1857.10-2021 - IEEE Standard for Third-Generation Video Coding / / Institute of Electrical and Electronics Engineers
| 1857.10-2021 - IEEE Standard for Third-Generation Video Coding / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2022 |
| Descrizione fisica | 1 online resource (445 pages) |
| Disciplina | 001.42 |
| Soggetto topico | Quantitative research |
| ISBN | 1-5044-8140-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996574836403316 |
| [Place of publication not identified] : , : IEEE, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Accelerating Discoveries in Data Science and Artificial Intelligence I : ICDSAI 2023, LIET Vizianagaram, India, April 24–25 / / edited by Frank M. Lin, Ashokkumar Patel, Nishtha Kesswani, Bosubabu Sambana
| Accelerating Discoveries in Data Science and Artificial Intelligence I : ICDSAI 2023, LIET Vizianagaram, India, April 24–25 / / edited by Frank M. Lin, Ashokkumar Patel, Nishtha Kesswani, Bosubabu Sambana |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (862 pages) |
| Disciplina | 006.3 |
| Collana | Springer Proceedings in Mathematics & Statistics |
| Soggetto topico |
Probabilities
Machine learning Mathematical statistics Quantitative research Probability Theory Machine Learning Mathematical Statistics Data Analysis and Big Data |
| ISBN | 3-031-51167-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Analysis of fraud detection approaches in online payment systems (Mandakini) -- Investigating Context-Aware Sentiment Classification Using Machine Learning Algorithms (P. Kiumar) -- Opioid Recommendation To Arthroplasty Patients Using Pearson Correlation And Shapiro Wilk Test (R Sindhi) -- POS Tagger Using LSTM and Pre-Trained Word Embeddings (Joshi) -- An early-stage colorectal cancer detection from colonoscopy images using Enhanced Res-UNET (Mahanty) -- Prediction of Rice Leaf Diseases at an Early Stage using Deep Neural Networks (Mahanty) -- A Study of the impact of implementing a procedure for Creation of Risk Factor Software (Sriramulu) -- Chat Analysis and Spam Detection of Whatsapp using Machine Learning (Shaik) -- A Study of Hate Speech Detection Using Different Models (Mihir) -- Image Feature Narrator for Blind (R Soujanya) -- Recognition of Indian gestural language through neural networks: Narrative approach (Akula) -- Frequency and Voltage control of multi area multi source power system using whale optimization algorithm (Simhadri) -- Tumor Prediction Using Microarray Gene Expression Profiles Through SVM and CBFS (Bandyopadhyay) -- Advanced Machine Learning Approaches for Improving Traffic Flow Predictions in Smart Transportation Systems (Kanakaprabha) -- Deep Learning Based Surroundings Descriptor for Visually Challenged (Kasireddi) -- Wind power prediction using artificial neural network model : a case study (Bouabdallaoui) -- Optimizing Wind Farm Design by Incorporating Wind Turbines of Diverse Hub Heights through PSO (El jaadi) -- Use of Regression Algorithm for Bike Ride Sharing Demand Projection (Pangaonkar) -- Quantifiable Techniques To Improve Covid Expectation Model Of Cox Regression (G Priyanka) -- Bayesian Optimized Random Forest Classifier for Improved Credit Card Fraud Detection: Overcoming Challenges and Limitations (P K Rajesh) -- Early Stage Detection Of Pcos Using Deep Learning (Venkata) -- Challenges and advancement in Federated Recommendation System: A Comprehensive Review (Otari) -- Conditional DCGAN for Targeted Generation of MNIST Handwritten Digits (Vasamsetti) -- Predicting Cryptocurrency Price Using Multiple Deep Learning Models (Durga) -- An Overview: Progressive Report on Magic Labelling (Biswas) -- Efficient Object Detection, Segmentation, and Recognition using YOLO Model (Sharma) -- Music Genre Classification using XGB Boost (Himabindu) -- Semantic Web 3.0 Streaming Based Music Application (Shaik) -- A Novel Approach for Text Classification using Feature Selection Algorithm and Term Weight Measures (RaviKumar) -- Content Based Music Video Recommender system using Cosine Similarity (Musarrath) -- A comparative study on Anomaly Based Network Intrusion Detection System (Potti) -- A spatiotemporal comprehensive graph based learning for GIF sentiment analysis (Bhattacharyya) -- A Novel Framework for Detection of Objects from Video Using Deep Learning Technique (Mulla) -- Recognition of Emotion behind Speech using Deep Learning RESNET Algorithm (Pinnamaraju) -- Exploring Sign Language Recognition Methods: An Effective Kernel Approach (Manogna) -- Identification of Gradient based Attacks on Autonomous Vehicle Traffic Recognition system using Statistical method (Lakshmeeswari) -- Sentiment Analysis of Tweets Using TF-IDF Vectorizer and Lemmatization with POS-Tagging (Saripilli) -- An Overview of Interval-valued Intuitionistic Trapezoidal Fuzzy Number (IVITFN) and its Applications using Fuzzy Logic Techniques (Murty) -- A Machine Learning Approach for DDoS attacks detection in CIC-DDoS2019 dataset using Multiple linear regression algorithm (Lakshmeeswari) -- Image Fusion With CT And MRI Images For Improving The Quality Of Diagnostic (Shaik) -- Comparative Analysis Of Lung Sac Inflation (Kakulapati) -- Voice Assistant For Driver Drowsiness Detection (Gondi) -- Prediction Using Sentiment Analysis On Multi Domain Category: Stocks, Politics Using Twitter Repository (Gaviredla) -- Hyperparameter Optimization for Gradient Boosted Tree-Based Machine Learning Models and Their Effect on Model Performance (Abdulkader) -- Medical Data Security with Blockchain and Artificial Intelligence Using SecNet (Laxmikanth) -- A Regression Analysis of iPhone 11 Pricing Factors (Umesh) -- Classification of Alzheimer's Disease using deep learning methodologies on MR Images (Kumar) -- Taxonomy of Intrusion detection and its effectiveness in Internet of Things (Ramakrishna) -- Design And Evaluation Of Plant Leaf Disease Detection Based On Cnn Classification System (Ramakrishna) -- Air Pollution Forecasting using Deep Learning algorithms: A Review (M S Rao) -- Health Care Monitoring System using Artificial Intelligence for Diabetic Skin Diseases (Godi) -- Proposed framework for a doctor appointment using Chatbot in Tanzania (Chatumba) -- Blockchain-Based Ether Transmission, Which Gives Ledgers Transparency And Security (Tippana) -- Fruit Identification And Classification Using Machine Learning (Reddy) -- Impact of Covid-19 in Society and review of Machine Learning Algorithm in Diagnosis (Sivaramakrishnan) -- Medicinal Leaf Prediction and Disease Identification using Machine Learning Techniques (Srinivasa Rao) -- Deep Learning Approach For Expression Based Songs Recommendation System (Shaik) -- System Sound Control Using Gesticulations (Uzair) -- Modified Holographic Ricci Dark Energy Cosmological Model in Modified theory of Gravity (Satyanarayana) -- Web Application for detecting churn prediction in Banking using ANN (Kharat) -- Providing Security Properties Of Cloud Service Using Rest Api’s (Laxmikanth) -- Study and Research on Autism Spectrum Disorder using Supervised Machine Learning Techniques (Nekkanti) -- Semi-Automated Vehicle Controlled Using Wi-Fi (Dhanush) -- Disease Identification System for Aura Images Using Fruit Fly Optimization (FAO) Technique (Poojary) -- Hybrid Movie Recommendation System Based on User Preferences and Item Similarity (Bugatha) -- Comparison of Artificial Intelligentsystems for real time accident prone applications (Rao) -- Hand Talk Assistance With Tensorflow Single Shot Detector (Priyanka) -- A New Text Representation Technique based Approach for Authorship Verification (Reddy) -- Early Recognition And Ranking Of Knee Osteoarthritis By The Assistance Of Enhanced Deep Learning On Knee MR Image Data (Molleti) -- Smart Blind Stick with Wrist band: Obstacle Detection and Warning System (Ramyadevi) -- Crop Recommendation System Using Machine Learning (Grandhi) -- Exploring Public Perception and Opinion Trends on Agnipath Scheme through Sentiment Analysis and Topic Modeling of Tweets (Shaik) -- A Feature Selection Technique based Approach for Author Profiling using Word Embedding Techniques (Kavuri) -- Pothole Detection Using IOT To Help People (Bada) -- Machine Learning enhanced Diabetes Identification System (Adimalla) -- Diabetes Identification System using Machine Learning (Sambana) -- Identification & Analysis of neural disorders based on hyperactivityand spectrum disorder with functional-MRI (Bala) -- Review Analysis Using Web Scraping in Python (Roy) -- A Novel Approach Of Deep Neural Network Performance Analysis For Predicting Chronic Kidney Disease (Ramakrishna) -- A Stroke Complication Neural Network Model to Predict the Severity of Brain Stroke Using Family History (Bandi) -- Automating Curriculum Vitae Recommendation Processes through Machine Learning (Laxikanth) -- Application Controlling Using Hand Gestures Through Yolov5s (Chadram) -- Chili Leaves Disease Identification using Artificial Neural Network Algorithms (kantharaju). |
| Record Nr. | UNINA-9910865293703321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Access to Non-Summary Clinical Trial Data for Research Purposes Under EU Law / / by Daria Kim
| Access to Non-Summary Clinical Trial Data for Research Purposes Under EU Law / / by Daria Kim |
| Autore | Kim Daria |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
| Descrizione fisica | 1 online resource (310 pages) |
| Disciplina | 342.240662 |
| Collana | Munich Studies on Innovation and Competition |
| Soggetto topico |
Information technology - Law and legislation
Mass media - Law and legislation Medical laws and legislation Law - Europe Clinical medicine - Research Quantitative research IT Law, Media Law, Intellectual Property Medical Law European Law Clinical Research Data Analysis and Big Data |
| ISBN | 3-030-86778-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | PART ONE: Setting the Scene -- Introduction -- The Context and the Problem in Focus -- Secondary Analysis of Clinical Trial Data - A Primer -- PART TWO: Analysis de lege lata,- Legal Sources of Control over and Access to Clinical Trial Data under the EU Applicable Framework -- Implications of IPD Disclosure for Statutory Innovation Incentives PART THREE: Analysis de lege ferenda -- Defining the Intervention Logic of Access-To-Data Measures - A Problem Analysis -- Access to Clinical Trial Data as a Case on R&D Externalities - A Theoretical Framework -- IPD as a Research Resource - Exclusively Controlled or Readily Accessible? -- Evaluating Legislative Options -- Final Conclusions and the Outlook. |
| Record Nr. | UNINA-9910506380003321 |
Kim Daria
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
ACM/IMS transactions on data science
| ACM/IMS transactions on data science |
| Pubbl/distr/stampa | New York, NY : , : Association for Computing Machinery, , [2020]- |
| Descrizione fisica | 1 online resource |
| Disciplina | 006 |
| Soggetto topico |
Data mining - Statistical methods
Big data - Statistical methods Quantitative research Données volumineuses - Méthodes statistiques Recherche quantitative |
| Soggetto genere / forma | Periodicals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
TDS
Transactions on data science ACM transactions on data sciencec |
| Record Nr. | UNISA-996548964503316 |
| New York, NY : , : Association for Computing Machinery, , [2020]- | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
ACM/IMS transactions on data science
| ACM/IMS transactions on data science |
| Pubbl/distr/stampa | New York, NY : , : Association for Computing Machinery, , [2020]- |
| Descrizione fisica | 1 online resource |
| Disciplina | 006 |
| Soggetto topico |
Data mining - Statistical methods
Big data - Statistical methods Quantitative research Données volumineuses - Méthodes statistiques Recherche quantitative |
| Soggetto genere / forma | Periodicals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
TDS
Transactions on data science ACM transactions on data sciencec |
| Record Nr. | UNINA-9910412143603321 |
| New York, NY : , : Association for Computing Machinery, , [2020]- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Actionable Science of Global Environment Change : From Big Data to Practical Research / / edited by Ziheng Sun
| Actionable Science of Global Environment Change : From Big Data to Practical Research / / edited by Ziheng Sun |
| Autore | Sun Ziheng |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (390 pages) |
| Disciplina | 551.6 |
| Soggetto topico |
Climatology
Quantitative research Sampling (Statistics) Climate Sciences Data Analysis and Big Data Methodology of Data Collection and Processing |
| ISBN | 3-031-41758-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: What is “Actionable” Science for Climate and Environment -- Chapter 2: Data Foundation for Actionable Science -- Chapter 3: Technology Landscape for Making Climate and Environmental Science “Actionable” -- Chapter 4: Actionable Science for Greenhouse Gas Emission Reduction -- Chapter 5: Actionable Science for Hurricanes -- Chapter 6: Actionable Science for Wildfire Response -- Chapter 7: Actionable Science for Sea Level Rising -- Chapter 8: Actionable Science for Irrigation -- Chapter 9: Actionable Science for Snow Monitoring and Response -- Chapter 10: Towards more actionable vulnerability indices for Global Environmental Change -- Chapter 11: Actionable Science in Environmental Health -- Chapter 12: Actionable AI for Climate and Environment -- Chapter 13: Actionable Environmental Science through Social Media Platforms -- Chapter 14: Ethics and Accountability of Science in Action. |
| Record Nr. | UNINA-9910760265803321 |
Sun Ziheng
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Adaptive Intelligence : Select Proceedings of InCITe 2024, Volume 1 / / edited by Nitasha Hasteer, Seán McLoone, Purushottam Sharma, Ranjana Nallamalli
| Adaptive Intelligence : Select Proceedings of InCITe 2024, Volume 1 / / edited by Nitasha Hasteer, Seán McLoone, Purushottam Sharma, Ranjana Nallamalli |
| Autore | Hasteer Nitasha |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (710 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
McLooneSeán
SharmaPurushottam NallamalliRanjana |
| Collana | Lecture Notes in Electrical Engineering |
| Soggetto topico |
Computational intelligence
Artificial intelligence Quantitative research Computational Intelligence Artificial Intelligence Data Analysis and Big Data |
| ISBN |
9789819790456
981979045X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Computational Intelligence: Theoretical Foundation -- Computational Intelligence & Knowledge Discovery -- Computational Intelligence & Data Science -- Computational Intelligence for Information Security -- Computational Intelligence & IoT enabling Architectures -- Computational Intelligence & its applications -- Computational Paradigms. |
| Record Nr. | UNINA-9910984686803321 |
Hasteer Nitasha
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Analytics in Power BI with R and Python : Ingesting, Transforming, Visualizing / / by Ryan Wade
| Advanced Analytics in Power BI with R and Python : Ingesting, Transforming, Visualizing / / by Ryan Wade |
| Autore | Wade Ryan |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020 |
| Descrizione fisica | 1 online resource (XLVI, 391 p. 84 illus.) |
| Disciplina | 001.4226028566 |
| Soggetto topico |
Microsoft software
Microsoft .NET Framework Quantitative research Big data Microsoft Data Analysis and Big Data Big Data |
| ISBN | 1-4842-5829-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I. Creating Custom Data Visualizations using R -- 1. The Grammar of Graphics -- 2. Creating R custom visuals in Power BI using ggplot2 -- Part II. Ingesting Data into the Power BI Data Model using R and Python -- 3. Reading CSV Files -- 4. Reading Excel Files -- 5. Reading SQL Server Data -- 6. Reading Data into the Power BI Data Model via an API -- Part III. Transforming Data using R and Python.-7. Advanced String Manipulation and Pattern Matching -- 8. Calculated Columns using R and Python -- Part IV. Machine Learning & AI in Power BI using R and Python -- 9. Applying Machine Learning and AI to your Power BI Data Models -- 10. Productionizing Data Science Models and Data Wrangling Scripts. . |
| Record Nr. | UNINA-9910427050203321 |
Wade Ryan
|
||
| Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Computing and Intelligent Technologies : Proceedings of ICACIT 2023 / / edited by Rabindra Nath Shaw, Sanjoy Das, Marcin Paprzycki, Ankush Ghosh, Monica Bianchini
| Advanced Computing and Intelligent Technologies : Proceedings of ICACIT 2023 / / edited by Rabindra Nath Shaw, Sanjoy Das, Marcin Paprzycki, Ankush Ghosh, Monica Bianchini |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (649 pages) |
| Disciplina | 006.3 |
| Collana | Lecture Notes in Networks and Systems |
| Soggetto topico |
Computational intelligence
Artificial intelligence Telecommunication Quantitative research Computational Intelligence Artificial Intelligence Communications Engineering, Networks Data Analysis and Big Data |
| ISBN | 981-9719-61-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- Development of CNN-Based Feature Extraction and Multi-layer Perceptron for Eye Disease Detection -- 1 Introduction -- 2 Existing Works -- 2.1 Related Works -- 2.2 Research Gaps and Challenges -- 3 Methodology of Multiple Eye Disease Detection Technique -- 3.1 Proposed Detection System for Multiple Eye Disorder -- 3.2 Details of Eye Image Collection -- 4 Feature Extraction and Multi-layer Perceptron Model for Multiple Eye Disease Detection -- 4.1 CNN-Based Feature Extraction -- 4.2 Multi-layer Perceptron for Classification -- 5 Result and Discussions -- 6 Conclusion -- References -- Optimal Relay Node Selection Using Machine Learning to Extend Coverage in Disaster Area Network -- 1 Introduction -- 2 Related Work -- 3 System Model -- 3.1 Network Architecture -- 3.2 Optimal Relay Node Selection Using Machine Learning Algorithm -- 3.3 Network Performance of the Proposed Model -- 3.4 Outage Probability Analysis -- 4 Result -- 5 Conclusion -- References -- A Structured Literature Review and Meta-analysis of Forecasting Methods for Energy Consumption in Smart Buildings -- 1 Introduction -- 2 Methodology -- 3 Energy Consumption in Smart Buildings -- 3.1 Need of Energy Consumption Forecasting in Smart Buildings -- 3.2 Energy Forecasting Methods -- 4 Black-Box Methods -- 5 White-Box Methods -- 6 Grey-Box Methods -- 7 Input Parameters -- 8 Prediction Intervals -- 9 Measures of Performance Analysis -- 10 Results and Discussion -- 11 Future Challenges -- 12 Conclusion -- References -- Document Summarization Leveraging Modified LexRank Algorithm -- 1 Introduction -- 1.1 Related Work -- 1.2 Contributions -- 2 Methodology -- 3 Case Studies and Results -- 4 Conclusion -- References -- A Blockchain-Based Approach to Improve Data Integrity in Federated Cloud Environment -- 1 Introduction.
1.1 Federated Cloud Environments -- 1.2 Benefits of Cloud Federations -- 1.3 Data Integrity Challenges -- 1.4 Blockchain Overview -- 1.5 Blockchain Architecture -- 2 Literature Survey -- 2.1 Related Work -- 2.2 Comparative Study -- 3 Proposed Framework -- 3.1 Layer 1: Utilizing Permissioned Blockchain for Operation Tracking -- 3.2 Layer 2: Ensuring Integrity of Individual Data Items: -- 3.3 Elasticsearch -- 4 Strengths of the Proposed Framework -- 4.1 Enhanced Data Integrity -- 4.2 Efficient Consensus Mechanism -- 4.3 Mitigation of Side-Channel Attacks -- 4.4 Improved Leadership Selection -- 4.5 Robust Log Storage -- 4.6 Enhanced Security -- 4.7 Greater Transparency -- 4.8 Instant Traceability -- 5 Conclusion -- References -- Performance Analysis of Hybrid Cryptographic Algorithms in Serverless Platforms -- 1 Introduction -- 2 Background -- 2.1 Fernet Algorithm -- 2.2 RSA Algorithm -- 2.3 Triple DES Algorithm -- 3 Related Work -- 4 Proposed Hybrid Approach -- 4.1 Two-Tier Model -- 4.2 Three-Tier Model -- 5 Performance Analysis -- 5.1 Comparison with 3DES + RSA Model -- 6 Conclusion -- References -- Intensifying Cross Architecture Cyber-Resilience System with Descriptive Malware Analysis -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 3.1 Dataset -- 3.2 Concept Used -- 3.3 Proposed Method -- 4 Result -- 5 Conclusion -- 6 Future Scope -- References -- Challenges and Solutions in Integrating Narrowband IoT with Edge Computing: Resource Constraints, Security, Latency, and IDS Deployment -- 1 Introduction -- 1.1 Background -- 1.2 Objectives of the Study -- 1.3 Scope and Limitations -- 2 Literature Review -- 2.1 Previous Work on IoT and Edge Computing -- 2.2 Identified Areas Requiring Improvement -- 3 Methodology -- 3.1 Data Collection -- 3.2 Data Analysis Resource Constraints -- 4 Steps Used to Study the Dataset -- 5 Data Analysis. 5.1 Phase 1: Data Acquisition -- 5.2 Phase 2: Data Preprocessing -- 5.3 Phase 3: Exploratory Data Analysis (EDA) -- 5.4 Phase 4: Data Analysis -- 6 Conclusion -- 7 Areas for Further Research -- References -- An Automatic Brick Grading System Using Convolutional Neural Network: Bangladesh Perspective -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Collection -- 3.2 Data Preprocessing -- 3.3 Splitting Data -- 3.4 Training -- 3.5 Evaluate Model -- 4 Experiment -- 4.1 Data Collection -- 4.2 Data Prepossessing -- 4.3 Libraries -- 4.4 Early Stopping -- 4.5 Convolutional Neural Network -- 4.6 Adam Optimizer -- 4.7 Hyperparameters -- 4.8 Training -- 4.9 Testing -- 5 Result and Discussion -- 5.1 Experimental Result -- 5.2 Evaluation Matrix -- 5.3 Training and Validation Loss -- 5.4 Training and Validation Accuracy -- 5.5 Confusion Matrix -- 5.6 Comparison -- 6 Conclusion -- 6.1 Limitations and Future Work -- References -- Optimization, Modelling and Evaluation of Marshall Stability of Asphaltic Concrete with Agricultural and Industrial Wastes Through Response Surface Method -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussion -- 3.1 Evaluation of the Fitted Model Parameters -- 3.2 Interactive Effect of Significant Factors on Marshall Stability -- 4 Conclusion -- References -- A Query-Based Approach to Mitigate the Shortcomings of Widely Used Learning Methods Through E-Learning -- 1 Introduction -- 2 Literature Review -- 2.1 Shortcomings of Existing Methods -- 2.2 E-Learning and the Evolution of Technology -- 2.3 The Art of Questioning in Learning -- 2.4 Questions as a Learning Tool -- 2.5 Query-Based Access to Neurons -- 3 Methodology -- 3.1 E-Learning Using QuBAN Method -- 4 Result and Discussion -- 4.1 Effectiveness Across Courses -- 4.2 Effect on Confidence and Motivation -- 4.3 Impact on Questioning Habits. 4.4 Student's Attitude Towards QuBAN -- 5 Conclusion -- References -- Navigating the Waters of Image Watermarking: A Neural Network-Centric Review -- 1 Introduction -- 1.1 Image Watermarking Using Neural Networks -- 1.2 Types of Neural Networks Used in State-of-the-Art Image Watermarking Techniques -- 1.3 Performance Metrics for Different Watermarking Techniques -- 2 Literature Review -- 3 Future Scope -- 4 Conclusion -- References -- Evaluation of Group Chats Using Exploratory Data Analysis -- 1 Introduction -- 2 Literature Work -- 3 Working Methodology -- 3.1 Data Collection -- 3.2 Data Pre-processing -- 3.3 Data Preparation and Cleaning -- 3.4 Analysis and Interpretation of Results -- 3.5 Data Visualization -- 4 Result and Discussion -- 5 Conclusion -- References -- FinTech Revolution in Bharat -- 1 Introduction -- 2 Evolution of FinTech -- 2.1 Pre-digitization Period -- 2.2 Digitization Period -- 2.3 Post-digitization Period -- 3 The India Stack -- 3.1 Identity Layer -- 3.2 Payments Layer -- 3.3 Data Layer -- 4 Financial Inclusion and Solutions -- 4.1 Development and Financial Inclusion -- 4.2 FinTech Solutions -- 5 FinTech Adoption and Investments -- 5.1 Trends Driving FinTech Adoption -- 5.2 FinTech Investments -- 6 Challenges in FinTech -- 6.1 Lack of Trust and Awareness -- 6.2 Formal Credit -- 6.3 Rigorous Regulatory System -- 6.4 Skill-Based Talent Acquisition -- 6.5 Cybersecurity -- 6.6 Global Economics and Recession -- 7 Conclusion -- References -- A Review of 3D Avatar Reconstruction for Virtual Conferencing -- 1 Introduction -- 2 Problem Background -- 3 3D Reconstruction -- 4 3D Avatar -- 4.1 Classification of 3D Avatars -- 4.2 Application of 3D Avatar in Virtual Conference -- 5 3D Avatar Reconstruction -- 5.1 Traditional Reconstruction Pipeline -- 5.2 Reconstruction Based on Deep Learning -- 6 Conclusion -- References. Real-Time Food Simulation Using Real Hand Gesture for Malaysia Cultural Heritage -- 1 Introduction -- 2 Designing Hand Gestures -- 3 Proposed VR Pulut Panggang -- 3.1 Test Application -- 4 Conclusion -- References -- Feature Selection Using Chi-Squared Feature-Class Association Model for Fake Profile Detection in Online Social Networks -- 1 Introduction -- 2 Related Works -- 3 Feature Extraction -- 4 Proposed Chi-Squared Feature-Class Association Model -- 5 Result and Analysis -- 5.1 Dataset and Description -- 5.2 Evaluation Metrics -- 6 Results -- 7 Conclusion -- References -- Classification and Identification of Weeds Using Gradient Boosting Classifiers -- 1 Introduction -- 2 Related Work -- 3 Convolutional Neural Network -- 3.1 Convolutional Layers -- 3.2 Pooling Layers -- 3.3 Global Average Pooling Layer -- 3.4 Fully Connected Layers -- 4 Boosting Algorithms -- 4.1 Gbm -- 4.2 Lgbm -- 4.3 CatBoost -- 4.4 AdaBoost -- 4.5 XGBoost -- 5 Dataset -- 6 Methodology -- 7 Experimental Results -- 7.1 Assessment Metrics -- 8 Results and Discussion -- 8.1 Comparison with Other Studies -- 8.2 Limitations and Complexity of Proposed Model -- 9 Conclusion -- References -- Enhancing Accuracy and Efficiency in Diabetic Retinopathy Detection: A Deep Learning Framework for Fundus Image Analysis -- 1 Introduction -- 2 Methodology of the Proposed System -- 3 Various Machine Learning Algorithm -- 4 Result and Discussion -- 5 Conclusion -- References -- Enhancing Brain MRI Tumor Detection: Exploring Vision Transformers and Fine-Tuned Convolutional Neural Network Architecture for Improved Performance -- 1 Introduction -- 1.1 Convolution Neural Networks -- 1.2 Vision Transformers -- 2 Dataset Analysis -- 3 Methodology -- 3.1 Convolution Neural Networks -- 3.2 Proposed Model (Vision Transformers) -- 4 Experimental Results -- 5 Conclusion -- References. Bitcoin Price Prediction Using Sentiment Analysis. |
| Record Nr. | UNINA-9910865284603321 |
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Mathematical Science for Mobility Society / / edited by Kazushi Ikeda, Yoshiumi Kawamura, Kazuhisa Makino, Satoshi Tsujimoto, Nobuo Yamashita, Shintaro Yoshizawa, Hanna Sumita
| Advanced Mathematical Science for Mobility Society / / edited by Kazushi Ikeda, Yoshiumi Kawamura, Kazuhisa Makino, Satoshi Tsujimoto, Nobuo Yamashita, Shintaro Yoshizawa, Hanna Sumita |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (VIII, 215 p. 52 illus., 40 illus. in color.) |
| Disciplina | 004.0151 |
| Soggetto topico |
Computer science
Mathematical models Quantitative research Transportation engineering Traffic engineering Theory and Algorithms for Application Domains Mathematical Modeling and Industrial Mathematics Data Analysis and Big Data Transportation Technology and Traffic Engineering |
| ISBN | 981-9997-72-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part 1. Introduction, motivation, and direction for Advanced Mathematical Science for Mobility Society, together with the project between Toyota Motor Corporation and Kyoto University -- Chapter 1. Advanced Mathematical Science for Mobility Society -- Part 2. Mathematical models of flow Chapter. 2. Analysis of many-body particle systems by geometry and box-ball-system theory -- Chapter 3. Discrete Integrable Systems, LR transformations and Box-Ball Systems -- Part 3. Mathematical methods for huge data and network analysis -- Chapter 4. Eigenvalue Analysis in Mobility Data -- Chapter 5. Application of tensor network formalism for processing tensor data -- Chapter 6. Machine Learning Approach to Mobility Analysis -- Chapter 7. Graph optimization problems and algorithms for DAG-type blockchains -- Part 4. Algorithm for mobility society -- Chapter 8. Control and optimization of one-way car-sharing systems -- Chapter 9. Algorithms for future mobility society Chapter 10. Mechanism Design for Mobility. |
| Record Nr. | UNINA-9910845080703321 |
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||