The 2018 Yearbook of the Digital Ethics Lab / / edited by Carl Öhman, David Watson
| The 2018 Yearbook of the Digital Ethics Lab / / edited by Carl Öhman, David Watson |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (223 pages) : illustrations |
| Disciplina |
174.96
175 |
| Collana | Digital Ethics Lab Yearbook |
| Soggetto topico |
Philosophy
Technology—Sociological aspects Computer security Ethics Computer crimes Philosophy of Technology Science and Technology Studies Privacy Cybercrime |
| ISBN | 3-030-17152-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction: Digital Ethics: Goals and Approach (Carl Öhman, David Watson, Mariarosaria Taddeo, Luciano Floridi) -- Chapter 1. Digital Ethics: Its Nature and Scope (Luciano Floridi, Corinne Cath, Mariarosaria Taddeo) -- Chapter 2. Do We Need a Critical Evaluation of the Role of Mathematics in Data Science? (Patrick Allo) -- Chapter 3. Using Data From Git and GitHub in Ethnographies of Software Development (Andrew Turner) -- Chapter 4. The Price of Discovery: A Model of Scientific Research Markets (David Watson) -- Chapter 5. Projecting AI-Crime: A Review of Plausible Threats (Thomas King) -- Chapter 6. The Challenges of Cyber Deterrence (Mariarosaria Taddeo) -- Chapter 7. Internet Governance and Human Rights: A Literature Review (Corinne Cath) -- Chapter 8. Privacy Risks and Responses in the Digital Age (Josh Cowls) -- Chapter 9. Digitalised Legal Information: Towards a New Publication Model (Václav Janeček) -- Chapter 10. From Bones to Bytes: A New Chapter in the History of Death (Carl Öhman) -- Chapter 11. The Green and the Blue — Naïve Ideas to Improve Politics in a Mature Information Society (Luciano FLoridi). |
| Record Nr. | UNINA-9910349541003321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advance Metadata Fair : The Retention and Disclosure of 4G, 5G and Social Media Location Information, for Law Enforcement and National Security, and the Impact on Privacy in Australia / / by Stanley Shanapinda
| Advance Metadata Fair : The Retention and Disclosure of 4G, 5G and Social Media Location Information, for Law Enforcement and National Security, and the Impact on Privacy in Australia / / by Stanley Shanapinda |
| Autore | Shanapinda Stanley |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (231 pages) |
| Disciplina | 910.285 |
| Collana | Law, Governance and Technology Series |
| Soggetto topico |
Information technology—Law and legislation
Mass media—Law and legislation Computers—Law and legislation Data protection—Law and legislation IT Law, Media Law, Intellectual Property Legal Aspects of Computing Privacy |
| ISBN | 3-030-50255-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The Dual Nature of Privacy – As a Target and as a Treasure to Protect: An Introduction -- The Legal Framework to Retain Location Information -- The Legal Framework to Collect and Disclose Location Information -- The Legal Framework to Retain and Disclose the Contents of a Communication -- The Powers of the Agencies to Collect and Use Location Information -- Location Information as Personal Information -- Limits to the Powers of the AFP and ASIO to Collect and Use Location Information -- External Oversight Exercised Over the Powers of the Agencies -- The IP-Mediated LTE Network versus the Law -- Proposing the Judicial Location Information Warrant. |
| Record Nr. | UNINA-9910416138603321 |
Shanapinda Stanley
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Applications of Blockchain Technology / / edited by Shiho Kim, Ganesh Chandra Deka
| Advanced Applications of Blockchain Technology / / edited by Shiho Kim, Ganesh Chandra Deka |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (X, 278 p. 93 illus., 58 illus. in color.) |
| Disciplina | 006.3 |
| Collana | Studies in Big Data |
| Soggetto topico |
Computational intelligence
Computer security Big data Computational Intelligence Systems and Data Security Big Data Privacy |
| ISBN | 981-13-8775-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction to Blockchain Technology and IoT -- IoT, AI, and Blockchain: Implementation perspectives -- Blockchain Technologies for IoT -- Blockchain Technology Use Cases -- Blockchain meets CyberSecurity: Security, Privacy, Challenges and Opportunity -- On the Role of Blockchain Technology in Internet of Things -- Blockchain of Things (BCoT): The Fusion of Blockchain and IoT Technologies -- Blockchain Architecture -- Authenticating IoT Devices with Blockchain -- Security & Privacy Issues of Block chain Technology -- Supply Chain Management in Agriculture Using Blockchain and IoT -- Blockchain Technologies and Artificial Intelligence -- Blockchain Hands on for Developing Genesis Block. |
| Record Nr. | UNINA-9910484022203321 |
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
AI for Social Sciences : With an Introduction to Security, Privacy, Ethics and Society Impacts / / by Vicenç Torra
| AI for Social Sciences : With an Introduction to Security, Privacy, Ethics and Society Impacts / / by Vicenç Torra |
| Autore | Torra Vicenç |
| Edizione | [1st ed. 2026.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026 |
| Descrizione fisica | 1 online resource (XV, 176 p. 63 illus., 15 illus. in color.) |
| Disciplina | 006.3 |
| Soggetto topico |
Artificial intelligence
Expert systems (Computer science) Natural language processing (Computer science) Social sciences - Data processing Data protection - Law and legislation Multiagent systems Artificial Intelligence Knowledge Based Systems Natural Language Processing (NLP) Computer Application in Social and Behavioral Sciences Privacy Multiagent Systems |
| ISBN | 3-032-07216-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- 2. Artificial intelligence and intelligent systems -- 3. Decision-support systems -- 4. Machine learning at work. Data-science -- 5. Security and privacy -- 6. Applications in social sciences -- 7. Ethics and AI. |
| Record Nr. | UNINA-9911058016903321 |
Torra Vicenç
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Aktuelle Entwicklungen des Rechtsrahmens der Cybersicherheit und Privatheit : Sammelband zur ATHENE-Konferenz 2025 in Darmstadt / / herausgegeben von Annika Selzer
| Aktuelle Entwicklungen des Rechtsrahmens der Cybersicherheit und Privatheit : Sammelband zur ATHENE-Konferenz 2025 in Darmstadt / / herausgegeben von Annika Selzer |
| Edizione | [1st ed. 2026.] |
| Pubbl/distr/stampa | Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Vieweg, , 2026 |
| Descrizione fisica | 1 online resource (XI, 155 S. 6 Abb., 1 Abb. in Farbe.) |
| Disciplina | 005.8 |
| Collana | Rechtsrahmen der Cybersicherheit und Privatheit |
| Soggetto topico |
Data protection
Data protection - Law and legislation Data and Information Security Privacy |
| ISBN | 3-658-49640-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto | Vorwort -- Datenschutz in Metaversen -- Von der Theorie zur Umsetzung: Die Datenschutzvorsorge im Planspiel und der Weg zur standardisierten Dokumentation -- Same same but different? Der risikobasierte Ansatz nach DSGVO und CRA im Vergleich -- KI in der Personalauswahl: Rechtliche Anforderungen vereinen -- KI-generierte, Verarbeitungskontext-spezifische – Mitarbeiterschulungen zum Datenschutz als Ausprägung der angemessenen Umsetzung datenschutzrechtlicher Pflichten -- Cybersicherheitsforschung im Spannungsfeld des Strafrechts – Überblick über bisherige Rechtsprechung zu einschlägigen strafrechtlichen Normen -- Globale Tendenzen in nationalen Cybersicherheitsstrategien: Ein Leitfaden für die Strategieentwicklung -- Einordnung wesentlicher und wichtiger Einrichtungen nach der NIS-2-Richtlinie - eine Betrachtung mit Schwerpunkt auf dem Energiesektor -- Ansätze zur Unterstützung eines hohen Cybersicherheitsniveaus im Energiesektor: Teilautomatisierte Verifizierung von Vorgaben des (geplanten) NIS-2-Umsetzungs- und Cybersicherheitsstärkungsgesetzes. |
| Record Nr. | UNINA-9911046008203321 |
| Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Vieweg, , 2026 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Algorithms for Data and Computation Privacy / / by Alex X. Liu, Rui Li
| Algorithms for Data and Computation Privacy / / by Alex X. Liu, Rui Li |
| Autore | Liu Alex X. |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
| Descrizione fisica | 1 online resource (XVIII, 404 p. 163 illus., 130 illus. in color.) |
| Disciplina | 005.8 |
| Soggetto topico |
Data protection - Law and legislation
Computer networks Information storage and retrieval systems Computer networks - Security measures Data protection Privacy Computer Communication Networks Information Storage and Retrieval Mobile and Network Security Data and Information Security |
| ISBN | 3-030-58896-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Privacy Preserving Queries -- Range Queries over Encrypted Data -- Fast and Scalable Range and Keyword Query Processing over Encrypted Data with Provable Adaptive Security -- Nearest Neighbor Queries over Encrypted Data -- K-nearest Neighbor Queries over Encrypted Data -- Top-k Queries for Two-tiered Sensor Networks -- Part II Privacy Preserving Computation -- Collaborative Enforcement of Firewall Policies in Virtual Private Networks -- Privacy Preserving Quantification of Cross-Domain Network Reachability -- Cross-Domain Privacy-Preserving Cooperative Firewall Optimization -- Privacy Preserving String Matching for Cloud Computing -- Privacy Preserving Information Hub Identification in Social Networks -- Part III Differential Privacy -- Publishing Social Network Data with Privacy Guarantees -- Predictable Privacy-Preserving Mobile Crowd Sensing -- Differentially Private and Budget Limited Bandit Learning over Matroids -- Part IV Breaking Privacy -- Breaching Privacy in Encrypted Instant Messaging Networks. |
| Record Nr. | UNINA-9910483392303321 |
Liu Alex X.
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Android Malware Detection and Adversarial Methods / / by Weina Niu, Xiaosong Zhang, Ran Yan, Jiacheng Gong
| Android Malware Detection and Adversarial Methods / / by Weina Niu, Xiaosong Zhang, Ran Yan, Jiacheng Gong |
| Autore | Niu Weina |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (xiv, 190 pages) : illustrations |
| Disciplina | 005.8 |
| Altri autori (Persone) |
ZhangXiaosong <1968->
YanRan GongJiacheng |
| Soggetto topico |
Computer networks - Security measures
Data protection Data protection - Law and legislation Machine learning Blockchains (Databases) Mobile and Network Security Data and Information Security Security Services Privacy Machine Learning Blockchain Cadena de blocs (Bases de dades) Protecció de dades Aprenentatge automàtic |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-9714-59-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I The Overview of Android Malware Detection -- 1 Introduction of Android Malware Detection -- 1.1 Android Malware Family -- 1.1.1 Trojan Horse -- 1.1.2 Viruses -- 1.1.3 The Back Door -- 1.1.4 Zombies -- 1.1.5 Espionage -- 1.1.6 Intimidation -- 1.1.7 Extortion -- 1.1.8 Advertising -- 1.1.9 Tracking -- 1.2 History of Android Malware Detection -- 1.3 Android Malware Detection Overview -- 1.4 Challenges and Apps of Android Malware Detection -- 1.5 Domestic and International Android Malware Detection -- 1.5.1 Android Malware Detection Method Based on Static Analysis -- 1.5.2 Android Malware Detection Method Based on Dynamic Analysis -- 1.5.3 Android Malware Detection Method Based on Hybrid Analysis -- 1.6 Chapter Summary -- References -- Part II The General Android Malware Detection Method -- 2 Feature Code Based Android Malware Detection Method -- 2.1 Detection Based on Traditional Feature Codes -- 2.1.1 Introduction -- 2.1.2 DroidAnalyzer: A Case Study in Android Malware Analysis -- 2.1.2.1 Suspicious Android APIs and Keywords 3 -- 2.1.2.2 Main Algorithm of DroidAnalyzer -- 2.2 Detection Based on Semantic Feature Codes -- 2.2.1 Introduction -- 2.2.2 DroidNative: A Case Study in Android Malware Analysis -- 2.2.2.1 Static Analysis in DroidNative -- 2.2.2.2 System Design and Implementation -- 2.3 Chapter Summary -- References -- 3 Behavior-Based Detection Method for Android Malware -- 3.1 Privacy Disclosure -- 3.2 Permission Escalation -- 3.2.1 Permission Escalation Method -- 3.2.2 Authorization Based on Configuration Files -- 3.2.3 Code Analysis -- 3.2.4 Taint Analysis -- 3.3 Machine Learning Technology and Malicious Behavior of Android Software -- 3.4 Chapter Summary -- References -- 4 AI-Based Android Malware Detection Methods.
4.1 Detection Based on Permissions, APIs, and Components -- 4.1.1 Permissions in Android System -- 4.1.1.1 Permissions in Android System -- 4.1.1.2 Overview of Permission-Based Detection Methods -- 4.1.2 Detection Based on API -- 4.1.3 Component-Based Detection -- 4.1.3.1 Components of an Application -- 4.1.3.2 Overview of Component-Based Detection Methods -- 4.1.4 Specific Case: Drebin -- 4.1.4.1 Static Analysis of Applications -- 4.1.4.2 Embedding in Vector Space -- 4.1.4.3 Learning-Based Detection -- 4.1.4.4 Explanation -- 4.2 Detection Anchored in Dynamic Runtime Features -- 4.2.1 Dynamic Analysis and Runtime Features -- 4.2.2 Overview of Detection Methods Based on Dynamic Runtime Features -- 4.2.3 Specific Case: EnDroid -- 4.2.3.1 Training Phase -- 4.2.3.2 Detection Phase -- 4.3 Detection Through Semantic Code Analysis -- 4.3.1 Dalvik Bytecode -- 4.3.2 Overview of Code Semantic-Based Detection Methods -- 4.3.3 Specific Case: MviiDroid -- 4.3.3.1 Static Analysis Phase -- 4.3.3.2 Feature Generation Phase -- 4.3.3.3 Model Training Phase -- 4.4 Detection via Image Analysis -- 4.4.1 Overview of Image-Based Detection Methods -- 4.4.2 Specific Case: R2-D2 -- 4.5 Detection Through Graph Analysis -- 4.5.1 Overview of Homogeneous Graph-Based Detection Methods -- 4.5.2 Overview of Heterogeneous Graph-Based Detection Methods -- 4.5.3 Case Study: HAWK -- 4.5.3.1 Feature Engineering -- 4.5.3.2 Constructing Heterogeneous Information Network (HIN) -- 4.5.3.3 Constructing Application Graph from HIN -- 4.6 Chapter Summary -- References -- Part III The Adversarial Method for Android Malware Detection -- 5 Static Adversarial Method -- 5.1 Static Obfuscation -- 5.1.1 Code Obfuscation -- 5.1.2 Resource Obfuscation -- 5.1.3 Manifest File Obfuscation -- 5.1.4 Control Flow Obfuscation -- 5.2 Common APK Static Obfuscation Tools -- 5.2.1 Obfuscapk -- 5.2.2 ProGuard. 5.2.3 DexGuard -- 5.2.4 Allatori -- 5.2.5 DashO -- 5.2.6 Bangcle -- 5.2.7 Arxan -- 5.2.8 Comparative Analysis -- 5.3 Research on Static Obfuscation -- 5.3.1 Detection Methods Based on New Features -- 5.3.1.1 Static Detection Based on Perceptual Hashing -- 5.3.1.2 Static Detection Based on Semantic Feature Set -- 5.3.1.3 Static Detection Based on Static Data Streams -- 5.3.1.4 Static Detection Based on Grayscale Images -- 5.3.1.5 Static Detection Based on Permission Pairs -- 5.3.1.6 Static Detection Based on Static Sensitive Subgraphs -- 5.3.1.7 Static Detection Based on Malicious URLs -- 5.3.2 Detection Method Based on Binding Method -- 5.3.2.1 Static Detection Combined with Dynamic -- 5.3.2.2 Static Detection Combined with Machine Learning -- 5.3.2.3 Static Detection Combined with Deep Learning -- 5.4 Chapter Summary -- References -- 6 Dynamic Adversarial Method in Android Malware -- 6.1 Automatic Dynamic Analysis Evasion -- 6.1.1 Detection Dependent -- 6.1.1.1 Fingerprint -- 6.1.1.2 Reverse Turing Test -- 6.1.1.3 Target -- 6.1.2 Detection Independent -- 6.1.2.1 Stalling -- 6.1.2.2 Trigger-Based -- 6.1.2.3 Fileless Attack -- 6.2 Manual Dynamic Analysis Evasion -- 6.2.1 Direct Detection -- 6.2.1.1 Read PEB -- 6.2.1.2 Breakpoint Query -- 6.2.1.3 System Artifacts -- 6.2.1.4 Parent Process Detection -- 6.2.2 Deductive Detection -- 6.2.2.1 Trap -- 6.2.2.2 Time-Based Detection -- 6.2.3 Debugger Evasion -- 6.2.3.1 Control Flow Manipulation -- 6.2.3.2 Lockout Evasion -- 6.2.3.3 Debugger Identification -- 6.2.3.4 Fileless Malware -- 6.3 Related Research About Dynamic Analysis Evasion -- 6.3.1 Research About Improving Sandbox -- 6.3.1.1 The Droid is in the Details: Environment-Aware Evasion of Android Sandboxes -- 6.3.1.2 Morpheus: Automatically Generating Heuristics to Detect Android Emulators -- 6.3.2 Research About Detecting Dynamic Evasion. 6.3.2.1 CamoDroid: An Android App Analysis Environment Resilient Against Sandbox Evasion -- 6.3.2.2 Lumus: Dynamically Uncovering Evasive Android apps -- 6.4 Chapter Summary -- References -- 7 AI-Based Adversarial Method in Android -- 7.1 Introduction to Adversarial Examples -- 7.2 Classification of Adversarial Example Generation Methods -- 7.2.1 Gradient-Based Attacks -- 7.2.2 Optimization-Based Attacks -- 7.2.3 GAN-Based Attacks -- 7.2.4 Domain-Specific Attacks (Audio, Images, Text, etc.) -- 7.3 Black-Box Attacks -- 7.3.1 Introduction to Black-Box Attacks -- 7.3.2 Common Black-Box Attack Methods -- 7.3.3 Transfer Learning-Based Black-Box Attacks -- 7.3.4 Meta-Model Based Black-Box Attacks -- 7.3.5 Query-Based Attacks -- 7.3.6 Optimization-Based Attacks -- 7.4 White-Box Attacks -- 7.4.1 Optimization-Based Attacks -- 7.4.1.1 C& -- W Attack -- 7.4.1.2 PGD Attack -- 7.4.2 Gradient-Based Attacks -- 7.4.2.1 FGSM Attack -- 7.4.2.2 BIM Attack -- 7.4.3 App of Adversarial Attacks in Malware Detection -- 7.5 Chapter Summary -- References -- Part IV The Future Trends of Android Malware Detection -- 8 Future Trends in Android Malware Detection -- 8.1 Machine Learning And Deep Learning Techniques -- 8.1.1 Overview of Machine Learning and Deep Learning for Android Malware Detection -- 8.1.2 Challenges Faced -- 8.2 Integrated Solutions -- 8.2.1 Challenges Faced -- 8.3 Blockchain Technology -- 8.3.1 Introduction to Blockchain Technology -- 8.3.2 Examples of Blockchain Technology in the Field of Android Malware Detection -- 8.4 Hardware Technology -- 8.4.1 Advantages of Hardware Technology -- 8.4.2 Challenges to Hardware Technology -- 8.4.3 Examples of Hardware Technologies Applied in the Field of Android Malware Detection -- 8.5 BPF Technology -- 8.5.1 Development of BPF Technology -- 8.5.2 eBPF Technology Overview. 8.5.3 Examples of BPF Techniques in the Field of Android Malware Detection -- 8.6 Chapter Summary -- References. |
| Record Nr. | UNINA-9910864193603321 |
Niu Weina
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial Intelligence and Cybersecurity : Theory and Applications / / edited by Tuomo Sipola, Tero Kokkonen, Mika Karjalainen
| Artificial Intelligence and Cybersecurity : Theory and Applications / / edited by Tuomo Sipola, Tero Kokkonen, Mika Karjalainen |
| Autore | Sipola Tuomo |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (300 pages) |
| Disciplina | 006.3 |
| Soggetto topico |
Artificial intelligence
Data protection - Law and legislation Cryptography Data encryption (Computer science) Computer networks - Security measures Artificial Intelligence Privacy Cryptology Mobile and Network Security |
| ISBN | 3-031-15030-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Cybersecurity Concerns -- Use of Artificial Intelligence in a Cybersecurity Environment -- Petri Vähäkainu and Martti Lehto -- A Review of Cyber Threat (Artificial) Intelligence in Security -- Management -- Martin Lundgren and Ali Padyab -- Model Based Resilience Engineering for Design and Assessment of -- Mission Critical Systems Containing AI Components -- Automation of CybersecurityWork -- Artificial Intelligence for Cybersecurity Education and Training -- Offensive Machine Learning Methods and the Cyber Kill Chain -- Defensive Machine Learning Methods and the Cyber Defence Chain -- Part II Privacy and Ethics -- Differential Privacy: An Umbrella Review -- AI in Cyber Operations: Ethical and Legal Considerations for End-Users -- Part III Applications -- Android Malware Detection Using Deep Learning -- Artificial Intelligence Enabled Radio Signal Intelligence -- Deep Learning Quantile Regression for Robustness, Confidence and -- Planning -- Model Fooling Threats Against Medical Imaging. |
| Record Nr. | UNINA-9910634050303321 |
Sipola Tuomo
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial Intelligence for Security : Enhancing Protection in a Changing World / / edited by Tuomo Sipola, Janne Alatalo, Monika Wolfmayr, Tero Kokkonen
| Artificial Intelligence for Security : Enhancing Protection in a Changing World / / edited by Tuomo Sipola, Janne Alatalo, Monika Wolfmayr, Tero Kokkonen |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (373 pages) |
| Disciplina | 006.3 |
| Soggetto topico |
Data protection - Law and legislation
Artificial intelligence Computer networks - Security measures Privacy Artificial Intelligence Mobile and Network Security |
| ISBN | 9783031574528 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Methodological Fundamentals of Artificial Intelligence -- Chapter.1.Safeguarding the Future of Artificial Intelligence: An AI Blueprint -- Chapter.2.Cybersecurity and the AI Silver Bullet.-Chapter.3.Artificial Intelligence and Differential Privacy – Review of Protection Estimate Models -- Chapter.4.To Know What You Do Not Know: Challenges for Explainable AI for Security and Threat Intelligence -- Chapter.5.Securing the Future: The Role of Knowledge Discovery Frameworks -- Chapter.6.Who Guards the Guardians? On Robustness of Deep Neural Networks.-Part II Artificial Intelligence for Critical Infrastructure Protection -- Chapter.7.Opportunities and Challenges of Using Artificial Intelligence in Securing Cyber-Physical System -- Chapter.8.Artificial Intelligence Working to Secure Small Enterprises -- Chapter.9.On the Cyber Security of Logistics in the Age of Artificial Intelligence.-Chapter.10.Fuzzy Machine Learning for Smart Grid Instability Detection -- Chapter.11.On Protection of the Next-Generation Mobile Networks against Adversarial Examples -- Chapter.12.Designing and Implementing an Interactive Cloud Platform for Teaching Machine Learning with Medical Data -- Part III Artificial Intelligence for Anomaly Detection -- Chapter.13.Machine Learning and Anomaly Detection for an Automated Monitoring of Log Data -- Chapter.14.Detecting Web Application DAST Attacks in Large-scale Event.-Chapter15.Enhancing IoT Intrusion Detection Using Hybrid DAIDS-RNN Mode. |
| Record Nr. | UNINA-9910869176503321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial Intelligence Security and Privacy : Second International Conference, AIS&P 2024, Guangzhou, China, December 6-7, 2024, Proceedings / / edited by Fangguo Zhang, Weiwei Lin, Hongyang Yan
| Artificial Intelligence Security and Privacy : Second International Conference, AIS&P 2024, Guangzhou, China, December 6-7, 2024, Proceedings / / edited by Fangguo Zhang, Weiwei Lin, Hongyang Yan |
| Autore | Zhang Fangguo |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (254 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
LinWeiwei
YanHongyang |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Artificial intelligence
Security systems Data protection - Law and legislation Cryptography Data encryption (Computer science) Data protection Artificial Intelligence Security Science and Technology Privacy Cryptology Security Services |
| ISBN |
9789819611485
9789819611478 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | -- BadHAR: Backdoor Attacks in Federated Human Activity Recognition Systems. -- Fully Automated Generation Mechanism of Rootfs for Specified Operating Systems under Linux. -- Anti-Side-Channel Attack Mechanisms in Blockchain Payment Channels. -- F2L: A Lightweight Focus Layer against Backdoor Attack in Federated Learning. -- Intelligent backpack based on ireless mobile technology. -- Tourism Industry Upgrading and Public Opinion Prevention Methods Based on BERTopic: A Case Study of Hotel Management. -- Privacy-Preserving Covert Channels in VoLTE via Inter-Frame Delay Modulation. -- Enhancing Adversarial Robustness in Object Detection via Multi-Task Learning and Class-Aware Adversarial Training. -- FedHKD: A Hierarchical Federated Learning Approach Integrating lustering and Knowledge Distillation for Non-IID Data. -- Application of Ensemble Learning Based on High-Dimensional Features in Financial Big Data. -- Collaborative Framework for Dynamic Knowledge Updating and Transparent Reasoning with Large Language Models. -- Zero-Shot Dense Retrieval based on Query Expansion. -- Lightweight Attention-CycleGAN for Nighttime-Daytime Image ransformation. -- Generative Image Steganography Based on Latent Space Vector Coding and Diffusion Model. |
| Record Nr. | UNINA-9910983324703321 |
Zhang Fangguo
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||