Vai al contenuto principale della pagina
| Autore: |
Chen Zhen-Qing
|
| Titolo: |
Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms
|
| Pubblicazione: | Providence : , : American Mathematical Society, , 2021 |
| ©2021 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (102 pages) |
| Disciplina: | 519.2/33 |
| Soggetto topico: | Kernel functions |
| Probability theory and stochastic processes -- Markov processes -- Transition functions, generators and resolvents | |
| Partial differential equations -- Parabolic equations and systems -- Heat kernel | |
| Probability theory and stochastic processes -- Markov processes -- Jump processes | |
| Potential theory -- Other generalizations -- Dirichlet spaces | |
| Probability theory and stochastic processes -- Markov processes -- Continuous-time Markov processes on general state spaces | |
| Probability theory and stochastic processes -- Markov processes -- Probabilistic potential theory | |
| Classificazione: | 60J3535K0860J7531C2560J2560J45 |
| Altri autori: |
KumagaiTakashi
WangJian <1979->
|
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Cover -- Title page -- Chapter 1. Introduction and Main Results -- 1. Setting -- 2. Heat kernel -- Chapter 2. Preliminaries -- Chapter 3. Implications of heat kernel estimates -- 1. \UHK( )+(\sE,\sF) ⟹\J_{ ,≤}, and \HK( )⟹\Jᵩ -- 2. \UHK( ) (\sE,\sF) ⟹\SCSJ( ) -- Chapter 4. Implications of \CSJ( ) and \J_{ ,≥} -- 1. \J_{ ,≥}⟹\FK( ) -- 2. Caccioppoli and ¹-mean value inequalities -- 3. \FK( )+\J_{ ,≤}+\CSJ( )⟹\Eᵩ -- 4. \FK( )+\Eᵩ+\J_{ ,≤}⟹\UHKD( ) -- Chapter 5. Consequences of condition \Jᵩ and mean exit time condition \Eᵩ -- 1. \UHKD( )+\J_{ ,≤}+\Eᵩ⟹\UHK( ), \Jᵩ+\Eᵩ⟹\UHK( ) -- 2. \Jᵩ+\Eᵩ⟹\LHK( ) -- Chapter 6. Applications and Examples -- 1. Applications -- 2. Counterexample -- Chapter 7. Appendix -- 1. Lévy system formula -- 2. Meyer's decomposition -- 3. Some results related to \FK( ). -- 4. Some results related to (Dirichlet) heat kernel -- 5. \SCSJ( )+\J_{ ,≤}⟹(\sE,\sF) is conservative -- Acknowledgment -- Bibliography -- Back Cover. |
| Sommario/riassunto: | "In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for -stable-like processes even with 2 when the underlying spaces have walk dimensions larger than 2, which has been one of the major open problems in this area"-- |
| Titolo autorizzato: | Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms ![]() |
| ISBN: | 9781470466381 |
| 1470466384 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910974261603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |