top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adaptive and functional polymers, textiles and their applications [[electronic resource] /] / Jinlian Hu
Adaptive and functional polymers, textiles and their applications [[electronic resource] /] / Jinlian Hu
Autore Hu Jinlian
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (416 p.)
Disciplina 620.192
Soggetto topico Polymers
Polymers - Industrial applications
Textile fibers, Synthetic
Soggetto genere / forma Electronic books.
ISBN 1-62870-226-5
1-283-14820-X
9786613148209
1-84816-476-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Acknowledgements; Chapter 1 Introduction to Adaptive Polymers and Textiles; Chapter 2 Shape Memory Polymers; Chapter 3 Adaptive Polymeric Gels and Applications; Chapter 4 Adaptive Polymeric Particles and Applications; Chapter 5 Adaptive Textiles Using Adaptive Polymers; Chapter 6 Adaptive Polymeric Composites and Applications; Chapter 7 Adaptive Polymeric Nanofibre and Nanofilm; Chapter 8 Cosmetics Applications of Adaptive and Functional Polymers; Chapter 9 Medical Applications of Adaptive Polymers; Chapter 10 Special Adaptive and Functional Polymers and Their Applications
Index
Record Nr. UNINA-9910456732103321
Hu Jinlian  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive and functional polymers, textiles and their applications [[electronic resource] /] / Jinlian Hu
Adaptive and functional polymers, textiles and their applications [[electronic resource] /] / Jinlian Hu
Autore Hu Jinlian
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (416 p.)
Disciplina 620.192
Soggetto topico Polymers
Polymers - Industrial applications
Textile fibers, Synthetic
ISBN 1-62870-226-5
1-283-14820-X
9786613148209
1-84816-476-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Acknowledgements; Chapter 1 Introduction to Adaptive Polymers and Textiles; Chapter 2 Shape Memory Polymers; Chapter 3 Adaptive Polymeric Gels and Applications; Chapter 4 Adaptive Polymeric Particles and Applications; Chapter 5 Adaptive Textiles Using Adaptive Polymers; Chapter 6 Adaptive Polymeric Composites and Applications; Chapter 7 Adaptive Polymeric Nanofibre and Nanofilm; Chapter 8 Cosmetics Applications of Adaptive and Functional Polymers; Chapter 9 Medical Applications of Adaptive Polymers; Chapter 10 Special Adaptive and Functional Polymers and Their Applications
Index
Record Nr. UNINA-9910781211103321
Hu Jinlian  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive and functional polymers, textiles and their applications / / Jinlian Hu
Adaptive and functional polymers, textiles and their applications / / Jinlian Hu
Autore Hu Jinlian
Edizione [1st ed.]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (416 p.)
Disciplina 620.192
Soggetto topico Polymers
Polymers - Industrial applications
Textile fibers, Synthetic
ISBN 1-62870-226-5
1-283-14820-X
9786613148209
1-84816-476-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Acknowledgements; Chapter 1 Introduction to Adaptive Polymers and Textiles; Chapter 2 Shape Memory Polymers; Chapter 3 Adaptive Polymeric Gels and Applications; Chapter 4 Adaptive Polymeric Particles and Applications; Chapter 5 Adaptive Textiles Using Adaptive Polymers; Chapter 6 Adaptive Polymeric Composites and Applications; Chapter 7 Adaptive Polymeric Nanofibre and Nanofilm; Chapter 8 Cosmetics Applications of Adaptive and Functional Polymers; Chapter 9 Medical Applications of Adaptive Polymers; Chapter 10 Special Adaptive and Functional Polymers and Their Applications
Index
Record Nr. UNINA-9910806977303321
Hu Jinlian  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional polymer coatings : principles, methods and applications / / edited by Limin Wu, Jamil Baghdachi
Functional polymer coatings : principles, methods and applications / / edited by Limin Wu, Jamil Baghdachi
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2015
Descrizione fisica 1 online resource (369 p.)
Disciplina 668.9/2
Collana Wiley Series on Polymer Engineering and Technology
Soggetto topico Coating processes
Plastic coating
Polymers - Industrial applications
ISBN 1-118-88292-X
1-118-88305-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Contributors; Preface; Chapter 1 Transparent Organic-Inorganic Nanocomposite Coatings; 1.1 INTRODUCTION; 1.2 FABRICATION STRATEGIES; 1.2.1 Blending Method; 1.2.2 Sol-Gel Process; 1.2.3 Intercalation Method; 1.3 MECHANICALLY ENHANCED NANOCOMPOSITE CLEARCOATS; 1.3.1 Solventborne Polyurethane Nanocomposite Coatings; 1.3.2 Waterborne Nanocomposite Clearcoats; 1.3.3 UV-Curable Nanocomposite Coatings; 1.3.4 Other Mechanically Strong Nanocomposite Coatings; 1.4 OPTICAL NANOCOMPOSITE COATINGS; 1.4.1 Transparent UV-Shielding Nanocomposite Coatings
1.4.2 High Refractive Index Nanocomposite Coatings1.4.3 Transparent NIR-Shielding Nanocomposite Coatings; 1.5 TRANSPARENT BARRIER NANOCOMPOSITE COATINGS; 1.6 TRANSPARENT CONDUCTING NANOCOMPOSITE COATINGS; 1.7 OTHER FUNCTIONAL NANOCOMPOSITE COATINGS; 1.8 CONCLUSIONS AND OUTLOOK; REFERENCES; Chapter 2 Superhydrophobic and Superoleophobic Polymeric Surfaces; 2.1 INTRODUCTION; 2.2 SURFACE WETTABILITY; 2.3 VARIOUS APPROACHES TO OBTAIN SUPER-REPELLENT SURFACES; 2.3.1 Template-Replicating Methods; 2.3.2 Hierarchically Structured Particles; 2.3.3 LbL Deposition; 2.3.4 Plasma Treatment
3.7 COMMERCIAL COATINGS3.8 CONCLUSIONS AND OUTLOOK; REFERENCES; Chapter 4 Self-Healing Polymeric Coatings; 4.1 INTRODUCTION; 4.1.1 Self-Healing Materials; 4.1.2 Self-Healing Polymeric Coatings; 4.2 SELF-HEALING APPROACHES FOR FUNCTIONAL POLYMERIC COATINGS; 4.2.1 Intrinsic Healing; 4.2.2 Extrinsic Healing; 4.3 FUNCTIONALITIES RECOVERY AND POSSIBLE APPLICATIONS; 4.3.1 Surface Properties: Wettability and Anti-(bio)adhesion; 4.3.2 Barrier and Corrosion Protection; 4.3.3 Interfacial Bonding Between Dissimilar Materials; 4.4 CONCLUDING REMARKS AND CHALLENGES; ACKNOWLEDGMENTS; REFERENCES
Chapter 5 Stimuli-Responsive Polymers as Active Layers for Sensors
Record Nr. UNINA-9910140640403321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional polymer coatings : principles, methods and applications / / edited by Limin Wu, Jamil Baghdachi
Functional polymer coatings : principles, methods and applications / / edited by Limin Wu, Jamil Baghdachi
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2015
Descrizione fisica 1 online resource (369 p.)
Disciplina 668.9/2
Collana Wiley Series on Polymer Engineering and Technology
Soggetto topico Coating processes
Plastic coating
Polymers - Industrial applications
ISBN 1-118-88292-X
1-118-88305-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Contributors; Preface; Chapter 1 Transparent Organic-Inorganic Nanocomposite Coatings; 1.1 INTRODUCTION; 1.2 FABRICATION STRATEGIES; 1.2.1 Blending Method; 1.2.2 Sol-Gel Process; 1.2.3 Intercalation Method; 1.3 MECHANICALLY ENHANCED NANOCOMPOSITE CLEARCOATS; 1.3.1 Solventborne Polyurethane Nanocomposite Coatings; 1.3.2 Waterborne Nanocomposite Clearcoats; 1.3.3 UV-Curable Nanocomposite Coatings; 1.3.4 Other Mechanically Strong Nanocomposite Coatings; 1.4 OPTICAL NANOCOMPOSITE COATINGS; 1.4.1 Transparent UV-Shielding Nanocomposite Coatings
1.4.2 High Refractive Index Nanocomposite Coatings1.4.3 Transparent NIR-Shielding Nanocomposite Coatings; 1.5 TRANSPARENT BARRIER NANOCOMPOSITE COATINGS; 1.6 TRANSPARENT CONDUCTING NANOCOMPOSITE COATINGS; 1.7 OTHER FUNCTIONAL NANOCOMPOSITE COATINGS; 1.8 CONCLUSIONS AND OUTLOOK; REFERENCES; Chapter 2 Superhydrophobic and Superoleophobic Polymeric Surfaces; 2.1 INTRODUCTION; 2.2 SURFACE WETTABILITY; 2.3 VARIOUS APPROACHES TO OBTAIN SUPER-REPELLENT SURFACES; 2.3.1 Template-Replicating Methods; 2.3.2 Hierarchically Structured Particles; 2.3.3 LbL Deposition; 2.3.4 Plasma Treatment
3.7 COMMERCIAL COATINGS3.8 CONCLUSIONS AND OUTLOOK; REFERENCES; Chapter 4 Self-Healing Polymeric Coatings; 4.1 INTRODUCTION; 4.1.1 Self-Healing Materials; 4.1.2 Self-Healing Polymeric Coatings; 4.2 SELF-HEALING APPROACHES FOR FUNCTIONAL POLYMERIC COATINGS; 4.2.1 Intrinsic Healing; 4.2.2 Extrinsic Healing; 4.3 FUNCTIONALITIES RECOVERY AND POSSIBLE APPLICATIONS; 4.3.1 Surface Properties: Wettability and Anti-(bio)adhesion; 4.3.2 Barrier and Corrosion Protection; 4.3.3 Interfacial Bonding Between Dissimilar Materials; 4.4 CONCLUDING REMARKS AND CHALLENGES; ACKNOWLEDGMENTS; REFERENCES
Chapter 5 Stimuli-Responsive Polymers as Active Layers for Sensors
Record Nr. UNINA-9910826357803321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional polymers by post-polymerization modification [[electronic resource] ] : concepts, guidelines, and applications / / edited by Patrick Theato and Harm-Anton Klok
Functional polymers by post-polymerization modification [[electronic resource] ] : concepts, guidelines, and applications / / edited by Patrick Theato and Harm-Anton Klok
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany, : Wiley-VCH Verlag GmbH, c2013
Descrizione fisica 1 online resource (438 p.)
Disciplina 668.9
Altri autori (Persone) TheatoPatrick
KlokHarm-Anton
Soggetto topico Polymer engineering
Polymers - Industrial applications
Polymerization
ISBN 3-527-65542-5
1-299-31353-1
3-527-65545-X
3-527-65544-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Functional Polymers by Post-Polymerization Modification; Contents; List of Abbreviations; List of Contributors; 1 History of Post-polymerization Modification; 1.1 Introduction; 1.2 Post-polymerization Modification via Thiol-ene Addition; 1.3 Post-polymerization Modification of Epoxides, Anhydrides, Oxazolines, and Isocyanates; 1.4 Post-polymerization Modification of Active Esters; 1.5 Post-polymerization Modification via Thiol-Disulfide Exchange; 1.6 Post-polymerization Modification via Diels-Alder Reactions; 1.7 Post-polymerization Modification via Michael-Type Addition
1.8 Post-polymerization Modification via Azide Alkyne Cycloaddition Reactions 1.9 Post-polymerization Modification of Ketones and Aldehydes; 1.10 Post-polymerization Modifications via Other Highly Efficient Reactions; 1.11 Concluding Remarks; References; 2 Post-polymerization Modifications via Active Esters; 2.1 Introduction; 2.2 Active Esters in the Side Group; 2.2.1 Homopolymers; 2.2.1.1 General; 2.2.1.2 Stimuli-Responsive Polymers; 2.2.1.3 Biologically Active Polymers; 2.2.1.4 Thin Films; 2.2.1.5 Polymeric Ligands for Nanoparticles; 2.2.1.6 Miscellaneous Uses of Active Ester Polymers
2.2.2 Block Copolymers 2.2.2.1 General; 2.2.2.2 Block Copolymers and Inorganic Moieties; 2.2.2.3 Amphiphilic Block Copolymers; 2.2.2.4 Stimuli-Responsive Block Copolymers; 2.3 Star Polymers; 2.4 Active Esters at the End Groups; 2.5 Controlled Positioning of Active Ester Moieties; 2.6 Summary; References; 3 Thiol-ene Based Functionalization of Polymers; 3.1 Introduction; 3.2 General Considerations and Mechanisms; 3.2.1 Radical Thiol-ene Addition; 3.2.2 Nucleophilic Thiol-ene Addition; 3.3 Functionalization of Polymers; 3.3.1 Endfunctionalization; 3.3.1.1 Polymer-ene/Thiol
3.3.1.2 Polymer-SH/Olefin 3.3.2 Polymer-Analog Reactions; 3.3.2.1 Polyene/Thiol; 3.3.2.2 Polythiol/Olefin; 3.3.3 Bioconjugation; 3.4 Summary; Acknowledgments; References; 4 Thiol-yne Chemistry in Polymer and Materials Science; 4.1 Introduction; 4.2 The Thiol-yne Reaction in Small-Molecule Chemistry; 4.3 The Thiol-yne Reaction in Polymer and Material Synthesis; 4.3.1 Network Polymers; 4.3.2 Surface-Initiated Polymerizations and Modifications; 4.3.3 Polymer Beads; 4.3.4 Hyperbranched Polymers; 4.3.5 Dendrimers and Dendritic Polymers; 4.3.6 Main chain a- and w-Functional (co)Polymers
4.3.7 Nonradical Thiol-yne Click Polymerization 4.3.8 Summary and Outlook; References; 5 Design and Synthesis of Maleimide Group Containing Polymeric Materials via the Diels-Alder/Retro Diels-Alder Strategy; 5.1 Introduction; 5.2 Maleimide Functional Group Containing Polymeric Materials; 5.3 The Diels-Alder/Retro Diels-Alder Cycloaddition-Cycloreversion Reactions; 5.4 Application of Diels-Alder/Retro Diels-Alder Reaction to Synthesize Maleimide-Containing Polymers; 5.4.1 Synthesis of Polymers Containing the Maleimide Group at the Chain Termini
5.4.2 Polymers Containing Maleimide Groups as Side Chains
Record Nr. UNINA-9910141646703321
Weinheim an der Bergstrasse, Germany, : Wiley-VCH Verlag GmbH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional polymers by post-polymerization modification : concepts, guidelines, and applications / / edited by Patrick Theato and Harm-Anton Klok
Functional polymers by post-polymerization modification : concepts, guidelines, and applications / / edited by Patrick Theato and Harm-Anton Klok
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany, : Wiley-VCH Verlag GmbH, c2013
Descrizione fisica 1 online resource (438 p.)
Disciplina 668.9
Altri autori (Persone) TheatoPatrick
KlokHarm-Anton
Soggetto topico Polymer engineering
Polymers - Industrial applications
Polymerization
ISBN 3-527-65542-5
1-299-31353-1
3-527-65545-X
3-527-65544-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Functional Polymers by Post-Polymerization Modification; Contents; List of Abbreviations; List of Contributors; 1 History of Post-polymerization Modification; 1.1 Introduction; 1.2 Post-polymerization Modification via Thiol-ene Addition; 1.3 Post-polymerization Modification of Epoxides, Anhydrides, Oxazolines, and Isocyanates; 1.4 Post-polymerization Modification of Active Esters; 1.5 Post-polymerization Modification via Thiol-Disulfide Exchange; 1.6 Post-polymerization Modification via Diels-Alder Reactions; 1.7 Post-polymerization Modification via Michael-Type Addition
1.8 Post-polymerization Modification via Azide Alkyne Cycloaddition Reactions 1.9 Post-polymerization Modification of Ketones and Aldehydes; 1.10 Post-polymerization Modifications via Other Highly Efficient Reactions; 1.11 Concluding Remarks; References; 2 Post-polymerization Modifications via Active Esters; 2.1 Introduction; 2.2 Active Esters in the Side Group; 2.2.1 Homopolymers; 2.2.1.1 General; 2.2.1.2 Stimuli-Responsive Polymers; 2.2.1.3 Biologically Active Polymers; 2.2.1.4 Thin Films; 2.2.1.5 Polymeric Ligands for Nanoparticles; 2.2.1.6 Miscellaneous Uses of Active Ester Polymers
2.2.2 Block Copolymers 2.2.2.1 General; 2.2.2.2 Block Copolymers and Inorganic Moieties; 2.2.2.3 Amphiphilic Block Copolymers; 2.2.2.4 Stimuli-Responsive Block Copolymers; 2.3 Star Polymers; 2.4 Active Esters at the End Groups; 2.5 Controlled Positioning of Active Ester Moieties; 2.6 Summary; References; 3 Thiol-ene Based Functionalization of Polymers; 3.1 Introduction; 3.2 General Considerations and Mechanisms; 3.2.1 Radical Thiol-ene Addition; 3.2.2 Nucleophilic Thiol-ene Addition; 3.3 Functionalization of Polymers; 3.3.1 Endfunctionalization; 3.3.1.1 Polymer-ene/Thiol
3.3.1.2 Polymer-SH/Olefin 3.3.2 Polymer-Analog Reactions; 3.3.2.1 Polyene/Thiol; 3.3.2.2 Polythiol/Olefin; 3.3.3 Bioconjugation; 3.4 Summary; Acknowledgments; References; 4 Thiol-yne Chemistry in Polymer and Materials Science; 4.1 Introduction; 4.2 The Thiol-yne Reaction in Small-Molecule Chemistry; 4.3 The Thiol-yne Reaction in Polymer and Material Synthesis; 4.3.1 Network Polymers; 4.3.2 Surface-Initiated Polymerizations and Modifications; 4.3.3 Polymer Beads; 4.3.4 Hyperbranched Polymers; 4.3.5 Dendrimers and Dendritic Polymers; 4.3.6 Main chain a- and w-Functional (co)Polymers
4.3.7 Nonradical Thiol-yne Click Polymerization 4.3.8 Summary and Outlook; References; 5 Design and Synthesis of Maleimide Group Containing Polymeric Materials via the Diels-Alder/Retro Diels-Alder Strategy; 5.1 Introduction; 5.2 Maleimide Functional Group Containing Polymeric Materials; 5.3 The Diels-Alder/Retro Diels-Alder Cycloaddition-Cycloreversion Reactions; 5.4 Application of Diels-Alder/Retro Diels-Alder Reaction to Synthesize Maleimide-Containing Polymers; 5.4.1 Synthesis of Polymers Containing the Maleimide Group at the Chain Termini
5.4.2 Polymers Containing Maleimide Groups as Side Chains
Record Nr. UNINA-9910819818103321
Weinheim an der Bergstrasse, Germany, : Wiley-VCH Verlag GmbH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of industrial polyethylene and technology : definitive guide to manufacturing, properties, processing, applications and markets / / edited by Mark A. Spalding and Ananda M. Chatterjee
Handbook of industrial polyethylene and technology : definitive guide to manufacturing, properties, processing, applications and markets / / edited by Mark A. Spalding and Ananda M. Chatterjee
Pubbl/distr/stampa Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2017
Descrizione fisica 1 online resource (1,353 pages) : illustrations
Disciplina 668.4/234
Collana THEi Wiley ebooks
Soggetto topico Polyethylene
Polymers - Industrial applications
ISBN 1-119-15977-6
1-5231-2165-3
1-119-15978-4
1-119-15979-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270902903321
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro- and nano-structured interpenetrating polymer networks : from design to applications / / edited by Prof. Dr. Sabu Thomas [and six others]
Micro- and nano-structured interpenetrating polymer networks : from design to applications / / edited by Prof. Dr. Sabu Thomas [and six others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2016]
Descrizione fisica 1 online resource (482 p.)
Disciplina 620.1/92
Soggetto topico Polymer networks
Polymers - Industrial applications
ISBN 1-119-13896-5
1-119-13895-7
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1 Micro- and Nano-Structured Interpenetrating Polymer Networks: State of the Art, New Challenges and Opportunities Jose James, George V. Thomas, Akhina H and Sabu Thomas 1.1 Introduction 1.2 Types of IPNs 1.3 Synthesis of IPN 1.3.1. Sequential IPNs 1.3.2. Simultaneous Interpenetrating Networks 1.4 Characterization of IPN 1.4.1. Morphology 1.4.2. Thermal properties 1.4.3.Mechanical properties 1.4.4. Kinetic properties 1.4.5. Spectroscopic techniques 1.4.6. Visco-elastic measurements of IPN 1.5 Applications of IPNs 1.6 Future trends References 2 Miscibility, morphology and phase behavior of IPNs Gaohong He, Xuemei Wu, Xiaoming Yan, Xiangcun Li, Wu Xiao and Xiaobin Jiang 2.1 Introduction 2.2 Miscibility of IPNs 2.1.1 Thermodynamics immiscibility of IPNs 2.1.2 Kinetically "forced compatibility" of IPNs 2.3 Phase diagram 2.3.1 Types of phase diagrams 2.3.2 Temperature-composition phase diagram 2.3.3 Monomer-polymer phase diagram 2.3.4 Phase continuity diagram 2.4 Morphology of IPNs 2.4.1 Phase separation mechanism 2.4.2 Typical morphologies of IPNs 2.5 Acknowledgments References 3 Synthetic rubber-based IPNs Qihua Wang and Shoubing Chen 3.1 Introduction 3.2 Synthetic rubber-based IPNs 3.2.1 The synthesis methods of synthetic rubber-based IPNs 3.2.2 General purpose rubber-based IPNs 3.2.3 Specialty rubber-based IPNs 3.3 Summary and conclusions 3.4 Acknowledgments References 4 Micro- and nano-structured ipns based on thermosetting resins Sanja Marinović, Ivanka Popovic and Branko Dunjic 4.1 Introduction 4.2 Experimental details 4.2.1. Materials 4.2.2. Synthesis of ipns components and sample preparation 4.2.3. Ipns characterization techniques 4.3 Influence of HBP(A) contents in ipns on ipns mechanical properties 4.3.1 Dynamic mechanical analysis (DMA) 4.3.2 Thermogravimetric analysis 4.4 Influence of the reactive diluent in ipns on ipns properties 4.5 Conclusions References 5 Micro- meso- and nano-porous systems designed from IPNs Daniel Grande 5.1 Introduction 5.2 Porous Systems Derived from Semi-IPNs 5.2.1 Porous Networks by Selective Degradation of Un-Cross-Linked Chains 5.2.2 Porous Networks by Solvent Extraction of Un-Cross-Linked Chains 5.3 (Nano-)Porous Systems Derived from IPNs 5.3.1 Pioneering studies 5.3.2 Porous Networks by "Selective" Electron Beam Degradation 5.3.3 Nano-Porous Networks by Selective Hydrolysis 5.4 Conclusions 5.5 Acknowledgements References 6 Natural rubber-based micro- and nano-structured IPNs Sa-Ad Riyajan 6.1 Introduction 6.2 Natural rubber 6.2.1 Basic information of NR 6.2.2 Properties 6.2.3 Applications Synthesis of polymer IPN 6.3 Synthesis of polymer IPN 6.4 Preparation of Semi-IPN ENR and PVA 6.5 Properties of IPN made from NR and plastics 6.5.1Swelling behavior and solvent resistance 6.5.2 Mechanical strength 6.5.3 Creep properties 6.5.4 Thermal properties 6.6 Biodegradation 6.7 Possible application 6.8 Conclusion 6.9 Acknowledgement References 7 Synthesis and applications of IPNs based on smart polymers Guillermina Burillo, Emilio Bucio and Lorena Garcia-Uriostegui 7.1 Introduction 7.2 Stimuli-responsive polymers 7.3 IPNs and SIPNs 7.4 The synthesis and the applications of SIPNs and IPNs 7.4.1 Sequential SIPNs 7.4.2 The simultaneous method for the synthesis of SIPNs 7.4.3 A comparison of the properties between sequential and simultaneous SIPN films 7.4.4 The SIPNs of sensitive star polymers 7.5 IPNs 7.5.1 IPNs synthesized in one step by the simultaneous method 7.5.2 IPNs synthesized in two steps 7.6 IPNs and SIPNs synthesized by ionizing radiation 7.7 S-IPN and IPNs in the heavy ions immobilization 7.8 The novel architectures of IPNs developed by ionizing radiation polymerization 7.8.1 Polymer-g-IPNs synthesized via irradiation and the addition of a chemical initiator in three steps 7.8.2 Polymer-g- IPNs synthesized only by radiation in three steps 7.9 Conclusions 7.10 Acknowledgments References 8 Microscopy of IPNs Rameshwar Adhikari 8.1 Introduction and Overview 8.2 Sample Preparation for Microscopic Analysis 8.2.1 Microtomy and Ultramicrotomy 8.2.2 Staining of Thin Sections 8.2.3 Etching of Surfaces 8.2.4 Fracture Surface Preparation 8.3 Microscopy of Interpenetrating Polymer Networks (IPNs): An Overview 8.4 Morphological Characterization of Polymer Networks 8.4.1 Biomaterials and Biomedical Materials 8.4.2 Porous Networks 8.4.3 Elastomer and Latex Based Networks 8.4.4 Micro- and Nanostructured Materials and Hybrids 8.4.5 IPN-like Systems 8.5 Concluding Notes Acknowledgements 9. Viscoelastic Properties of Interpenetrating Polymer Networks Sudipta Goswami 9.1 Introduction 9.2 Viscoelastic properties of Simultaneous IPNS 9.3 Viscoelastic properties of Sequential IPNs 9.4 Overall Summary and future scope 9.5 Conclusion References 10. Interpenetrating and Semi-Interpenetrating Networks of Polyurethane Chepuri R.K. Rao, Ramanuj Narayan and K.V.S.N. Raju 10.1 Introduction 10.1.1 Polyurethane-acrylic, epoxy, polyester IPN systems 10.1.2 PU-other polymers 10.1.3 PU-conducting polymers 10.1.4 Applications and concluding remarks References 11. Solid state NMR and ESR studies of IPNs Srećko Valić, M. Andreis and D. Klepac 11.1 Introduction 11.2 Theoretical background 11.2.1 Solid state NMR spectroscopy 11.2.2 ESR spectroscopy 11.3 NMR of IPNs and semi IPNs 11.3.1 Characterization 11.3.2 Structure and Dynamics 11.4 ESR studies of IPNs and semi-IPNs 11.4.1 Nitroxyl radicals in studying IPNs and semi-IPNs 11.4.2 Radicals induced by high energy radiation 11.4.3 Copper(II) ions 11.5 Conclusion References 12. Diffusion, transport and barrier properties of IPNs Runcy Wilson, Anil Kumar S, Miran Mozetic, Uros Cvelbar and Sabu Thomas 12.1 Introduction 12.2 Back ground of IPNs 12.3 Transport properties: theoretical and practical aspects 12.4 Transport mechanism 12.5 Sorption and diffusion of solvents 12.6 Gas barrier properties of IPNs 12.7 Pervaporation characteristics of IPNs 12.8 Principles of pervaporation 12.9 Vapour sorption behaviour of IPNs 12.10 Conclusion 12.11 Applications, Challenges, Difficulties and Future Directions References 13. Ageing of Interpenetrating Polymer Networks Selvin P. Thomas and Mohammed N Alghamdi 13.1 Introduction 13.2 Ageing of IPNs 13.2.1 Thermal ageing 13.2.2 UV-radiation ageing 13.2.3 Water ageing 13.2.4 Aging by other sources 13.3 Conclusion References 13. Theoretical modeling and simulation of IPNs Pratab Bhaskar 14.1 Introduction 14.2. Theoretical Simulations 14.2.1 Quantum Mechanics 14.2.2 Classical Mechanics 14.3. Molecular Dynamics Methods and Theory 14.3.1. Potential Energy Functions 14.3.2. Molecular Mechanics 14.3.3. Integration of Equation of Motion 14.3.4 Statistical Ensembles 14.3.5. Simulation Environment 14.3.6. Amorphous Cells 14.4. Molecular Dynamic Study of Surface/Interface properties of Thermoplastic AIPNs and Organic-Inorganic composite IPNs 14.4.1. Surface Energy of Thermoplastic-AIPNS 14.4.2. Organic- Inorganic Composite IPNs Materials 14.5. Conclusions References 15. Applications of Interpenetrating Polymer Networks Chandra P.Sharma and Radhika Raveendran 15.1 Introduction 15.2 What are IPNs? 15.3 Properties of IPNs 15.4 Applications of IPNs 15.4.1 Selective transportation of liquids and gases 15.4.2 Ion exchange membranes 15.4.3 Removal of metal ions 15.4.4 Sound and vibration damping 15.4.5 Other general applications 15.4.6 Biomedical Applications of IPNs 15.5 Conclusion References Index.
Record Nr. UNINA-9910136547803321
Hoboken, New Jersey : , : Wiley, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro- and nano-structured interpenetrating polymer networks : from design to applications / / edited by Prof. Dr. Sabu Thomas [and six others]
Micro- and nano-structured interpenetrating polymer networks : from design to applications / / edited by Prof. Dr. Sabu Thomas [and six others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2016]
Descrizione fisica 1 online resource (482 p.)
Disciplina 620.1/92
Soggetto topico Polymer networks
Polymers - Industrial applications
ISBN 1-119-13896-5
1-119-13895-7
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1 Micro- and Nano-Structured Interpenetrating Polymer Networks: State of the Art, New Challenges and Opportunities Jose James, George V. Thomas, Akhina H and Sabu Thomas 1.1 Introduction 1.2 Types of IPNs 1.3 Synthesis of IPN 1.3.1. Sequential IPNs 1.3.2. Simultaneous Interpenetrating Networks 1.4 Characterization of IPN 1.4.1. Morphology 1.4.2. Thermal properties 1.4.3.Mechanical properties 1.4.4. Kinetic properties 1.4.5. Spectroscopic techniques 1.4.6. Visco-elastic measurements of IPN 1.5 Applications of IPNs 1.6 Future trends References 2 Miscibility, morphology and phase behavior of IPNs Gaohong He, Xuemei Wu, Xiaoming Yan, Xiangcun Li, Wu Xiao and Xiaobin Jiang 2.1 Introduction 2.2 Miscibility of IPNs 2.1.1 Thermodynamics immiscibility of IPNs 2.1.2 Kinetically "forced compatibility" of IPNs 2.3 Phase diagram 2.3.1 Types of phase diagrams 2.3.2 Temperature-composition phase diagram 2.3.3 Monomer-polymer phase diagram 2.3.4 Phase continuity diagram 2.4 Morphology of IPNs 2.4.1 Phase separation mechanism 2.4.2 Typical morphologies of IPNs 2.5 Acknowledgments References 3 Synthetic rubber-based IPNs Qihua Wang and Shoubing Chen 3.1 Introduction 3.2 Synthetic rubber-based IPNs 3.2.1 The synthesis methods of synthetic rubber-based IPNs 3.2.2 General purpose rubber-based IPNs 3.2.3 Specialty rubber-based IPNs 3.3 Summary and conclusions 3.4 Acknowledgments References 4 Micro- and nano-structured ipns based on thermosetting resins Sanja Marinović, Ivanka Popovic and Branko Dunjic 4.1 Introduction 4.2 Experimental details 4.2.1. Materials 4.2.2. Synthesis of ipns components and sample preparation 4.2.3. Ipns characterization techniques 4.3 Influence of HBP(A) contents in ipns on ipns mechanical properties 4.3.1 Dynamic mechanical analysis (DMA) 4.3.2 Thermogravimetric analysis 4.4 Influence of the reactive diluent in ipns on ipns properties 4.5 Conclusions References 5 Micro- meso- and nano-porous systems designed from IPNs Daniel Grande 5.1 Introduction 5.2 Porous Systems Derived from Semi-IPNs 5.2.1 Porous Networks by Selective Degradation of Un-Cross-Linked Chains 5.2.2 Porous Networks by Solvent Extraction of Un-Cross-Linked Chains 5.3 (Nano-)Porous Systems Derived from IPNs 5.3.1 Pioneering studies 5.3.2 Porous Networks by "Selective" Electron Beam Degradation 5.3.3 Nano-Porous Networks by Selective Hydrolysis 5.4 Conclusions 5.5 Acknowledgements References 6 Natural rubber-based micro- and nano-structured IPNs Sa-Ad Riyajan 6.1 Introduction 6.2 Natural rubber 6.2.1 Basic information of NR 6.2.2 Properties 6.2.3 Applications Synthesis of polymer IPN 6.3 Synthesis of polymer IPN 6.4 Preparation of Semi-IPN ENR and PVA 6.5 Properties of IPN made from NR and plastics 6.5.1Swelling behavior and solvent resistance 6.5.2 Mechanical strength 6.5.3 Creep properties 6.5.4 Thermal properties 6.6 Biodegradation 6.7 Possible application 6.8 Conclusion 6.9 Acknowledgement References 7 Synthesis and applications of IPNs based on smart polymers Guillermina Burillo, Emilio Bucio and Lorena Garcia-Uriostegui 7.1 Introduction 7.2 Stimuli-responsive polymers 7.3 IPNs and SIPNs 7.4 The synthesis and the applications of SIPNs and IPNs 7.4.1 Sequential SIPNs 7.4.2 The simultaneous method for the synthesis of SIPNs 7.4.3 A comparison of the properties between sequential and simultaneous SIPN films 7.4.4 The SIPNs of sensitive star polymers 7.5 IPNs 7.5.1 IPNs synthesized in one step by the simultaneous method 7.5.2 IPNs synthesized in two steps 7.6 IPNs and SIPNs synthesized by ionizing radiation 7.7 S-IPN and IPNs in the heavy ions immobilization 7.8 The novel architectures of IPNs developed by ionizing radiation polymerization 7.8.1 Polymer-g-IPNs synthesized via irradiation and the addition of a chemical initiator in three steps 7.8.2 Polymer-g- IPNs synthesized only by radiation in three steps 7.9 Conclusions 7.10 Acknowledgments References 8 Microscopy of IPNs Rameshwar Adhikari 8.1 Introduction and Overview 8.2 Sample Preparation for Microscopic Analysis 8.2.1 Microtomy and Ultramicrotomy 8.2.2 Staining of Thin Sections 8.2.3 Etching of Surfaces 8.2.4 Fracture Surface Preparation 8.3 Microscopy of Interpenetrating Polymer Networks (IPNs): An Overview 8.4 Morphological Characterization of Polymer Networks 8.4.1 Biomaterials and Biomedical Materials 8.4.2 Porous Networks 8.4.3 Elastomer and Latex Based Networks 8.4.4 Micro- and Nanostructured Materials and Hybrids 8.4.5 IPN-like Systems 8.5 Concluding Notes Acknowledgements 9. Viscoelastic Properties of Interpenetrating Polymer Networks Sudipta Goswami 9.1 Introduction 9.2 Viscoelastic properties of Simultaneous IPNS 9.3 Viscoelastic properties of Sequential IPNs 9.4 Overall Summary and future scope 9.5 Conclusion References 10. Interpenetrating and Semi-Interpenetrating Networks of Polyurethane Chepuri R.K. Rao, Ramanuj Narayan and K.V.S.N. Raju 10.1 Introduction 10.1.1 Polyurethane-acrylic, epoxy, polyester IPN systems 10.1.2 PU-other polymers 10.1.3 PU-conducting polymers 10.1.4 Applications and concluding remarks References 11. Solid state NMR and ESR studies of IPNs Srećko Valić, M. Andreis and D. Klepac 11.1 Introduction 11.2 Theoretical background 11.2.1 Solid state NMR spectroscopy 11.2.2 ESR spectroscopy 11.3 NMR of IPNs and semi IPNs 11.3.1 Characterization 11.3.2 Structure and Dynamics 11.4 ESR studies of IPNs and semi-IPNs 11.4.1 Nitroxyl radicals in studying IPNs and semi-IPNs 11.4.2 Radicals induced by high energy radiation 11.4.3 Copper(II) ions 11.5 Conclusion References 12. Diffusion, transport and barrier properties of IPNs Runcy Wilson, Anil Kumar S, Miran Mozetic, Uros Cvelbar and Sabu Thomas 12.1 Introduction 12.2 Back ground of IPNs 12.3 Transport properties: theoretical and practical aspects 12.4 Transport mechanism 12.5 Sorption and diffusion of solvents 12.6 Gas barrier properties of IPNs 12.7 Pervaporation characteristics of IPNs 12.8 Principles of pervaporation 12.9 Vapour sorption behaviour of IPNs 12.10 Conclusion 12.11 Applications, Challenges, Difficulties and Future Directions References 13. Ageing of Interpenetrating Polymer Networks Selvin P. Thomas and Mohammed N Alghamdi 13.1 Introduction 13.2 Ageing of IPNs 13.2.1 Thermal ageing 13.2.2 UV-radiation ageing 13.2.3 Water ageing 13.2.4 Aging by other sources 13.3 Conclusion References 13. Theoretical modeling and simulation of IPNs Pratab Bhaskar 14.1 Introduction 14.2. Theoretical Simulations 14.2.1 Quantum Mechanics 14.2.2 Classical Mechanics 14.3. Molecular Dynamics Methods and Theory 14.3.1. Potential Energy Functions 14.3.2. Molecular Mechanics 14.3.3. Integration of Equation of Motion 14.3.4 Statistical Ensembles 14.3.5. Simulation Environment 14.3.6. Amorphous Cells 14.4. Molecular Dynamic Study of Surface/Interface properties of Thermoplastic AIPNs and Organic-Inorganic composite IPNs 14.4.1. Surface Energy of Thermoplastic-AIPNS 14.4.2. Organic- Inorganic Composite IPNs Materials 14.5. Conclusions References 15. Applications of Interpenetrating Polymer Networks Chandra P.Sharma and Radhika Raveendran 15.1 Introduction 15.2 What are IPNs? 15.3 Properties of IPNs 15.4 Applications of IPNs 15.4.1 Selective transportation of liquids and gases 15.4.2 Ion exchange membranes 15.4.3 Removal of metal ions 15.4.4 Sound and vibration damping 15.4.5 Other general applications 15.4.6 Biomedical Applications of IPNs 15.5 Conclusion References Index.
Record Nr. UNINA-9910813494203321
Hoboken, New Jersey : , : Wiley, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui