Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm |
Autore | Dormieux Luc |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina | 620.11692 |
Altri autori (Persone) |
KondoDjimédo
UlmF.-J (Franz-Josef) |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Micromechanics |
ISBN |
1-280-64883-X
9786610648832 0-470-03200-6 0-470-03199-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison 2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law 3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere 4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration 4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage |
Record Nr. | UNINA-9910143590403321 |
Dormieux Luc | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm |
Autore | Dormieux Luc |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina | 620.11692 |
Altri autori (Persone) |
KondoDjimédo
UlmF.-J (Franz-Josef) |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Micromechanics |
ISBN |
1-280-64883-X
9786610648832 0-470-03200-6 0-470-03199-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison 2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law 3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere 4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration 4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage |
Record Nr. | UNISA-996211213803316 |
Dormieux Luc | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Microporomechanics [[electronic resource] /] / Luc Dormieux, Djimédo Kondo, Franz-Josef Ulm |
Autore | Dormieux Luc |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina | 620.11692 |
Altri autori (Persone) |
KondoDjimédo
UlmF.-J (Franz-Josef) |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Micromechanics |
ISBN |
1-280-64883-X
9786610648832 0-470-03200-6 0-470-03199-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison 2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law 3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere 4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration 4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage |
Record Nr. | UNINA-9910829998503321 |
Dormieux Luc | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microporomechanics / / Luc Dormieux, Djimedo Kondo, Franz-Josef Ulm |
Autore | Dormieux Luc |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 |
Descrizione fisica | 1 online resource (346 p.) |
Disciplina | 620.11692 |
Altri autori (Persone) |
KondoDjimedo
UlmF.-J (Franz-Josef) |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Micromechanics |
ISBN |
1-280-64883-X
9786610648832 0-470-03200-6 0-470-03199-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Microporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case
1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison 2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law 3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere 4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration 4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage |
Record Nr. | UNINA-9910877728203321 |
Dormieux Luc | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Poromechanics [[electronic resource] /] / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
620.1/1692
620.11692 |
Altri autori (Persone) | CoussyOlivier |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Continuum mechanics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-26936-7
9786610269365 0-470-09270-X 0-470-09271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion 2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor; 2.3.3 Partial Stress Tensor; 2.4 Kinetic Energy Theorem; 2.4.1 Strain Work Rates; 2.4.2 Piola-Kirchhoff Stress Tensor; 2.4.3 Kinetic Energy Theorem; 2.5 Advanced Analysis; 2.5.1 The Stress Partition Theorem; 2.5.2 Momentum Balance and the Double Porosity Network; 2.5.3 The Tortuosity Effect; 3 Thermodynamics; 3.1 Thermostatics of Homogeneous Fluids; 3.1.1 Energy Conservation and Entropy Balance; 3.1.2 Fluid State Equations. Gibbs Potential; 3.2 Thermodynamics of Porous Continua 3.2.1 Postulate of Local State 3.2.2 The First Law; 3.2.3 The Second Law; 3.3 Conduction Laws; 3.3.1 Darcy's Law; 3.3.2 Fourier's Law; 3.4 Constitutive Equations of the Skeleton; 3.4.1 State Equations of the Skeleton; 3.4.2 Complementary Evolution Laws; 3.5 Recapitulating the Laws; 3.6 Advanced Analysis; 3.6.1 Fluid Particle Head. Bernoulli Theorem; 3.6.2 Thermodynamics and the Double Porosity Network; 3.6.3 Chemically Active Porous Continua; 4 Thermoporoelasticity; 4.1 Non-linear Thermoporoelastic Skeleton; 4.1.1 Infinitesimal Transformation and State Equations 4.1.2 Tangent Thermoporoelastic Properties 4.1.3 The Incompressible Matrix and the Effective Stress; 4.2 Linear Thermoporoelastic Skeleton; 4.2.1 Linear Thermoporoelasticity; 4.2.2 Isotropic Linear Thermoporoelasticity; 4.2.3 Relations Between Skeleton and Matrix Properties; 4.2.4 Anisotropic Poroelasticity; 4.3 Thermoporoelastic Porous Material; 4.3.1 Constitutive Equations of the Saturating Fluid; 4.3.2 Constitutive Equations of the Porous Material; 4.4 Advanced Analysis; 4.4.1 Non-linear Isotropic Poroelasticity; 4.4.2 Brittle Fracture of Fluid-infiltrated Materials 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures |
Record Nr. | UNISA-996201061503316 |
Coussy Olivier | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Poromechanics [[electronic resource] /] / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
620.1/1692
620.11692 |
Altri autori (Persone) | CoussyOlivier |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Continuum mechanics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-26936-7
9786610269365 0-470-09270-X 0-470-09271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion 2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor; 2.3.3 Partial Stress Tensor; 2.4 Kinetic Energy Theorem; 2.4.1 Strain Work Rates; 2.4.2 Piola-Kirchhoff Stress Tensor; 2.4.3 Kinetic Energy Theorem; 2.5 Advanced Analysis; 2.5.1 The Stress Partition Theorem; 2.5.2 Momentum Balance and the Double Porosity Network; 2.5.3 The Tortuosity Effect; 3 Thermodynamics; 3.1 Thermostatics of Homogeneous Fluids; 3.1.1 Energy Conservation and Entropy Balance; 3.1.2 Fluid State Equations. Gibbs Potential; 3.2 Thermodynamics of Porous Continua 3.2.1 Postulate of Local State 3.2.2 The First Law; 3.2.3 The Second Law; 3.3 Conduction Laws; 3.3.1 Darcy's Law; 3.3.2 Fourier's Law; 3.4 Constitutive Equations of the Skeleton; 3.4.1 State Equations of the Skeleton; 3.4.2 Complementary Evolution Laws; 3.5 Recapitulating the Laws; 3.6 Advanced Analysis; 3.6.1 Fluid Particle Head. Bernoulli Theorem; 3.6.2 Thermodynamics and the Double Porosity Network; 3.6.3 Chemically Active Porous Continua; 4 Thermoporoelasticity; 4.1 Non-linear Thermoporoelastic Skeleton; 4.1.1 Infinitesimal Transformation and State Equations 4.1.2 Tangent Thermoporoelastic Properties 4.1.3 The Incompressible Matrix and the Effective Stress; 4.2 Linear Thermoporoelastic Skeleton; 4.2.1 Linear Thermoporoelasticity; 4.2.2 Isotropic Linear Thermoporoelasticity; 4.2.3 Relations Between Skeleton and Matrix Properties; 4.2.4 Anisotropic Poroelasticity; 4.3 Thermoporoelastic Porous Material; 4.3.1 Constitutive Equations of the Saturating Fluid; 4.3.2 Constitutive Equations of the Porous Material; 4.4 Advanced Analysis; 4.4.1 Non-linear Isotropic Poroelasticity; 4.4.2 Brittle Fracture of Fluid-infiltrated Materials 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures |
Record Nr. | UNISA-996454749203316 |
Coussy Olivier | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Poromechanics / / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina | 620.1/1692 |
Altri autori (Persone) | CoussyOlivier |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Continuum mechanics |
ISBN |
1-280-26936-7
9786610269365 0-470-09270-X 0-470-09271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion 2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor; 2.3.3 Partial Stress Tensor; 2.4 Kinetic Energy Theorem; 2.4.1 Strain Work Rates; 2.4.2 Piola-Kirchhoff Stress Tensor; 2.4.3 Kinetic Energy Theorem; 2.5 Advanced Analysis; 2.5.1 The Stress Partition Theorem; 2.5.2 Momentum Balance and the Double Porosity Network; 2.5.3 The Tortuosity Effect; 3 Thermodynamics; 3.1 Thermostatics of Homogeneous Fluids; 3.1.1 Energy Conservation and Entropy Balance; 3.1.2 Fluid State Equations. Gibbs Potential; 3.2 Thermodynamics of Porous Continua 3.2.1 Postulate of Local State 3.2.2 The First Law; 3.2.3 The Second Law; 3.3 Conduction Laws; 3.3.1 Darcy's Law; 3.3.2 Fourier's Law; 3.4 Constitutive Equations of the Skeleton; 3.4.1 State Equations of the Skeleton; 3.4.2 Complementary Evolution Laws; 3.5 Recapitulating the Laws; 3.6 Advanced Analysis; 3.6.1 Fluid Particle Head. Bernoulli Theorem; 3.6.2 Thermodynamics and the Double Porosity Network; 3.6.3 Chemically Active Porous Continua; 4 Thermoporoelasticity; 4.1 Non-linear Thermoporoelastic Skeleton; 4.1.1 Infinitesimal Transformation and State Equations 4.1.2 Tangent Thermoporoelastic Properties 4.1.3 The Incompressible Matrix and the Effective Stress; 4.2 Linear Thermoporoelastic Skeleton; 4.2.1 Linear Thermoporoelasticity; 4.2.2 Isotropic Linear Thermoporoelasticity; 4.2.3 Relations Between Skeleton and Matrix Properties; 4.2.4 Anisotropic Poroelasticity; 4.3 Thermoporoelastic Porous Material; 4.3.1 Constitutive Equations of the Saturating Fluid; 4.3.2 Constitutive Equations of the Porous Material; 4.4 Advanced Analysis; 4.4.1 Non-linear Isotropic Poroelasticity; 4.4.2 Brittle Fracture of Fluid-infiltrated Materials 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures |
Record Nr. | UNINA-9910143228203321 |
Coussy Olivier | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|