top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Active Inference : 5th International Workshop, IWAI 2024, Oxford, UK, September 9–11, 2024, Revised Selected Papers / / edited by Christopher L. Buckley, Daniela Cialfi, Pablo Lanillos, Riddhi J. Pitliya, Noor Sajid, Hideaki Shimazaki, Tim Verbelen, Martijn Wisse
Active Inference : 5th International Workshop, IWAI 2024, Oxford, UK, September 9–11, 2024, Revised Selected Papers / / edited by Christopher L. Buckley, Daniela Cialfi, Pablo Lanillos, Riddhi J. Pitliya, Noor Sajid, Hideaki Shimazaki, Tim Verbelen, Martijn Wisse
Autore Buckley Christopher L
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (276 pages)
Disciplina 006.3
Altri autori (Persone) CialfiDaniela
LanillosPablo
PitliyaRiddhi J
SajidNoor
ShimazakiHideaki
VerbelenTim
WisseMartijn
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computer science - Mathematics
Mathematical statistics
Computer networks
Application software
Computers, Special purpose
Software engineering
Artificial Intelligence
Probability and Statistics in Computer Science
Computer Communication Networks
Computer and Information Systems Applications
Special Purpose and Application-Based Systems
Software Engineering
ISBN 9783031771385
3031771389
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Modeling behaviour and emotions. -- Towards Interaction Design with Active Inference: A Case Study on Noisy Ordinal Selection. -- Modelling Agency Perception in Depression Using Active Inference: A Multi-Agent Behavioural Study. -- Free Energy in a Circumplex Model of Emotions. -- Hybrid continuous-discrete systems. -- Learning in Hybrid Active Inference Models. -- Learning and embodied decisions in active inference. -- Structure learning. -- Online Structure Learning with Dirichlet Processes through Message Passing. -- Exploring and Learning Structure: Active Inference Approach in Navigational Agents. -- Multi-agent systems. -- Belief sharing: a blessing or a curse. -- Coupled autoregressive active inference agents for control of multi-joint dynamical systems. -- Reactive Environments for Active Inference Agents with RxEnvironments. -- Epistemic sampling. -- Selection of Exploratory or Goal-Directed Behavior by a Physical Robot Implementing Deep Active Inference. -- Epistemic Value Anticipation into the Deep Active Inference Model. -- Robot control. -- Planning to avoid ambiguous states through Gaussian approximations to non-linear sensors in active inference agents. -- Message Passing-based Bayesian Control of a Cart-Pole System. -- Reducing Intuitive-Physics Prediction Error through Playing. -- Sustainability and contextuality. -- Modeling Sustainability under Active Inference through resource management. -- Contextuality, Cognitive engagement, and Active Inference.
Record Nr. UNINA-9910983347603321
Buckley Christopher L  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Active Inference : 4th International Workshop, IWAI 2023, Ghent, Belgium, September 13–15, 2023, Revised Selected Papers / / edited by Christopher L. Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Noor Sajid, Hideaki Shimazaki, Tim Verbelen, Martijn Wisse
Active Inference : 4th International Workshop, IWAI 2023, Ghent, Belgium, September 13–15, 2023, Revised Selected Papers / / edited by Christopher L. Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Noor Sajid, Hideaki Shimazaki, Tim Verbelen, Martijn Wisse
Autore Buckley Christopher L
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (293 pages)
Disciplina 006.3
Altri autori (Persone) CialfiDaniela
LanillosPablo
RamsteadMaxwell
SajidNoor
ShimazakiHideaki
VerbelenTim
WisseMartijn
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computer science - Mathematics
Mathematical statistics
Computer networks
Application software
Computers, Special purpose
Software engineering
Artificial Intelligence
Probability and Statistics in Computer Science
Computer Communication Networks
Computer and Information Systems Applications
Special Purpose and Application-Based Systems
Software Engineering
ISBN 9783031479588
3031479580
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Active Inference and Robotics -- Contextual Qualitative Deterministic Models for Self-Learning Embodied Agents -- Dynamical Perception-Action Loop Formation with Developmental Embodiment for Hierarchical Active Inference -- Decision-making and Control -- Towards Metacognitive Robot Decision Making for Tool Selection -- Understanding Tool Discovery and Tool Innovation Using Active Inference -- Efficient Motor Learning Through Action-perception Cycles in Deep Kinematic Inference -- Active Inference and Psychology -- Towards Understanding Persons and their Personalities with Cybernetic Big 5 Theory and the Free Energy Principle and Active Inference (FEP-AI) Framework -- On Embedded Normativity - An Active Inference Account of Agency Beyond Flesh -- A Model of Agential Learning Using Active Inference -- From Theory to Implementation -- Designing Explainable Artificial Intelligence with Active Inference: A Framework for Transparent Introspection and Decision-making -- An Analytical Model of Active Inference in the Iterated Prisoner’s Dilemma -- Toward Design of Synthetic Active Inference Agents by Mere Mortals -- Learning Representations for Active Inference -- Exploring Action-Centric Representations Through the Lens of Rate-Distortion Theory -- Integrating Cognitive Map Learning and Active Inference for Planning in Ambiguous Environments -- Relative Representations for Cognitive Graphs -- Theory of Learning and Inference -- Active Inference in Hebbian Learning Networks -- Learning One Abstract Bit at a Time Through Self-Invented Experiments Encoded as Neural Networks -- Probabilistic Majorization of Partially Observable Markov Decision Processes.
Record Nr. UNINA-9910765494503321
Buckley Christopher L  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Active Inference : Third International Workshop, IWAI 2022, Grenoble, France, September 19, 2022, Revised Selected Papers / / edited by Christopher L. Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Noor Sajid, Hideaki Shimazaki, Tim Verbelen
Active Inference : Third International Workshop, IWAI 2022, Grenoble, France, September 19, 2022, Revised Selected Papers / / edited by Christopher L. Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Noor Sajid, Hideaki Shimazaki, Tim Verbelen
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (383 pages)
Disciplina 006.3
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computer science - Mathematics
Mathematical statistics
Computer networks
Application software
Computers, Special purpose
Software engineering
Artificial Intelligence
Probability and Statistics in Computer Science
Computer Communication Networks
Computer and Information Systems Applications
Special Purpose and Application-Based Systems
Software Engineering
ISBN 9783031287190
3031287193
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preventing Deterioration of Classification Accuracy in Predictive Coding Networks -- Interpreting systems as solving POMDPs: a step towards a formal understanding of agency -- Disentangling Shape and Pose for Object-Centric Deep Active Inference Models -- Object-based Active Inference -- Knitting a Markov blanket is hard when you are out-of-equilibrium: two examples in canonical nonequilibrium models -- Spin glass systems as collective active inference -- Mapping Husserlian phenomenology onto active inference -- The Role of Valence and Meta-awareness in Mirror Self-recognition Using Hierarchical Active Inference -- World model learning from demonstrations with active inference: application to driving behavior -- Active Blockference: cadCAD with Active Inference for cognitive systems modeling -- Active Inference Successor Representations -- Learning Policies for Continuous Control via Transition Models -- Attachment Theory in anActive Inference Framework: How Does Our Inner Model Take Shape? -- Capsule Networks as Generative Models -- Home run: finding your way home by imagining trajectories -- A Novel Model for Novelty: Modeling the Emergence of Innovation from Cumulative Culture -- Active Inference and Psychology of Expectations: A study of formalizing ViolEx -- AIXI, FEP-AI, and integrated world models: Towards a unified understanding of intelligence and consciousness -- Intention Modulation for Multi-Step Tasks in Continuous Time Active Inference -- Learning Generative Models for Active Inference using Tensor Networks -- A Worked Example of the Bayesian Mechanics of Classical Objects -- A message passing perspective on planning under Active Inference -- Efficient search of active inference policy spaces using k-means -- Value Cores for Inner and Outer Alignment: Simulating Personality Formation via Iterated Policy Selection and Preference Learning with Self-World Modeling Active Inference Agent -- Deriving time-averaged active inference from control principles.
Record Nr. UNINA-9910683344203321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adolescent Brain Cognitive Development Neurocognitive Prediction [[electronic resource] ] : First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, Marius George Linguraru
Adolescent Brain Cognitive Development Neurocognitive Prediction [[electronic resource] ] : First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, Marius George Linguraru
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XI, 188 p. 57 illus., 49 illus. in color.)
Disciplina 616.8047548
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Machine learning
Mathematical statistics
Data mining
Image Processing and Computer Vision
Machine Learning
Probability and Statistics in Computer Science
Data Mining and Knowledge Discovery
ISBN 3-030-31901-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Combined Deep Learning-Gradient Boosting Machine Framework for Fluid Intelligence Prediction -- Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet -- Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction -- Surface-based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019 -- Prediction of Fluid Intelligence From T1-Weighted Magnetic Resonance Images -- Ensemble of SVM, Random-Forest and the BSWiMS Method to Predict and Describe Structural Associations with Fluid Intelligence Scores from T1-Weighed MRI -- Predicting intelligence based on cortical WM/GM contrast, cortical thickness and volumetry -- Predict Fluid Intelligence of Adolescent Using Ensemble Learning -- Predicting Fluid Intelligence in Adolescent Brain MRI Data: An Ensemble Approach -- Predicting Fluid intelligence from structural MRI using Random Forest regression -- Nu Support Vector Machine in Prediction of Fluid Intelligence Using MRI Data -- An AutoML Approach for the Prediction of Fluid Intelligence From MRI-Derived Features -- Predicting Fluid Intelligence from MRI images with Encoder-decoder Regularization -- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology -- Ensemble Modeling of Neurocognitive Performance Using MRI-derived Brain Structure Volumes -- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression -- Predicting fluid intelligence using anatomical measures within functionally defined brain networks -- Sex differences in predicting fluid intelligence of adolescent brain from T1-weighted MRIs -- Ensemble of 3D CNN regressors with data fusion for fluid intelligence prediction -- Adolescent fluid intelligence prediction from regional brain volumes and cortical curvatures using BlockPC-XGBoost -- Cortical and Subcortical Contributions to Predicting Intelligence using 3D ConvNets.
Record Nr. UNISA-996466429903316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Adolescent Brain Cognitive Development Neurocognitive Prediction : First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, Marius George Linguraru
Adolescent Brain Cognitive Development Neurocognitive Prediction : First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, Marius George Linguraru
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XI, 188 p. 57 illus., 49 illus. in color.)
Disciplina 616.8047548
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Machine learning
Computer science - Mathematics
Mathematical statistics
Data mining
Computer Vision
Machine Learning
Probability and Statistics in Computer Science
Data Mining and Knowledge Discovery
ISBN 3-030-31901-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Combined Deep Learning-Gradient Boosting Machine Framework for Fluid Intelligence Prediction -- Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet -- Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction -- Surface-based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019 -- Prediction of Fluid Intelligence From T1-Weighted Magnetic Resonance Images -- Ensemble of SVM, Random-Forest and the BSWiMS Method to Predict and Describe Structural Associations with Fluid Intelligence Scores from T1-Weighed MRI -- Predicting intelligence based on cortical WM/GM contrast, cortical thickness and volumetry -- Predict Fluid Intelligence of Adolescent Using Ensemble Learning -- Predicting Fluid Intelligence in Adolescent Brain MRI Data: An Ensemble Approach -- Predicting Fluid intelligence from structural MRI using Random Forest regression -- Nu Support Vector Machinein Prediction of Fluid Intelligence Using MRI Data -- An AutoML Approach for the Prediction of Fluid Intelligence From MRI-Derived Features -- Predicting Fluid Intelligence from MRI images with Encoder-decoder Regularization -- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology -- Ensemble Modeling of Neurocognitive Performance Using MRI-derived Brain Structure Volumes -- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression -- Predicting fluid intelligence using anatomical measures within functionally defined brain networks -- Sex differences in predicting fluid intelligence of adolescent brain from T1-weighted MRIs -- Ensemble of 3D CNN regressors with data fusion for fluid intelligence prediction -- Adolescent fluid intelligence prediction from regional brain volumes and cortical curvatures using BlockPC-XGBoost -- Cortical and Subcortical Contributions to Predicting Intelligence using 3D ConvNets.
Record Nr. UNINA-9910349275503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Methodologies for Bayesian Networks [[electronic resource] ] : Second International Workshop, AMBN 2015, Yokohama, Japan, November 16-18, 2015. Proceedings / / edited by Joe Suzuki, Maomi Ueno
Advanced Methodologies for Bayesian Networks [[electronic resource] ] : Second International Workshop, AMBN 2015, Yokohama, Japan, November 16-18, 2015. Proceedings / / edited by Joe Suzuki, Maomi Ueno
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XVIII, 265 p. 102 illus. in color.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Mathematical statistics
Computers
Database management
Application software
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Probability and Statistics in Computer Science
Computation by Abstract Devices
Database Management
Information Systems Applications (incl. Internet)
Intel·ligència artificial
Estadística bayesiana
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-319-28379-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Effectiveness of graphical models including modeling. Reasoning, model selection -- Logic-probability relations -- Causality. Applying graphical models in real world settings -- Scalability -- Incremental learning.-Parallelization.
Record Nr. UNISA-996466369303316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Methodologies for Bayesian Networks : Second International Workshop, AMBN 2015, Yokohama, Japan, November 16-18, 2015. Proceedings / / edited by Joe Suzuki, Maomi Ueno
Advanced Methodologies for Bayesian Networks : Second International Workshop, AMBN 2015, Yokohama, Japan, November 16-18, 2015. Proceedings / / edited by Joe Suzuki, Maomi Ueno
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XVIII, 265 p. 102 illus. in color.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Mathematical statistics
Computers
Database management
Application software
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Probability and Statistics in Computer Science
Computation by Abstract Devices
Database Management
Information Systems Applications (incl. Internet)
Intel·ligència artificial
Estadística bayesiana
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-319-28379-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Effectiveness of graphical models including modeling. Reasoning, model selection -- Logic-probability relations -- Causality. Applying graphical models in real world settings -- Scalability -- Incremental learning.-Parallelization.
Record Nr. UNINA-9910484136303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Object-Oriented Programming in R : Statistical Programming for Data Science, Analysis and Finance / / by Thomas Mailund
Advanced Object-Oriented Programming in R : Statistical Programming for Data Science, Analysis and Finance / / by Thomas Mailund
Autore Mailund Thomas
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017
Descrizione fisica 1 online resource (XV, 110 p. 10 illus.)
Disciplina 005.11
Soggetto topico Computer programming
Programming languages (Electronic computers)
Mathematical statistics
R (Computer program language)
Programming Techniques
Programming Languages, Compilers, Interpreters
Probability and Statistics in Computer Science
ISBN 9781484229194
1484229193
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Classes and Generic Functions -- 2. Class Hierarchies -- 3. Implementation Reuse -- 4. Statistical Models -- 5. Operator Overloading -- 6. S4 Classes -- 7. R6 Classes -- 8. Conclusions.
Record Nr. UNINA-9910254567203321
Mailund Thomas  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced R : data programming and the cloud / / by Matt Wiley, Joshua F. Wiley
Advanced R : data programming and the cloud / / by Matt Wiley, Joshua F. Wiley
Autore Wiley Matt
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2016
Descrizione fisica 1 online resource (XIX, 279 p. 77 illus., 40 illus. in color.)
Disciplina 005.13
Soggetto topico Programming languages (Electronic computers)
Mathematical statistics
Statistics
Computer programming
R (Computer program language)
Programming Languages, Compilers, Interpreters
Probability and Statistics in Computer Science
Statistics and Computing/Statistics Programs
Programming Techniques
ISBN 9781484220771
1484220773
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.Programming Basics -- 2.Programming Utilities -- 3.Loops, flow control, and *apply functions -- 4.Writing Functions -- 5.Writing Classes and Methods -- 6.Writing a Package -- 7.Data Management using data.table -- 8.Data Munging With data.table -- 9.Other Tools for Data Management -- 10.Reading Big Data(bases) -- 11.Getting a Cloud -- 12.Ubuntu for Windows Users -- 13.Every Cloud has a Shiny lining -- 14.Shiny Dashboard Sampler -- 15.Dynamic Reports and the Cloud -- References.
Record Nr. UNINA-9910151576903321
Wiley Matt  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced R 4 Data Programming and the Cloud : Using PostgreSQL, AWS, and Shiny / / by Matt Wiley, Joshua F. Wiley
Advanced R 4 Data Programming and the Cloud : Using PostgreSQL, AWS, and Shiny / / by Matt Wiley, Joshua F. Wiley
Autore Wiley Matt
Edizione [2nd ed. 2020.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020
Descrizione fisica 1 online resource (XIII, 433 p. 65 illus., 9 illus. in color.)
Disciplina 005.133
Soggetto topico Programming languages (Electronic computers)
Mathematical statistics
Statistics
Computer programming
R (Computer program language)
Programming Languages, Compilers, Interpreters
Probability and Statistics in Computer Science
Statistics and Computing/Statistics Programs
Programming Techniques
ISBN 9781484259733
1484259734
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Programming Basics -- 2. Programming Utilities -- 3. Programming Automation -- 4. Writing Functions -- 5. Writing Classes and Methods -- 6. Writing Packages -- 7. Introduction to data.table -- 8. Advanced data.table -- 9. Other Data Management Packages -- 10. Reading Big Data -- 11. Getting Your Cloud -- 12. Cloud Ubuntu for Windows Users -- 13. Every Cloud has a Shiny lining -- 14. Shiny Dashboard Sampler -- 15. Dynamic Reports and the Cloud -- Bibliography.
Altri titoli varianti Advanced R four data programming and the cloud
Record Nr. UNINA-9910411930303321
Wiley Matt  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui