost -- 4.1.3.1 Chiral Transition for Three Flavors -- 4.1.3.2 QCD and 2+1 Flavors -- 4.1.3.3 Background Field: Big or Small? -- 4.1.3.4 Critical Endpoint? -- 4.1.3.5 Swept Under the Rug -- 4.1.4 Tetraquarks and the Chiral Transition -- 4.1.4.1 Diquarks and Tetraquarks for Two Flavors -- 4.1.4.2 Sigma Models and Tetraquarks for Two Flavors -- 4.1.4.3 Tetraquarks for Three Flavors -- 4.1.4.4 Mirror Model at T=0 -- 4.1.4.5 Two Chiral Transitions with Tetraquarks? -- 4.1.4.6 Columbia Phase Diagram for Light Quarks. Tetraquarks in the Plane of (T, μ) -- 4.2 Deconfining Phase Transition in Pure Gauge Theories -- 4.2.1 Polyakov Loop and Hidden Global Symmetries -- 4.2.1.1 Hidden Symmetry -- 4.2.1.2 Global Z(3) Symmetry -- 4.2.1.3 Lines and Loops -- 4.2.1.4 Confinement as Z(3) Domains. Deconfinement at Non-zero Temperature.
4.2.2 Z(3) Interface Tension, Potential for A0 -- 4.2.2.1 Z(3) Degenerate Vacua -- 4.2.2.2 Tricks to Compute -- 4.2.2.3 Lifting the Degeneracy -- 4.2.2.4 Z(3) Interface Tension. A Tunneling Problem -- 4.2.2.5 Lattice: Z(N) Interfaces = 't Hooft Loop -- 4.2.3 Results from the Lattice, Pure Glue and Not -- 4.2.3.1 Lattice: Renormalized Loop, No Quarks -- 4.2.3.2 Lattice: Renormalized Loop, with Quarks -- 4.2.4 Matrix Model for Pure Glue Theories -- 4.2.4.1 Path to -- 4.2.4.2 Matrix Model for Pure Glue -- 4.2.4.3 Gross-Witten-Wadia Transition and Matrix Models at Infinite N -- 4.3 Chiral Matrix Models for QCD -- 4.3.1 The Quark-Gluon Plasma Near the CriticalTemperature -- 4.3.2 Effective Lagrangians for Chiral Symmetry -- 4.3.3 Solution at T=0 -- 4.3.4 Solution at T≠0 -- 4.3.5 Equations of State and Order Parameters -- 4.3.6 Baryon Susceptibilities -- 4.3.7 Suppression of Color in the Semi-QGP -- 4.3.8 Dilepton Rates -- 4.3.9 Real Photon Production -- Appendix: Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- Solution 1 -- Solution 2 -- Solution 3 -- References -- 5 Effective Approaches to QCD -- 5.1 QCD and Phases of Strongly Interacting Matter -- 5.1.1 Pictures of Confinement -- 5.1.2 Color Charge and Static Quark Potential -- 5.1.3 Quark Masses -- 5.1.4 Chiral Symmetry -- 5.1.5 Order Parameters in QCD -- 5.1.5.1 Quark Condensate -- 5.1.5.2 Wilson Loop -- 5.1.5.3 Temporal Wilson Loop -- 5.1.5.4 Spatial Wilson Loop -- 5.1.5.5 Polyakov Loop Correlator -- 5.1.5.6 Polyakov Loop -- 5.1.5.7 Spatial 't Hooft Loop -- 5.2 Magnetic Monopole Picture of Confinement -- 5.2.1 Meissner Effect in Superconductors -- 5.2.2 Emergence of Magnetic Monopoles in QCD -- 5.2.3 Induced Magnetic Monopole -- 5.2.4 Dual Superconductor Models of QCD -- 5.3 Center Vortex Picture of Confinement -- 5.3.1 Introduction -- 5.3.2 Lattice Gauge Theory -- 5.3.3 Center Projection.
5.3.4 The Random Vortex Model -- 5.3.5 Topology of Center vortices and Chiral Symmetry Breaking -- 5.3.6 Center Vortex Dominance -- 5.3.7 Conclusions -- 5.4 Hamiltonian Approach to QCD in Coulomb Gauge -- 5.4.1 Introduction -- 5.4.2 Canonical Quantization of Yang-Mills Theory -- 5.4.3 Variational Solution for the Yang-Mills Vacuum Wave Functional -- 5.4.4 Hamiltonian Formulation of QCD in Coulomb Gauge -- 5.4.5 Alternative Hamiltonian Approach to Finite-Temperature QFT -- 5.4.6 Conclusions -- Appendix: Exercises -- References -- 6 Heavy Flavors and Exotic Hadrons -- 6.1 Introduction -- 6.1.1 What Are Exotic Hadrons? -- 6.1.2 Importance of Studying Exotic Hadrons -- 6.1.3 Main Subject of This Lecture: Charm and Bottom Exotic Hadrons -- 6.1.4 Introduction of Review Articles on X, Y, Z Hadrons -- 6.2 Theoretical Framework for Heavy Hadrons -- 6.2.1 Heavy Quark Spin Symmetry -- 6.2.1.1 Heavy Quark Effective Theory -- 6.2.1.2 Heavy Quark Spin Symmetry -- 6.2.1.3 1/mQ Corrections -- 6.2.2 Heavy Hadron Effective Theory -- 6.3 Heavy Exotic Hadrons -X, Y, Z Hadrons- -- 6.3.1 Quarkonia -- 6.3.2 X(3872) -- 6.3.3 Y(4260) -- 6.3.4 Zc(4430)+ and Zc(3900)+ -- 6.3.5 Yb(10888) -- 6.3.6 Zb(10610)+ and Zb(10650)+ -- 6.3.7 Pc(4380) and Pc(4450): Charm Pentaquark -- 6.3.8 Miscellaneous Exotic Hadrons -- 6.3.9 Tcc -New Possible Exotic Hadrons- -- 6.4 Heavy Hadrons in Nuclear Matter -- 6.4.1 Flavor Nuclei: From Strangeness to Charm and Bottom -- 6.4.2 Topics on Anti-heavy-Light (q) Meson in Nuclear Matter -- 6.4.2.1 Interaction -- 6.4.2.2 Properties in Nuclear Matter -- 6.4.2.3 Kondo Effect -- 6.5 Summary -- Appendix: Exercises -- Exercise 1: Feshbach Resonance in One-Dimensional System -- Basics -- Feshbach Resonance -- Exercise 2: Simple Model of the Kondo Effect -- Exercise 3: Resonance States in One-Dimensional System -- References.
Part III Simulations of QCD and Heavy-Ion Collisions -- 7 Flavored Aspects of QCD Thermodynamics from Lattice QCD -- 7.1 Introduction -- 7.2 QCD Thermodynamics and Strangeness -- 7.2.1 Tc and the Equation of State -- 7.2.2 HRG and Missing Strange Baryons -- 7.2.3 Strangeness Freeze-Out -- 7.2.4 Taylor Expansion in Chemical Potential -- 7.2.5 Equation of State in a Strangeness Neutral System -- 7.2.6 Melting and Abundance of Open Charm Hadrons -- 7.2.7 Conclusions -- 7.3 Basics of Lattice Gauge Theory -- 7.3.1 Discretization of Space-Time Points -- 7.3.2 Gauge Transformation and Gauge Action -- 7.3.3 Renormalization and Continuum Limit -- 7.4 Basics of Monte Carlo Integration -- 7.4.1 Importance Sampling -- 7.4.2 Markov Chain -- Appendix: Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- References -- 8 Spectral and Transport Properties from Lattice QCD -- 8.1 Motivation -- 8.2 Hadronic Correlation Functions -- 8.3 Inversion Methods -- 8.4 Thermal Dilepton Rate and Electrical Conductivity -- 8.4.1 Continuum Extrapolated Vector Meson Correlation Functions -- 8.4.2 Lattice Estimate on the Thermal Dilepton Rate and Electrical Conductivity -- 8.5 Lattice Estimate of Thermal Photon Rate -- 8.6 Charmonia and Bottomonia Spectral Function from LatticeQCD -- 8.6.1 Free Spectral Function -- 8.6.2 Spectral Functions of Charmonia and Bottomonia in the Pseudo-Scalar Channel -- 8.6.3 Spectral Functions of Charmonia and Bottomonia in the Vector Channel -- 8.7 Heavy Quark Momentum Diffusion Coefficient -- 8.8 Conclusions -- Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- Exercise 4 -- References -- 9 Monte-Carlo Statistical Hadronization in Relativistic Heavy-Ion Collisions -- 9.1 Relativistic Heavy-Ion Collisions -- 9.2 Relativistic Perfect Fluid Dynamics -- 9.3 Fluid Dynamics from Kinetic Theory.
9.4 Event-Averaged Initial Conditions for Fluid Dynamics.
Record Nr. UNISA-996490351903316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Understanding the origin of matter : perspectives in quantum chromodynamics / / David Blaschke [and three others]
Understanding the origin of matter : perspectives in quantum chromodynamics / / David Blaschke [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (397 pages)
Disciplina 539.7548
Collana Lecture Notes in Physics
Soggetto topico Quantum chromodynamics
Quantum chromodynamics - Mathematical models
ISBN 3-030-95491-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Contributors -- Acronyms -- Introduction -- Group Photo from the 53rd Karpacz Winter School on Theoretical Physics -- Part I Ultrarelativistic Heavy-Ion Collisions -- 1 Probing the QCD Phase Diagram with Heavy-Ion Collision Experiments -- 1.1 Introduction -- 1.2 QCD Phase Diagram -- 1.3 BES at RHIC -- 1.4 STAR Experiment at RHIC -- 1.5 Results -- 1.5.1 Global Properties of Created Nuclear Matter -- 1.5.2 Onset of the QGP-Disappearance of Characteristic Signals of the Plasma Phase -- 1.5.3 Critical Point Search -- 1.5.4 Search for the First-Order Phase Transition -- 1.5.5 A Short Summary of What Have We Learned from BES I -- 1.6 Fixed-Target Mode -- 1.7 Beam Energy Scan Phase II (BES II) -- 1.8 In to the Future ... -- References -- 2 The Early Stage of Heavy-Ion Collisions -- 2.1 Introduction -- 2.2 Hadron Wave Function -- 2.2.1 Deep Inelastic Scattering -- 2.2.2 DGLAP Evolution Equation -- 2.2.3 Collinear Factorization -- 2.2.4 BFKL Evolution Equation -- 2.2.5 Saturation Momentum -- 2.3 Propagation of Fast Partons in Dense QCD Matter -- 2.3.1 Eikonal Approximation, Wilson Lines -- 2.3.2 Deep Inelastic Scattering in Dipole Frame -- 2.3.3 The Dipole-Nucleon S-Matrix -- 2.3.4 Multiple Scattering, Momentum Broadening,Saturation -- 2.3.5 Phenomenological Dipole Model -- 2.4 Propagation in Random Fields -- 2.4.1 McLerran-Venugopalan Model -- 2.5 Non-linear Evolution Equations -- 2.5.1 Dipole Operator in a Fixed Background -- 2.5.2 Balitsky-Kovchegov Equation -- 2.6 Conclusions -- References -- 3 Hydrodynamic Description of Ultrarelativistic Heavy-IonCollisions -- 3.1 Introduction -- 3.1.1 Standard Model of Heavy-Ion Collisions -- 3.1.2 Basic Hydrodynamic Concepts -- 3.1.3 From Global to Local Equilibrium -- 3.1.3.1 Landau and Bjorken Models -- 3.1.4 Navier-Stokes Hydrodynamics.
3.1.5 Insights from AdS/CFT -- 3.1.6 RTA Kinetic Equation -- 3.2 Basic Dictionary for Phenomenology -- 3.2.1 Glauber Model -- 3.2.2 Harmonic Flows -- 3.3 Viscous Fluid Dynamics -- 3.3.1 Müller-Israel-Stewart Theory -- 3.3.2 DNMR Theory -- 3.3.3 BRSSS Theory -- 3.3.4 Anisotropic Hydrodynamics -- 3.4 Gradient Expansion -- 3.4.1 Formal Aspects -- 3.4.2 RTA Kinetic Model with Bjorken Geometry -- 3.5 Closing Remarks -- References -- Part II Aspects of Quantum Chromodynamics -- 4 Three Lectures on QCD Phase Transitions -- 4.1 Chiral Symmetry and Phase Transitions in QCD -- 4.1.1 Flavor and Chiral Symmetries -- 4.1.1.1 Flavor Symmetries -- 4.1.1.2 Chiral Symmetry -- 4.1.2 Second-Order Transitions for Two Flavors -- 4.1.2.1 Chiral Phase Transition for Massless Pions -- 4.1.2.2 Chiral Phase Transition with Massive Pions -- 4.1.2.3 Complete Theory for Two Flavors -- 4.1.2.4 Axial Anomaly for Two Flavors -- 4.1.2.5 Chiral Symmetry for Three Flavors -- 4.1.2.6 Sigma Models for χ Symmetry -- 4.1.3 Three Flavors: Cubic Terms Rule the Roost -- 4.1.3.1 Chiral Transition for Three Flavors -- 4.1.3.2 QCD and 2+1 Flavors -- 4.1.3.3 Background Field: Big or Small? -- 4.1.3.4 Critical Endpoint? -- 4.1.3.5 Swept Under the Rug -- 4.1.4 Tetraquarks and the Chiral Transition -- 4.1.4.1 Diquarks and Tetraquarks for Two Flavors -- 4.1.4.2 Sigma Models and Tetraquarks for Two Flavors -- 4.1.4.3 Tetraquarks for Three Flavors -- 4.1.4.4 Mirror Model at T=0 -- 4.1.4.5 Two Chiral Transitions with Tetraquarks? -- 4.1.4.6 Columbia Phase Diagram for Light Quarks. Tetraquarks in the Plane of (T, μ) -- 4.2 Deconfining Phase Transition in Pure Gauge Theories -- 4.2.1 Polyakov Loop and Hidden Global Symmetries -- 4.2.1.1 Hidden Symmetry -- 4.2.1.2 Global Z(3) Symmetry -- 4.2.1.3 Lines and Loops -- 4.2.1.4 Confinement as Z(3) Domains. Deconfinement at Non-zero Temperature.
4.2.2 Z(3) Interface Tension, Potential for A0 -- 4.2.2.1 Z(3) Degenerate Vacua -- 4.2.2.2 Tricks to Compute -- 4.2.2.3 Lifting the Degeneracy -- 4.2.2.4 Z(3) Interface Tension. A Tunneling Problem -- 4.2.2.5 Lattice: Z(N) Interfaces = 't Hooft Loop -- 4.2.3 Results from the Lattice, Pure Glue and Not -- 4.2.3.1 Lattice: Renormalized Loop, No Quarks -- 4.2.3.2 Lattice: Renormalized Loop, with Quarks -- 4.2.4 Matrix Model for Pure Glue Theories -- 4.2.4.1 Path to -- 4.2.4.2 Matrix Model for Pure Glue -- 4.2.4.3 Gross-Witten-Wadia Transition and Matrix Models at Infinite N -- 4.3 Chiral Matrix Models for QCD -- 4.3.1 The Quark-Gluon Plasma Near the CriticalTemperature -- 4.3.2 Effective Lagrangians for Chiral Symmetry -- 4.3.3 Solution at T=0 -- 4.3.4 Solution at T≠0 -- 4.3.5 Equations of State and Order Parameters -- 4.3.6 Baryon Susceptibilities -- 4.3.7 Suppression of Color in the Semi-QGP -- 4.3.8 Dilepton Rates -- 4.3.9 Real Photon Production -- Appendix: Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- Solution 1 -- Solution 2 -- Solution 3 -- References -- 5 Effective Approaches to QCD -- 5.1 QCD and Phases of Strongly Interacting Matter -- 5.1.1 Pictures of Confinement -- 5.1.2 Color Charge and Static Quark Potential -- 5.1.3 Quark Masses -- 5.1.4 Chiral Symmetry -- 5.1.5 Order Parameters in QCD -- 5.1.5.1 Quark Condensate -- 5.1.5.2 Wilson Loop -- 5.1.5.3 Temporal Wilson Loop -- 5.1.5.4 Spatial Wilson Loop -- 5.1.5.5 Polyakov Loop Correlator -- 5.1.5.6 Polyakov Loop -- 5.1.5.7 Spatial 't Hooft Loop -- 5.2 Magnetic Monopole Picture of Confinement -- 5.2.1 Meissner Effect in Superconductors -- 5.2.2 Emergence of Magnetic Monopoles in QCD -- 5.2.3 Induced Magnetic Monopole -- 5.2.4 Dual Superconductor Models of QCD -- 5.3 Center Vortex Picture of Confinement -- 5.3.1 Introduction -- 5.3.2 Lattice Gauge Theory -- 5.3.3 Center Projection.
5.3.4 The Random Vortex Model -- 5.3.5 Topology of Center vortices and Chiral Symmetry Breaking -- 5.3.6 Center Vortex Dominance -- 5.3.7 Conclusions -- 5.4 Hamiltonian Approach to QCD in Coulomb Gauge -- 5.4.1 Introduction -- 5.4.2 Canonical Quantization of Yang-Mills Theory -- 5.4.3 Variational Solution for the Yang-Mills Vacuum Wave Functional -- 5.4.4 Hamiltonian Formulation of QCD in Coulomb Gauge -- 5.4.5 Alternative Hamiltonian Approach to Finite-Temperature QFT -- 5.4.6 Conclusions -- Appendix: Exercises -- References -- 6 Heavy Flavors and Exotic Hadrons -- 6.1 Introduction -- 6.1.1 What Are Exotic Hadrons? -- 6.1.2 Importance of Studying Exotic Hadrons -- 6.1.3 Main Subject of This Lecture: Charm and Bottom Exotic Hadrons -- 6.1.4 Introduction of Review Articles on X, Y, Z Hadrons -- 6.2 Theoretical Framework for Heavy Hadrons -- 6.2.1 Heavy Quark Spin Symmetry -- 6.2.1.1 Heavy Quark Effective Theory -- 6.2.1.2 Heavy Quark Spin Symmetry -- 6.2.1.3 1/mQ Corrections -- 6.2.2 Heavy Hadron Effective Theory -- 6.3 Heavy Exotic Hadrons -X, Y, Z Hadrons- -- 6.3.1 Quarkonia -- 6.3.2 X(3872) -- 6.3.3 Y(4260) -- 6.3.4 Zc(4430)+ and Zc(3900)+ -- 6.3.5 Yb(10888) -- 6.3.6 Zb(10610)+ and Zb(10650)+ -- 6.3.7 Pc(4380) and Pc(4450): Charm Pentaquark -- 6.3.8 Miscellaneous Exotic Hadrons -- 6.3.9 Tcc -New Possible Exotic Hadrons- -- 6.4 Heavy Hadrons in Nuclear Matter -- 6.4.1 Flavor Nuclei: From Strangeness to Charm and Bottom -- 6.4.2 Topics on Anti-heavy-Light (q) Meson in Nuclear Matter -- 6.4.2.1 Interaction -- 6.4.2.2 Properties in Nuclear Matter -- 6.4.2.3 Kondo Effect -- 6.5 Summary -- Appendix: Exercises -- Exercise 1: Feshbach Resonance in One-Dimensional System -- Basics -- Feshbach Resonance -- Exercise 2: Simple Model of the Kondo Effect -- Exercise 3: Resonance States in One-Dimensional System -- References.
Part III Simulations of QCD and Heavy-Ion Collisions -- 7 Flavored Aspects of QCD Thermodynamics from Lattice QCD -- 7.1 Introduction -- 7.2 QCD Thermodynamics and Strangeness -- 7.2.1 Tc and the Equation of State -- 7.2.2 HRG and Missing Strange Baryons -- 7.2.3 Strangeness Freeze-Out -- 7.2.4 Taylor Expansion in Chemical Potential -- 7.2.5 Equation of State in a Strangeness Neutral System -- 7.2.6 Melting and Abundance of Open Charm Hadrons -- 7.2.7 Conclusions -- 7.3 Basics of Lattice Gauge Theory -- 7.3.1 Discretization of Space-Time Points -- 7.3.2 Gauge Transformation and Gauge Action -- 7.3.3 Renormalization and Continuum Limit -- 7.4 Basics of Monte Carlo Integration -- 7.4.1 Importance Sampling -- 7.4.2 Markov Chain -- Appendix: Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- References -- 8 Spectral and Transport Properties from Lattice QCD -- 8.1 Motivation -- 8.2 Hadronic Correlation Functions -- 8.3 Inversion Methods -- 8.4 Thermal Dilepton Rate and Electrical Conductivity -- 8.4.1 Continuum Extrapolated Vector Meson Correlation Functions -- 8.4.2 Lattice Estimate on the Thermal Dilepton Rate and Electrical Conductivity -- 8.5 Lattice Estimate of Thermal Photon Rate -- 8.6 Charmonia and Bottomonia Spectral Function from LatticeQCD -- 8.6.1 Free Spectral Function -- 8.6.2 Spectral Functions of Charmonia and Bottomonia in the Pseudo-Scalar Channel -- 8.6.3 Spectral Functions of Charmonia and Bottomonia in the Vector Channel -- 8.7 Heavy Quark Momentum Diffusion Coefficient -- 8.8 Conclusions -- Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- Exercise 4 -- References -- 9 Monte-Carlo Statistical Hadronization in Relativistic Heavy-Ion Collisions -- 9.1 Relativistic Heavy-Ion Collisions -- 9.2 Relativistic Perfect Fluid Dynamics -- 9.3 Fluid Dynamics from Kinetic Theory.
9.4 Event-Averaged Initial Conditions for Fluid Dynamics.
Record Nr. UNINA-9910595052503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui