top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi
Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi
Autore Ulrych Tadeusz J
Pubbl/distr/stampa Amsterdam ; ; London, : Elsevier, 2005
Descrizione fisica 1 online resource (437 p.)
Disciplina 550
Altri autori (Persone) SacchiMauricio D
Collana Handbook of geophysical exploration. Seismic exploration
Soggetto topico Inversion (Geophysics)
Prospecting - Geophysical methods - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-64104-5
9786610641048
0-08-046134-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Some Basic Concepts; Introduction; Probability Distributions, Stationarity & Ensemble Statistics; Essentials of Probability Distributions; Ensembles, Expectations etc; The Ergodic Hypothesis; The Chebychev Inequality; Time Averages and Ergodidty; Properties of Estimators; Bias of an Estimator; An Example; Variance of an Estimator; An Example; Mean Square Error of an Estimator; Orthogonality; Orthogonal Functions and Vectors; Orthogonal Vector Space; Gram-Schmidt Orthogonalization; Remarks; Orthogonality and Correlation; Orthogonality and Eigenvectors; Fourier Analysis
IntroductionOrthogonal Functions; Fourier Series; The Fourier Transform; Properties of the Fourier Transform; The FT of Some Functions; Truncation in Time; Symmetries; Living in a Discrete World; Aliasing and the Poisson Sum Formula; Some Theoretical Details; Limits of Infinite Scries; Remarks; The z Transform; Relationship Between z and Fourier Transforms; Discrete Fourier Transform; Inverse DFT; Zero Padding; The Fast Fourier Transform (FFT); Linearity and Time Invariance; Causal Systems; Discrete Convolution; Convolution and the z Transform; Dcconvolution; Dipole Filters
Invertibility of Dipole FiltersProperties of Polynomial Filters; Some Toy Examples for Clarity; Least Squares Inversion of Minimum Phase Dipoles; Inversion of Minimum Phase Sequences; Inversion of Nonminimum Phase Wavelets: Optimum Lag SpikingFilters; Discrete Convolution and Circulant Matrices; Discrete and Circular Convolution; Matrix Notation for Circular Convolution; Diagonalization of the Circulant Matrix; Applications of the Circulant; Convolution; Deconvolution; Efficient Computation of Large Problems; Polynomial and FT Wavelet Inversion; Expectations etc.,; The Covariance Matrix
Lagrange MultipliersLinear Time Series Modelling; Introduction; The Wold Decomposition Theorem; The Moving Average. MA, Model; Determining the Coefficients of the MA Model; Computing the Minimum Phase Wavelet via the FFT; The Autoregressive, AR, Model; Autocovariance of the AR Process; Estimating the AR Parameters; The Levinson Recursion; Initialization; The Prediction Error Operator, PEO; Phase Properties of the PEO; Proof of the Minimum Delay Property of the PEO; The Autoregressive Moving Average, ARMA, Model; A Very Special ARMA Process
MA, AR and ARMA Models in Seismic Modelling and ProcessingExtended AR Models and Applications; A Little Predictive Deconvolution Theory; The Output of Predictive Deconvolution; Remarks; Summary; A Few Words About Nonlinear Time Series; The Principle of Embedding; Summary; Levinson's Recursion and Reflection Coefficients; Theoretical Summary; Summary and Remarks; Minimum Phase Property of the PEO; PROOF I; Eigenvectors of Doubly Symmetric Matrices; Spectral decomposition; Minimum phase property; PROOF II; Discussion; Information Theory and Relevant Issues; Introduction
Entropy in Time Series Analysis
Record Nr. UNINA-9910458822303321
Ulrych Tadeusz J  
Amsterdam ; ; London, : Elsevier, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi
Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi
Autore Ulrych Tadeusz J
Pubbl/distr/stampa Amsterdam ; ; London, : Elsevier, 2005
Descrizione fisica 1 online resource (437 p.)
Disciplina 550
Altri autori (Persone) SacchiMauricio D
Collana Handbook of geophysical exploration. Seismic exploration
Soggetto topico Inversion (Geophysics)
Prospecting - Geophysical methods - Mathematical models
ISBN 1-280-64104-5
9786610641048
0-08-046134-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Some Basic Concepts; Introduction; Probability Distributions, Stationarity & Ensemble Statistics; Essentials of Probability Distributions; Ensembles, Expectations etc; The Ergodic Hypothesis; The Chebychev Inequality; Time Averages and Ergodidty; Properties of Estimators; Bias of an Estimator; An Example; Variance of an Estimator; An Example; Mean Square Error of an Estimator; Orthogonality; Orthogonal Functions and Vectors; Orthogonal Vector Space; Gram-Schmidt Orthogonalization; Remarks; Orthogonality and Correlation; Orthogonality and Eigenvectors; Fourier Analysis
IntroductionOrthogonal Functions; Fourier Series; The Fourier Transform; Properties of the Fourier Transform; The FT of Some Functions; Truncation in Time; Symmetries; Living in a Discrete World; Aliasing and the Poisson Sum Formula; Some Theoretical Details; Limits of Infinite Scries; Remarks; The z Transform; Relationship Between z and Fourier Transforms; Discrete Fourier Transform; Inverse DFT; Zero Padding; The Fast Fourier Transform (FFT); Linearity and Time Invariance; Causal Systems; Discrete Convolution; Convolution and the z Transform; Dcconvolution; Dipole Filters
Invertibility of Dipole FiltersProperties of Polynomial Filters; Some Toy Examples for Clarity; Least Squares Inversion of Minimum Phase Dipoles; Inversion of Minimum Phase Sequences; Inversion of Nonminimum Phase Wavelets: Optimum Lag SpikingFilters; Discrete Convolution and Circulant Matrices; Discrete and Circular Convolution; Matrix Notation for Circular Convolution; Diagonalization of the Circulant Matrix; Applications of the Circulant; Convolution; Deconvolution; Efficient Computation of Large Problems; Polynomial and FT Wavelet Inversion; Expectations etc.,; The Covariance Matrix
Lagrange MultipliersLinear Time Series Modelling; Introduction; The Wold Decomposition Theorem; The Moving Average. MA, Model; Determining the Coefficients of the MA Model; Computing the Minimum Phase Wavelet via the FFT; The Autoregressive, AR, Model; Autocovariance of the AR Process; Estimating the AR Parameters; The Levinson Recursion; Initialization; The Prediction Error Operator, PEO; Phase Properties of the PEO; Proof of the Minimum Delay Property of the PEO; The Autoregressive Moving Average, ARMA, Model; A Very Special ARMA Process
MA, AR and ARMA Models in Seismic Modelling and ProcessingExtended AR Models and Applications; A Little Predictive Deconvolution Theory; The Output of Predictive Deconvolution; Remarks; Summary; A Few Words About Nonlinear Time Series; The Principle of Embedding; Summary; Levinson's Recursion and Reflection Coefficients; Theoretical Summary; Summary and Remarks; Minimum Phase Property of the PEO; PROOF I; Eigenvectors of Doubly Symmetric Matrices; Spectral decomposition; Minimum phase property; PROOF II; Discussion; Information Theory and Relevant Issues; Introduction
Entropy in Time Series Analysis
Record Nr. UNINA-9910784533103321
Ulrych Tadeusz J  
Amsterdam ; ; London, : Elsevier, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui