Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer
| Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer |
| Autore | Vovk Vladimir <1960-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
| Descrizione fisica | 1 online resource (490 pages) |
| Disciplina | 518.1 |
| Soggetto topico |
Algorithms
Algorithms - Study and teaching Teoria de la predicció Algorismes Processos estocàstics |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-06649-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Notation and Abbreviations -- Sets, Bags, and Sequences -- Stochastics -- Machine Learning -- Programming -- Confidence Prediction -- Other Notations -- Abbreviations -- 1 Introduction -- 1.1 Machine Learning -- 1.1.1 Learning Under Randomness -- 1.1.2 Learning Under Unconstrained Randomness -- 1.2 A Shortcoming of Statistical Learning Theory -- 1.2.1 The Hold-Out Estimate of Confidence -- 1.2.2 The Contribution of This Book -- 1.3 The Online Framework -- 1.3.1 Online Learning -- 1.3.2 Online/Offline Compromises -- 1.3.3 One-Off and Offline Learning -- 1.3.4 Induction, Transduction, and the Online Framework -- 1.4 Conformal Prediction -- 1.4.1 Nested Prediction Sets -- 1.4.2 Validity -- 1.4.3 Efficiency -- 1.4.4 Conditionality -- 1.4.5 Flexibility of Conformal Predictors -- 1.5 Probabilistic Prediction Under Unconstrained Randomness -- 1.5.1 Universally Consistent Probabilistic Predictor -- 1.5.2 Probabilistic Prediction Using a Finite Dataset -- 1.5.3 Venn Prediction -- 1.5.4 Conformal Predictive Distributions -- 1.6 Beyond Randomness -- 1.6.1 Testing Randomness -- 1.6.2 Online Compression Models -- 1.7 Context -- Part I Set Prediction -- 2 Conformal Prediction: General Case and Regression -- 2.1 Confidence Predictors -- 2.1.1 Assumptions -- 2.1.2 Simple Predictors and Confidence Predictors -- 2.1.3 Validity -- 2.1.4 Randomized Confidence Predictors -- 2.1.5 Confidence Predictors Over a Finite Horizon -- 2.1.6 One-Off and Offline Confidence Predictors -- 2.2 Conformal Predictors -- 2.2.1 Bags -- 2.2.2 Nonconformity and Conformity -- 2.2.3 p-Values -- 2.2.4 Definition of Conformal Predictors -- 2.2.5 Validity -- 2.2.6 Smoothed Conformal Predictors -- 2.2.7 Finite-Horizon Conformal Prediction -- 2.2.8 One-Off and Offline Conformal Predictors.
2.2.9 General Schemes for Defining Nonconformity -- Conformity to a Bag -- Conformity to a Property -- 2.2.10 Deleted Conformity Measures -- 2.3 Conformalized Ridge Regression -- 2.3.1 Least Squares and Ridge Regression -- 2.3.2 Basic CRR -- 2.3.3 Two Modifications -- 2.3.4 Dual Form Ridge Regression -- 2.4 Conformalized Nearest Neighbours Regression -- 2.5 Efficiency of Conformalized Ridge Regression -- 2.5.1 Hard and Soft Models -- 2.5.2 Bayesian Ridge Regression -- 2.5.3 Efficiency of CRR -- 2.6 Are There Other Ways to Achieve Validity? -- 2.7 Conformal Transducers -- 2.7.1 Definitions and Properties of Validity -- 2.7.2 Normalized Confidence Predictors and Confidence Transducers -- 2.8 Proofs -- 2.8.1 Proof of Theorem 2.2 -- 2.8.2 Proof of Theorem 2.7 -- Regularizing the Rays in Upper CRR -- Proof Proper -- 2.8.3 Proof of Theorem 2.10 -- 2.9 Context -- 2.9.1 Exchangeability vs Randomness -- 2.9.2 Conformal Prediction -- 2.9.3 Two Equivalent Definitions of Nonconformity Measures -- 2.9.4 The Two Meanings of Conformity in Conformal Prediction -- 2.9.5 Examples of Nonconformity Measures -- 2.9.6 Kernel Methods -- 2.9.7 Burnaev-Wasserman Programme -- 2.9.8 Completeness Results -- 3 Conformal Prediction: Classification and General Case -- 3.1 Criteria of Efficiency for Conformal Prediction -- 3.1.1 Basic Criteria -- 3.1.2 Other Prior Criteria -- 3.1.3 Observed Criteria -- 3.1.4 Idealised Setting -- 3.1.5 Conditionally Proper Criteria of Efficiency -- 3.1.6 Criteria of Efficiency that Are not Conditionally Proper -- 3.1.7 Discussion -- 3.2 More Ways of Computing Nonconformity Scores -- 3.2.1 Nonconformity Scores from Nearest Neighbours -- 3.2.2 Nonconformity Scores from Support Vector Machines -- 3.2.3 Reducing Classification Problems to the Binary Case -- 3.3 Weak Teachers -- 3.3.1 Imperfectly Taught Predictors -- 3.3.2 Weak Validity. 3.3.3 Strong Validity -- 3.3.4 Iterated Logarithm Validity -- 3.3.5 Efficiency -- 3.4 Proofs -- 3.4.1 Proofs for Sect.3.1 -- Proof of Theorem 3.1 -- Proof of Theorem 3.2 -- Proof of Theorem 3.3 -- Proof of Theorem 3.4 -- 3.4.2 Proofs for Sect.3.3 -- Proof of Theorem 3.7, Part I -- Proof of Theorem 3.7, Part II -- Proof of Theorem 3.9 -- Proof of Theorem 3.13 -- 3.5 Context -- 3.5.1 Criteria of Efficiency -- 3.5.2 Examples of Nonconformity Measures -- 3.5.3 Universal Predictors -- 3.5.4 Weak Teachers -- 4 Modifications of Conformal Predictors -- 4.1 The Topics of This Chapter -- 4.2 Inductive Conformal Predictors -- 4.2.1 Inductive Conformal Predictors in the Online Mode -- 4.2.2 Inductive Conformal Predictors in the Offline and Semi-Online Modes -- 4.2.3 The General Scheme for Defining Nonconformity -- 4.2.4 Normalization and Hyper-Parameter Selection -- 4.3 Further Ways of Computing Nonconformity Scores -- 4.3.1 Nonconformity Measures Considered Earlier -- 4.3.2 De-Bayesing -- 4.3.3 Neural Networks and Other Multiclass Scoring Classifiers -- 4.3.4 Decision Trees and Random Forests -- 4.3.5 Binary Scoring Classifiers -- 4.3.6 Logistic Regression -- 4.3.7 Regression and Bootstrap -- 4.3.8 Training Inductive Conformal Predictors -- 4.4 Cross-Conformal Prediction -- 4.4.1 Definition of Cross-Conformal Predictors -- 4.4.2 Computational Efficiency -- 4.4.3 Validity and Lack Thereof for Cross-Conformal Predictors -- 4.5 Transductive Conformal Predictors -- 4.5.1 Definition -- 4.5.2 Validity -- 4.6 Conditional Conformal Predictors -- 4.6.1 One-Off Conditional Conformal Predictors -- 4.6.2 Mondrian Conformal Predictors and Transducers -- 4.6.3 Using Mondrian Conformal Transducers for Prediction -- 4.6.4 Generality of Mondrian Taxonomies -- 4.6.5 Conformal Prediction -- 4.6.6 Inductive Conformal Prediction -- 4.6.7 Label-Conditional Conformal Prediction. 4.6.8 Object-Conditional Conformal Prediction -- 4.7 Training-Conditional Validity -- 4.7.1 Conditional Validity -- 4.7.2 Training-Conditional Validity of Inductive Conformal Predictors -- 4.8 Context -- 4.8.1 Computationally Efficient Hedged Prediction -- 4.8.2 Specific Learning Algorithms and Nonconformity Measures -- 4.8.3 Training Conformal Predictors -- 4.8.4 Cross-Conformal Predictors and Alternative Approaches -- 4.8.5 Transductive Conformal Predictors -- 4.8.6 Conditional Conformal Predictors -- Part II Probabilistic Prediction -- 5 Impossibility Results -- 5.1 Introduction -- 5.2 Diverse Datasets -- 5.3 Impossibility of Estimation of Probabilities -- 5.3.1 Binary Case -- 5.3.2 Multiclass Case -- 5.4 Proof of Theorem 5.2 -- 5.4.1 Probability Estimators and Statistical Tests -- 5.4.2 Complete Statistical Tests -- 5.4.3 Restatement of the Theorem in Terms of Statistical Tests -- 5.4.4 The Proof of the Theorem -- 5.5 Context -- 5.5.1 More Advanced Results -- 5.5.2 Density Estimation, Regression Estimation, and Regression with Deterministic Objects -- 5.5.3 Universal Probabilistic Predictors -- 5.5.4 Algorithmic Randomness Perspective -- 6 Probabilistic Classification: Venn Predictors -- 6.1 Introduction -- 6.2 Venn Predictors -- 6.2.1 Validity of One-Off Venn Predictors -- 6.2.2 Are There Other Ways to Achieve Perfect Calibration? -- 6.2.3 Venn Prediction with Binary Labels and No Objects -- 6.3 A Universal Venn Predictor -- 6.4 Venn-Abers Predictors -- 6.4.1 Full Venn-Abers Predictors -- 6.4.2 Inductive Venn-Abers Predictors -- 6.4.3 Probabilistic Predictors Derived from Venn Predictors -- 6.4.4 Cross Venn-Abers Predictors -- 6.4.5 Merging Multiprobability Predictions into a Probabilistic Prediction -- 6.5 Proofs -- 6.5.1 Proof of Theorem 6.4 -- 6.5.2 PAVA and the Proof of Lemma 6.6 -- 6.5.3 Proof of Proposition 6.7 -- 6.6 Context. 6.6.1 Risk and Uncertainty -- 6.6.2 John Venn, Frequentist Probability, and the Problem of the Reference Class -- 6.6.3 Online Venn Predictors Are Calibrated -- 6.6.4 Isotonic Regression -- 7 Probabilistic Regression: Conformal Predictive Systems -- 7.1 Introduction -- 7.2 Conformal Predictive Systems -- 7.2.1 Basic Definitions -- 7.2.2 Properties of Validity -- 7.2.3 Simplest Example: Monotonic Conformity Measures -- 7.2.4 Criterion of Being a CPS -- 7.3 Least Squares Prediction Machine -- 7.3.1 Three Kinds of LSPM -- 7.3.2 The Studentized LSPM in an Explicit Form -- 7.3.3 The Offline Version of the Studentized LSPM -- 7.3.4 The Ordinary LSPM -- 7.3.5 Asymptotic Efficiency of the LSPM -- 7.3.6 Illustrations -- 7.4 Kernel Ridge Regression Prediction Machine -- 7.4.1 Explicit Forms of the KRRPM -- 7.4.2 Limitation of the KRRPM -- 7.5 Nearest Neighbours Prediction Machine -- 7.6 Universal Conformal Predictive Systems -- 7.6.1 Definitions -- 7.6.2 Universal Conformal Predictive Systems -- 7.6.3 Universal Deterministic Predictive Systems -- 7.7 Applications to Decision Making -- 7.7.1 A Standard Problem of Decision Making -- 7.7.2 Examples -- 7.7.3 Asymptotically Efficient Decision Making -- 7.7.4 Dangers of Overfitting -- 7.8 Computationally Efficient Versions -- 7.8.1 Inductive Conformal Predictive Systems -- 7.8.2 Cross-Conformal Predictive Distributions -- 7.8.3 Practical Aspects -- 7.8.4 Beyond Randomness -- 7.9 Proofs and Calculations -- 7.9.1 Proofs for Sect.7.2 -- Proof of Lemma 7.1 -- Proof of Proposition 7.2 -- 7.9.2 Proofs for Sect.7.3 -- Proof of Proposition 7.4 -- Proof of Proposition 7.5 -- Proof of Proposition 7.6 -- Proof of Proposition 7.7 -- Proof of Proposition 7.8 -- Computations for the Studentized LSPM -- The Ordinary LSPM -- Proof of (7.22) -- 7.9.3 Proof of Theorem 7.16 -- 7.9.4 Proofs for Sect.7.8 -- Proof of Proposition 7.17. Proof of Proposition 7.18. |
| Record Nr. | UNISA-996503551103316 |
Vovk Vladimir <1960->
|
||
| Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer
| Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer |
| Autore | Vovk Vladimir <1960-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
| Descrizione fisica | 1 online resource (490 pages) |
| Disciplina | 518.1 |
| Soggetto topico |
Algorithms
Algorithms - Study and teaching Teoria de la predicció Algorismes Processos estocàstics |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-06649-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Notation and Abbreviations -- Sets, Bags, and Sequences -- Stochastics -- Machine Learning -- Programming -- Confidence Prediction -- Other Notations -- Abbreviations -- 1 Introduction -- 1.1 Machine Learning -- 1.1.1 Learning Under Randomness -- 1.1.2 Learning Under Unconstrained Randomness -- 1.2 A Shortcoming of Statistical Learning Theory -- 1.2.1 The Hold-Out Estimate of Confidence -- 1.2.2 The Contribution of This Book -- 1.3 The Online Framework -- 1.3.1 Online Learning -- 1.3.2 Online/Offline Compromises -- 1.3.3 One-Off and Offline Learning -- 1.3.4 Induction, Transduction, and the Online Framework -- 1.4 Conformal Prediction -- 1.4.1 Nested Prediction Sets -- 1.4.2 Validity -- 1.4.3 Efficiency -- 1.4.4 Conditionality -- 1.4.5 Flexibility of Conformal Predictors -- 1.5 Probabilistic Prediction Under Unconstrained Randomness -- 1.5.1 Universally Consistent Probabilistic Predictor -- 1.5.2 Probabilistic Prediction Using a Finite Dataset -- 1.5.3 Venn Prediction -- 1.5.4 Conformal Predictive Distributions -- 1.6 Beyond Randomness -- 1.6.1 Testing Randomness -- 1.6.2 Online Compression Models -- 1.7 Context -- Part I Set Prediction -- 2 Conformal Prediction: General Case and Regression -- 2.1 Confidence Predictors -- 2.1.1 Assumptions -- 2.1.2 Simple Predictors and Confidence Predictors -- 2.1.3 Validity -- 2.1.4 Randomized Confidence Predictors -- 2.1.5 Confidence Predictors Over a Finite Horizon -- 2.1.6 One-Off and Offline Confidence Predictors -- 2.2 Conformal Predictors -- 2.2.1 Bags -- 2.2.2 Nonconformity and Conformity -- 2.2.3 p-Values -- 2.2.4 Definition of Conformal Predictors -- 2.2.5 Validity -- 2.2.6 Smoothed Conformal Predictors -- 2.2.7 Finite-Horizon Conformal Prediction -- 2.2.8 One-Off and Offline Conformal Predictors.
2.2.9 General Schemes for Defining Nonconformity -- Conformity to a Bag -- Conformity to a Property -- 2.2.10 Deleted Conformity Measures -- 2.3 Conformalized Ridge Regression -- 2.3.1 Least Squares and Ridge Regression -- 2.3.2 Basic CRR -- 2.3.3 Two Modifications -- 2.3.4 Dual Form Ridge Regression -- 2.4 Conformalized Nearest Neighbours Regression -- 2.5 Efficiency of Conformalized Ridge Regression -- 2.5.1 Hard and Soft Models -- 2.5.2 Bayesian Ridge Regression -- 2.5.3 Efficiency of CRR -- 2.6 Are There Other Ways to Achieve Validity? -- 2.7 Conformal Transducers -- 2.7.1 Definitions and Properties of Validity -- 2.7.2 Normalized Confidence Predictors and Confidence Transducers -- 2.8 Proofs -- 2.8.1 Proof of Theorem 2.2 -- 2.8.2 Proof of Theorem 2.7 -- Regularizing the Rays in Upper CRR -- Proof Proper -- 2.8.3 Proof of Theorem 2.10 -- 2.9 Context -- 2.9.1 Exchangeability vs Randomness -- 2.9.2 Conformal Prediction -- 2.9.3 Two Equivalent Definitions of Nonconformity Measures -- 2.9.4 The Two Meanings of Conformity in Conformal Prediction -- 2.9.5 Examples of Nonconformity Measures -- 2.9.6 Kernel Methods -- 2.9.7 Burnaev-Wasserman Programme -- 2.9.8 Completeness Results -- 3 Conformal Prediction: Classification and General Case -- 3.1 Criteria of Efficiency for Conformal Prediction -- 3.1.1 Basic Criteria -- 3.1.2 Other Prior Criteria -- 3.1.3 Observed Criteria -- 3.1.4 Idealised Setting -- 3.1.5 Conditionally Proper Criteria of Efficiency -- 3.1.6 Criteria of Efficiency that Are not Conditionally Proper -- 3.1.7 Discussion -- 3.2 More Ways of Computing Nonconformity Scores -- 3.2.1 Nonconformity Scores from Nearest Neighbours -- 3.2.2 Nonconformity Scores from Support Vector Machines -- 3.2.3 Reducing Classification Problems to the Binary Case -- 3.3 Weak Teachers -- 3.3.1 Imperfectly Taught Predictors -- 3.3.2 Weak Validity. 3.3.3 Strong Validity -- 3.3.4 Iterated Logarithm Validity -- 3.3.5 Efficiency -- 3.4 Proofs -- 3.4.1 Proofs for Sect.3.1 -- Proof of Theorem 3.1 -- Proof of Theorem 3.2 -- Proof of Theorem 3.3 -- Proof of Theorem 3.4 -- 3.4.2 Proofs for Sect.3.3 -- Proof of Theorem 3.7, Part I -- Proof of Theorem 3.7, Part II -- Proof of Theorem 3.9 -- Proof of Theorem 3.13 -- 3.5 Context -- 3.5.1 Criteria of Efficiency -- 3.5.2 Examples of Nonconformity Measures -- 3.5.3 Universal Predictors -- 3.5.4 Weak Teachers -- 4 Modifications of Conformal Predictors -- 4.1 The Topics of This Chapter -- 4.2 Inductive Conformal Predictors -- 4.2.1 Inductive Conformal Predictors in the Online Mode -- 4.2.2 Inductive Conformal Predictors in the Offline and Semi-Online Modes -- 4.2.3 The General Scheme for Defining Nonconformity -- 4.2.4 Normalization and Hyper-Parameter Selection -- 4.3 Further Ways of Computing Nonconformity Scores -- 4.3.1 Nonconformity Measures Considered Earlier -- 4.3.2 De-Bayesing -- 4.3.3 Neural Networks and Other Multiclass Scoring Classifiers -- 4.3.4 Decision Trees and Random Forests -- 4.3.5 Binary Scoring Classifiers -- 4.3.6 Logistic Regression -- 4.3.7 Regression and Bootstrap -- 4.3.8 Training Inductive Conformal Predictors -- 4.4 Cross-Conformal Prediction -- 4.4.1 Definition of Cross-Conformal Predictors -- 4.4.2 Computational Efficiency -- 4.4.3 Validity and Lack Thereof for Cross-Conformal Predictors -- 4.5 Transductive Conformal Predictors -- 4.5.1 Definition -- 4.5.2 Validity -- 4.6 Conditional Conformal Predictors -- 4.6.1 One-Off Conditional Conformal Predictors -- 4.6.2 Mondrian Conformal Predictors and Transducers -- 4.6.3 Using Mondrian Conformal Transducers for Prediction -- 4.6.4 Generality of Mondrian Taxonomies -- 4.6.5 Conformal Prediction -- 4.6.6 Inductive Conformal Prediction -- 4.6.7 Label-Conditional Conformal Prediction. 4.6.8 Object-Conditional Conformal Prediction -- 4.7 Training-Conditional Validity -- 4.7.1 Conditional Validity -- 4.7.2 Training-Conditional Validity of Inductive Conformal Predictors -- 4.8 Context -- 4.8.1 Computationally Efficient Hedged Prediction -- 4.8.2 Specific Learning Algorithms and Nonconformity Measures -- 4.8.3 Training Conformal Predictors -- 4.8.4 Cross-Conformal Predictors and Alternative Approaches -- 4.8.5 Transductive Conformal Predictors -- 4.8.6 Conditional Conformal Predictors -- Part II Probabilistic Prediction -- 5 Impossibility Results -- 5.1 Introduction -- 5.2 Diverse Datasets -- 5.3 Impossibility of Estimation of Probabilities -- 5.3.1 Binary Case -- 5.3.2 Multiclass Case -- 5.4 Proof of Theorem 5.2 -- 5.4.1 Probability Estimators and Statistical Tests -- 5.4.2 Complete Statistical Tests -- 5.4.3 Restatement of the Theorem in Terms of Statistical Tests -- 5.4.4 The Proof of the Theorem -- 5.5 Context -- 5.5.1 More Advanced Results -- 5.5.2 Density Estimation, Regression Estimation, and Regression with Deterministic Objects -- 5.5.3 Universal Probabilistic Predictors -- 5.5.4 Algorithmic Randomness Perspective -- 6 Probabilistic Classification: Venn Predictors -- 6.1 Introduction -- 6.2 Venn Predictors -- 6.2.1 Validity of One-Off Venn Predictors -- 6.2.2 Are There Other Ways to Achieve Perfect Calibration? -- 6.2.3 Venn Prediction with Binary Labels and No Objects -- 6.3 A Universal Venn Predictor -- 6.4 Venn-Abers Predictors -- 6.4.1 Full Venn-Abers Predictors -- 6.4.2 Inductive Venn-Abers Predictors -- 6.4.3 Probabilistic Predictors Derived from Venn Predictors -- 6.4.4 Cross Venn-Abers Predictors -- 6.4.5 Merging Multiprobability Predictions into a Probabilistic Prediction -- 6.5 Proofs -- 6.5.1 Proof of Theorem 6.4 -- 6.5.2 PAVA and the Proof of Lemma 6.6 -- 6.5.3 Proof of Proposition 6.7 -- 6.6 Context. 6.6.1 Risk and Uncertainty -- 6.6.2 John Venn, Frequentist Probability, and the Problem of the Reference Class -- 6.6.3 Online Venn Predictors Are Calibrated -- 6.6.4 Isotonic Regression -- 7 Probabilistic Regression: Conformal Predictive Systems -- 7.1 Introduction -- 7.2 Conformal Predictive Systems -- 7.2.1 Basic Definitions -- 7.2.2 Properties of Validity -- 7.2.3 Simplest Example: Monotonic Conformity Measures -- 7.2.4 Criterion of Being a CPS -- 7.3 Least Squares Prediction Machine -- 7.3.1 Three Kinds of LSPM -- 7.3.2 The Studentized LSPM in an Explicit Form -- 7.3.3 The Offline Version of the Studentized LSPM -- 7.3.4 The Ordinary LSPM -- 7.3.5 Asymptotic Efficiency of the LSPM -- 7.3.6 Illustrations -- 7.4 Kernel Ridge Regression Prediction Machine -- 7.4.1 Explicit Forms of the KRRPM -- 7.4.2 Limitation of the KRRPM -- 7.5 Nearest Neighbours Prediction Machine -- 7.6 Universal Conformal Predictive Systems -- 7.6.1 Definitions -- 7.6.2 Universal Conformal Predictive Systems -- 7.6.3 Universal Deterministic Predictive Systems -- 7.7 Applications to Decision Making -- 7.7.1 A Standard Problem of Decision Making -- 7.7.2 Examples -- 7.7.3 Asymptotically Efficient Decision Making -- 7.7.4 Dangers of Overfitting -- 7.8 Computationally Efficient Versions -- 7.8.1 Inductive Conformal Predictive Systems -- 7.8.2 Cross-Conformal Predictive Distributions -- 7.8.3 Practical Aspects -- 7.8.4 Beyond Randomness -- 7.9 Proofs and Calculations -- 7.9.1 Proofs for Sect.7.2 -- Proof of Lemma 7.1 -- Proof of Proposition 7.2 -- 7.9.2 Proofs for Sect.7.3 -- Proof of Proposition 7.4 -- Proof of Proposition 7.5 -- Proof of Proposition 7.6 -- Proof of Proposition 7.7 -- Proof of Proposition 7.8 -- Computations for the Studentized LSPM -- The Ordinary LSPM -- Proof of (7.22) -- 7.9.3 Proof of Theorem 7.16 -- 7.9.4 Proofs for Sect.7.8 -- Proof of Proposition 7.17. Proof of Proposition 7.18. |
| Record Nr. | UNINA-9910635392203321 |
Vovk Vladimir <1960->
|
||
| Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems : Using the Methods of Stochastic Processes / / by M. Reza Rahimi Tabar
| Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems : Using the Methods of Stochastic Processes / / by M. Reza Rahimi Tabar |
| Autore | Rahimi Tabar M. Reza |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (XVIII, 280 p. 41 illus., 22 illus. in color.) |
| Disciplina |
519.2
519.23 |
| Collana | Understanding Complex Systems |
| Soggetto topico |
Processos estocàstics
Sistemes complexos Anàlisi de sèries temporals Statistical physics Dynamics System theory Probabilities Economics Computational complexity Neurosciences Complex Systems Probability Theory and Stochastic Processes Economic Theory/Quantitative Economics/Mathematical Methods Complexity |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-18472-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 2 Introduction to Stochastic Processes -- 3 Kramers-Moyal Expansion and Fokker-Planck Equation -- 4 Continuous Stochastic Process -- 5 The Langevin Equation and Wiener Process -- 6 Stochastic Integration, It^o and Stratonovich Calculi -- 7 Equivalence of Langevin and Fokker-Planck Equations -- 8 Examples of Stochastic Calculus -- 9 Langevin Dynamics in Higher Dimensions -- 10 Levy Noise Driven Langevin Equation and its Time Series-Based Reconstruction -- 11 Stochastic Processes with Jumps and Non-Vanishing Higher-Order Kramers-Moyal Coefficients -- 12 Jump-Diffusion Processes -- 13 Two-Dimensional (Bivariate) Jump-Diffusion Processes -- 14 Numerical Solution of Stochastic Differential Equations: Diffusion and Jump-Diffusion Processes -- 15 The Friedrich-Peinke Approach to Reconstruction of Dynamical Equation for Time Series: Complexity in View of Stochastic Processes -- 16 How To Set Up Stochastic Equations For Real-World Processes: Markov-Einstein Time Scale -- 17 Reconstruction of Stochastic Dynamical Equations: Exemplary Stationary Diffusion and Jump-Diffusion Processes -- 18 The Kramers-Moyal Coefficients of Non-Stationary Time series in The Presence of Microstructure (Measurement) Noise -- 19 Influence of Finite Time Step in Estimating of the Kramers-Moyal Coefficients -- 20 Distinguishing Diffusive and Jumpy Behaviors in Real-World Time Series -- 21 Reconstruction of Langevin and Jump-Diffusion Dynamics From Empirical Uni- and Bivariate Time Series -- 22 Applications and Outlook -- 23 Epileptic Brain Dynamics. |
| Record Nr. | UNINA-9910337876203321 |
Rahimi Tabar M. Reza
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asymptotic properties of permanental sequence : related to birth and death processes and autoregressive Gaussian sequences / / Michael B. Marcus, Jay Rosen
| Asymptotic properties of permanental sequence : related to birth and death processes and autoregressive Gaussian sequences / / Michael B. Marcus, Jay Rosen |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (xi, 114 pages) |
| Disciplina | 519.233 |
| Collana | Springer briefs in probability and mathematical statistics |
| Soggetto topico |
Birth and death processes (Stochastic processes)
Gaussian distribution Processos estocàstics Distribució de Gauss |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-69485-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Intro -- Preface -- Contents -- 1 Introduction -- 1.1 General Results -- 1.2 Applications -- 2 Birth and Death Processes -- 3 Birth and Death Processes with Emigration -- 4 Birth and Death Processes with Emigration Related to First Order Gaussian Autoregressive Sequences -- 5 Markov Chains with Potentials That Are the Covariances of Higher Order Gaussian Autoregressive Sequences -- 6 Relating Permanental Sequences to Gaussian Sequences -- 7 Permanental Sequences with Kernels That Have Uniformly Bounded Row Sums -- 8 Uniform Markov Chains -- Appendix Bibliography -- -- Index. |
| Record Nr. | UNISA-996466396103316 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Asymptotic properties of permanental sequence : related to birth and death processes and autoregressive Gaussian sequences / / Michael B. Marcus, Jay Rosen
| Asymptotic properties of permanental sequence : related to birth and death processes and autoregressive Gaussian sequences / / Michael B. Marcus, Jay Rosen |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (xi, 114 pages) |
| Disciplina | 519.233 |
| Collana | Springer briefs in probability and mathematical statistics |
| Soggetto topico |
Birth and death processes (Stochastic processes)
Gaussian distribution Processos estocàstics Distribució de Gauss |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-69485-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Intro -- Preface -- Contents -- 1 Introduction -- 1.1 General Results -- 1.2 Applications -- 2 Birth and Death Processes -- 3 Birth and Death Processes with Emigration -- 4 Birth and Death Processes with Emigration Related to First Order Gaussian Autoregressive Sequences -- 5 Markov Chains with Potentials That Are the Covariances of Higher Order Gaussian Autoregressive Sequences -- 6 Relating Permanental Sequences to Gaussian Sequences -- 7 Permanental Sequences with Kernels That Have Uniformly Bounded Row Sums -- 8 Uniform Markov Chains -- Appendix Bibliography -- -- Index. |
| Record Nr. | UNINA-9910483199403321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Brownian motion : fluctuations, dynamics, and applications / / Robert M. Mazo
| Brownian motion : fluctuations, dynamics, and applications / / Robert M. Mazo |
| Autore | Mazo Robert M |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Oxford, : Clarendon Press, 2002 |
| Descrizione fisica | 1 online resource (302 p.) |
| Disciplina |
530.42
530.475 |
| Collana |
Oxford science publications
International series of monographs on physics |
| Soggetto topico |
Brownian motion processes
Markov processes Processos de moviment brownià Processos estocàstics Processos de Markov Mecànica estadística Difusió Polímers Fluctuacions (Física) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9786611998790
9781281998798 1281998796 9780191565083 0191565083 9780199556441 019955644X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; 1 Historical Background; 1.1 Robert Brown; 1.2 Between Brown and Einstein; 1.3 Albert Einstein; 1.4 Marian von Smoluchowski; 1.5 Molecular Reality; 1.6 The Scope of this Book; 2 Probability Theory; 2.1 Probability; 2.2 Conditional Probability and Independence; 2.3 Random Variables and Probability Distributions; 2.4 Expectations and Particular Distributions; 2.5 Characteristic Function; Sums of Random Variables; 2.6 Conclusion; 3 Stochastic Processes; 3.1 Stochastic Processes; 3.2 Distribution Functions; 3.3 Classification of Stochastic Processes; 3.4 The Fokker-Planck Equation
3.5 Some Special Processes3.6 Calculus of Stochastic Processes; 3.7 Fourier Analysis of Random Processes; 3.8 White Noise; 3.9 Conclusion; 4 Einstein-Smoluchowski Theory; 4.1 What is Brownian Motion?; 4.2 Smoluchowski's Theory; 4.3 Smoluchowski Theory Continued; 4.4 Einstein's Theory; 4.5 Diffusion Coefficient and Friction Constant; 4.6 The Langevin Theory; 5 Stochastic Differential Equations and Integrals; 5.1 The Langevin Equation Revisited; 5.2 Stochastic Differential Equations; 5.3 Which Rule Should Be Used?; 5.4 Some Examples; 6 Functional Integrals; 6.1 Functional Integrals 6.2 The Wiener Integral6.3 Wiener Measure; 6.4 The Feynman-Kac Formula; 6.5 Feynman Path Integrals; 6.6 Evaluation of Wiener Integrals; 6.7 Applications of Functional Integrals; 7 Some Important Special Cases; 7.1 Several Cases of Interest; 7.2 The Free Particle; 7.3 The Distribution of Displacements; 7.4 The Harmonically Bound Particle; 7.5 A Particle in a Constant Force Field; 7.6 The Uniaxial Rotor; 7.7 An Equation for the Distribution of Displacements; 7.8 Discussion; 8 The Smoluchowski Equation; 8.1 The Kramers-Klein Equation; 8.2 The Smoluchowski Equation 8.3 Elimination of Fast Variables8.4 The Smoluchowski Equation Continued; 8.5 Passage over Potential Barriers; 8.6 Concluding Remarks; 9 Random Walk; 9.1 The Random Walk; 9.2 The One-Dimensional Pearson Walk; 9.3 The Biased Random Walk; 9.4 The Persistent Walk; 9.5 Boundaries and First Passage Times; 9.6 Random Remarks on Random Walks; 10 Statistical Mechanics; 10.1 Molecular Distribution Functions; 10.2 The Liouville Equation; 10.3 Projection Operators-The Zwanzig Equation; 10.4 Projection Operators-The Mori Equation; 10.5 Concluding Remarks 11 Stochastic Equations from a Statistical Mechanical Viewpoint11.1 The Langevin Equation A Heuristic View; 11.2 The Fokker-Planck Equation-A Heuristic View; 11.3 What is Wrong with these Derivations?; 11.4 Eliminating Fast Processes; 11.5 The Distribution Function; 11.6 Discussion; 12 Two Exactly Treatable Models; 12.1 Two Illustrative Examples; 12.2 Brownian Motion in a Dilute Gas; 12.3 Discussion; 12.4 The Particle Bound to a Lattice; 12.5 The One-Dimensional Case; 12.6 Discussion; 13 Brownian Motion and Noise; 13.1 Limits on Measurement; 13.2 Oscillations of a Fiber 13.3 A Pneumatic Example |
| Record Nr. | UNINA-9910960525703321 |
Mazo Robert M
|
||
| Oxford, : Clarendon Press, 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Classical and Spatial Stochastic Processes : With Applications to Biology / / by Rinaldo B. Schinazi
| Classical and Spatial Stochastic Processes : With Applications to Biology / / by Rinaldo B. Schinazi |
| Autore | Schinazi Rinaldo B |
| Edizione | [3rd ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
| Descrizione fisica | 1 online resource (XII, 286 p. 16 illus.) |
| Disciplina | 519.23 |
| Soggetto topico |
Stochastic processes
Probabilities Biomathematics Biomatemàtica Processos estocàstics Stochastic Processes Probability Theory Mathematical and Computational Biology |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 9783031777608 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Finite Markov Chains -- Random walks on finite graphs -- The first appearance of a pattern -- The ruin problem -- The Ehrenfest chain -- The simple symmetric random walk -- Asymmetric and higher dimension random walks -- Discrete time birth and death chains -- Discrete time branching process -- Recurrence on countable spaces -- Stationary distributions on countable spaces -- The Poisson process -- Continuous time birth and death chains -- Continuous time branching processes -- Percolation -- A cellular automaton -- A branching random walk -- The contact process on a homogeneous tree -- Appendix: A little more probability -- Bibliography -- Index. |
| Record Nr. | UNINA-9910919828003321 |
Schinazi Rinaldo B
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Continuous Time Processes for Finance [[electronic resource] ] : Switching, Self-exciting, Fractional and other Recent Dynamics / / by Donatien Hainaut
| Continuous Time Processes for Finance [[electronic resource] ] : Switching, Self-exciting, Fractional and other Recent Dynamics / / by Donatien Hainaut |
| Autore | Hainaut Donatien |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (359 pages) |
| Disciplina | 332.015195 |
| Collana | Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics |
| Soggetto topico |
Probabilities
Social sciences - Mathematics Econometrics Actuarial science Probability Theory Mathematics in Business, Economics and Finance Actuarial Mathematics Quantitative Economics Finances Models matemàtics Estadística matemàtica Processos estocàstics Anàlisi de sèries temporals |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031063619
9783031063602 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Acknowledgements -- Notations -- 1. Switching Models: Properties and Estimation -- 2. Estimation of Continuous Time Processes by Markov Chain Monte Carlo -- 3. Particle Filtering and Estimation -- 4. Modeling of Spillover Effects in Stock Markets -- 5. Non-Markov Models for Contagion and Spillover -- 6. Fractional Brownian Motion -- 7. Gaussian Fields for Asset Prices -- 8. Lévy Interest Rate Models With a Long Memory -- 9. Affine Volterra Processes and Rough Models -- 10. Sub-Diffusion for Illiquid Markets -- 11. A Fractional Dupire Equation for Jump-Diffusions -- References. |
| Record Nr. | UNISA-996485661303316 |
Hainaut Donatien
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Continuous Time Processes for Finance : Switching, Self-exciting, Fractional and other Recent Dynamics / / by Donatien Hainaut
| Continuous Time Processes for Finance : Switching, Self-exciting, Fractional and other Recent Dynamics / / by Donatien Hainaut |
| Autore | Hainaut Donatien |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (359 pages) |
| Disciplina | 332.015195 |
| Collana | Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics |
| Soggetto topico |
Probabilities
Social sciences - Mathematics Econometrics Actuarial science Probability Theory Mathematics in Business, Economics and Finance Actuarial Mathematics Quantitative Economics Finances Models matemàtics Estadística matemàtica Processos estocàstics Anàlisi de sèries temporals |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031063619
9783031063602 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Acknowledgements -- Notations -- 1. Switching Models: Properties and Estimation -- 2. Estimation of Continuous Time Processes by Markov Chain Monte Carlo -- 3. Particle Filtering and Estimation -- 4. Modeling of Spillover Effects in Stock Markets -- 5. Non-Markov Models for Contagion and Spillover -- 6. Fractional Brownian Motion -- 7. Gaussian Fields for Asset Prices -- 8. Lévy Interest Rate Models With a Long Memory -- 9. Affine Volterra Processes and Rough Models -- 10. Sub-Diffusion for Illiquid Markets -- 11. A Fractional Dupire Equation for Jump-Diffusions -- References. |
| Record Nr. | UNINA-9910590077503321 |
Hainaut Donatien
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control and system theory of discrete-time stochastic systems / / Jan H. van Schuppen
| Control and system theory of discrete-time stochastic systems / / Jan H. van Schuppen |
| Autore | Schuppen J. H. van |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (940 pages) |
| Disciplina | 629.8312 |
| Collana | Communications and Control Engineering |
| Soggetto topico |
Stochastic control theory
Stochastic systems Discrete-time systems Teoria de control Processos estocàstics Sistemes estocàstics Sistemes de temps discret |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-66952-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910495184703321 |
Schuppen J. H. van
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||