Heavy metal stress in plants / / Dharmendra K. Gupta, Francisco J. Corpas, Jose M. Palma, editors |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Heidelberg ; ; New York, : Springer, c2013 |
Descrizione fisica | 1 online resource (xii, 242 pages) : illustrations (some color) |
Disciplina | 571.9543 |
Altri autori (Persone) |
GuptaDharmendra K
CorpasFrancisco J PalmaJose |
Collana | Gale eBooks |
Soggetto topico |
Plants - Effect of heavy metals on
Heavy-metal tolerant plants |
ISBN | 3-642-38469-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Metalloproteins Involved in the Metabolism of Reactive Oxygen Species (ROS) and Heavy Metal Stress -- Metal Transporters in Plants -- Biochemistry of Metals/Metalloids to Words Remediation Process -- Roles of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants -- Detoxification and Tolerance of Heavy Metal in Tobacco Plants -- Heavy Metal Uptake and Tolerance of Charophytes -- Molecular Mechanisms Involved in Lead Uptake, Toxicity and Detoxification in Higher Plants -- Inter-Population Responses to Metal Pollution: Metal Tolerance in Wetland Plants -- Intraspecific Variation in Metal Tolerance of Plants -- Metallomics and Metabolomics of Plants Under Environmental Stress Caused by Metals -- Biogeochemical Cycling of Arsenic in Soil-Plant Continuum: Perspectives for Phytoremediation -- Evaluation of the Potential of Salt Marsh Plants for Metal Phytoremediation in Estuarine Environment. |
Record Nr. | UNINA-9910437618403321 |
Heidelberg ; ; New York, : Springer, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Heavy Metal Toxicity and Tolerance in Plants : A Biological, Omics, and Genetic Engineering Approach |
Autore | Hossain Mohammad Anwar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (643 pages) |
Altri autori (Persone) |
HossainA. K. M. Zakir
BourgerieSylvain FujitaMasayuki DhankherOm Parkash HarisParvez |
Soggetto topico |
Plants - Effect of heavy metals on
Heavy metals |
ISBN |
9781119906506
1119906504 9781119906476 1119906474 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Editor Biographies -- Chapter 1 Plant Response and Tolerance to Heavy Metal Toxicity: An Overview of Chemical Biology, Omics Studies, and Genetic Engineering -- 1.1 Introduction -- 1.2 Plant-Metal Interaction -- 1.3 Effect of Heavy Metals on Plants -- 1.3.1 Morphoanatomical Responses -- 1.3.2 Physiological Responses -- 1.3.3 Biochemical Responses -- 1.3.4 Molecular Responses -- 1.4 Mechanisms to Tolerate Heavy Metal Toxicity -- 1.4.1 Avoidance -- 1.4.2 Sequestration -- 1.5 Important Strategies for the Enhancement of Metal Tolerance -- 1.5.1 Omics -- 1.5.2 Genetic Engineering -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2 Advanced Techniques in Omics Research in Relation to Heavy Metal/Metalloid Toxicity and Tolerance in Plants -- 2.1 Introduction -- 2.2 An Overview of Plant Responses to Heavy Metal Toxicity -- 2.3 How the Integration of Multi-omics Data Sets Helps in Studying the Heavy Metal Stress Responses and Tolerance Mechanisms? -- 2.3.1 The Contribution of State-of-the-Art Genomics-Assisted Breeding -- 2.3.2 Transcriptomics -- 2.3.3 Proteomics -- 2.3.4 Metabolomics -- 2.3.5 miRNAomics -- 2.3.6 Phenomics -- 2.4 Conclusion and Perspectives -- References -- Chapter 3 Heavy Metals/Metalloids in Food Crops and Their Implications for Human Health -- 3.1 Introduction -- 3.2 Arsenic -- 3.2.1 Sources and Forms -- 3.2.2 Food Chain Contamination -- 3.2.3 Pharmacokinetic Processes -- 3.2.4 Toxicology Processes -- 3.2.5 Remedial Options -- 3.3 Cadmium -- 3.3.1 Sources and Forms -- 3.3.2 Food Chain Contamination -- 3.3.3 Pharmacokinetic Processes -- 3.3.4 Toxicology Processes -- 3.3.5 Remedial Options -- 3.4 Lead -- 3.4.1 Sources and Forms -- 3.4.2 Food Chain Contamination -- 3.4.3 Pharmacokinetic Processes -- 3.4.4 Toxicology Processes.
3.4.5 Remedial Options -- 3.5 Chromium -- 3.5.1 Sources and Forms -- 3.5.2 Food Chain Contamination -- 3.5.3 Pharmacokinetic Processes -- 3.5.4 Toxicology Processes -- 3.5.5 Remedial Options -- 3.6 Mercury -- 3.6.1 Sources and Forms -- 3.6.2 Food Chain Contamination -- 3.6.3 Pharmacokinetic Processes -- 3.6.4 Toxicology Processes -- 3.6.5 Remedial Options -- 3.7 Conclusions -- References -- Chapter 4 Aluminum Stress Tolerance in Plants: Insights from Omics Approaches -- 4.1 Introduction -- 4.2 Exploration of Al Tolerance QTLs -- 4.3 Unraveling the Genetic Architecture of Al Tolerance from Natural Variation -- 4.4 Identification of Novel Al Tolerance Genes Through Genome-Wide Association Studies -- 4.5 Exploring Expression Level Polymorphisms to Identify Upstream Al Signaling -- 4.6 Comparative Transcriptome Analyses Identify Novel Al Tolerance Genes -- 4.7 Identification of Al Tolerance Genes from Proteomics -- 4.8 Conclusion and Future Perspectives -- References -- Chapter 5 Breeding Approaches for Aluminum Toxicity Tolerance in Rice and Wheat -- 5.1 Introduction -- 5.2 Plant Signaling -- 5.3 Rice Genetic Mapping -- 5.3.1 Linkage Mapping -- 5.3.2 Association Mapping -- 5.4 Root Transcriptome -- 5.5 Wheat Genetic Mapping -- 5.5.1 Wheat MATE Gene Family -- 5.6 Wheat Proteomics -- 5.7 Conclusion -- References -- Chapter 6 Chromium Toxicity and Tolerance in Plants: Insights from Omics Studies -- 6.1 Introduction -- 6.2 Chromium Sources and Bioavailability -- 6.3 Chromium Uptake, Translocation, and Sub-cellular Distribution in Plants -- 6.4 Detoxification Mechanisms for Cr -- 6.5 Omics Approaches Used by Plants to Combat Cr Toxicity -- 6.5.1 Transcriptomics -- 6.5.2 Chromium-Induced miRNAs in Plants -- 6.5.3 Metabolomics -- 6.5.4 Proteomics -- 6.6 Phytoremediation of Cr Metal by Plants -- 6.6.1 Phytoremediation Approach for Cr Detoxification. 6.6.2 Other Strategies Involved in Cr Remediation -- 6.6.3 Phytostabilization/Phytoextraction for Cr Decontamination -- 6.7 Conclusion -- References -- Chapter 7 Manganese Toxicity and Tolerance in Photosynthetic Organisms and Breeding Strategy for Improving Manganese Tolerance in Crop Plants: Physiological and Omics Approach Perspectives -- 7.1 Introduction -- 7.2 The Change in Mn Availability Within the Soil -- 7.3 Why Should We Consider the Occurrence of Mn Toxicity in Plants? Possible Threats of Mn Toxicity in Agricultural Land -- 7.4 The History of Mn Toxicity -- 7.5 The Features of Mn Toxicity in Terrestrial Plants and Possible Molecular Mechanisms -- 7.5.1 The Mechanisms of Emergence of Brownish Patchy Spots in Leaves: The Apoplastic Mn Toxicity -- 7.5.2 The Mechanisms of Foliar Chlorosis Under Excess Mn: Symplastic Mn Toxicity -- 7.6 Breeding Strategy for Overcoming the Future Threat of Excess Mn Conditions -- 7.6.1 Limiting Mn Absorption from Soil to Root -- 7.6.2 Sequestration of Mn from Cytosol to the Vacuole or Apoplast -- 7.6.3 Maintenance of Auxin Homeostasis -- 7.6.4 The Reinforcement of Silicon Uptake and Its Distribution -- 7.7 Conclusion and Future Prospects -- Acknowledgments -- References -- Chapter 8 Iron Excess Toxicity and Tolerance in Crop Plants: Insights from Omics Studies -- 8.1 Iron Uptake and Translocation Mechanism in Plants -- 8.1.1 Importance of Iron in Living Organisms -- 8.1.2 Fe Acquisition Systems in Plants -- 8.1.3 Fe Translocation Mechanisms in Plants -- 8.2 Fe Excess Toxicity in Plants -- 8.2.1 Fe Excess Toxicity in Global Agriculture -- 8.2.2 Causes of Fe Excess Toxicity in Soils and Its Interaction with Plants -- 8.2.3 Effects of Fe Excess Toxicity on Plant Growth -- 8.3 Crop Defense Mechanisms Against Excess Fe and Genes Regulating Fe Excess -- 8.3.1 Defense I: Fe Exclusion from Roots. 8.3.2 Defense II: Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 8.3.3 Defense III: Fe Compartmentalization in Shoots -- 8.3.4 Defense IV: ROS Detoxification -- 8.4 Research Outlook on Fe Excess Response of Plants -- 8.4.1 Regulation of Fe homeostasis in Plants in Response to Fe Excess Stress -- 8.4.2 Transcription Factors -- 8.4.3 Cis-Regulatory Elements -- 8.5 Conclusion and Future Prospects -- Acknowledgments -- Author Contributions -- Disclosures -- References -- Chapter 9 Molecular Breeding for Iron Toxicity Tolerance in Rice (Oryza sativa L.) -- 9.1 Introduction -- 9.2 Role of Iron in Plants and Rice -- 9.3 Iron Toxicity and Its Effects on Rice -- 9.4 Iron Toxicity Tolerance Mechanisms in Rice Plants -- 9.4.1 Fe Exclusion from Roots -- 9.4.2 Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 9.4.3 Fe Compartmentalization in Shoots -- 9.4.4 ROS Detoxification -- 9.4.5 Candidate Genes Involved in the Mechanisms of Fe Toxicity -- 9.4.6 Genetic Variants for Iron Toxicity Tolerance in Rice Germplasm -- 9.5 Molecular Breeding for Fe Toxicity Tolerance in Rice -- 9.6 Conclusion -- References -- Chapter 10 Cobalt Induced Toxicity and Tolerance in Plants: Insights from Omics Approaches -- 10.1 Introduction -- 10.2 Plant Response to Cobalt Stress -- 10.2.1 Uptake and Translocation of Cobalt in Plants -- 10.3 Cobalt-Induced ROS Generation and Their Damaging Effects -- 10.3.1 ROS-Induced Lipid Peroxidation -- 10.3.2 ROS-Induced Damage to Genetic Material -- 10.4 Cobalt-Induced Plant Antioxidant Defense System -- 10.4.1 Enzymatic Antioxidants -- 10.4.2 Nonenzymatic Antioxidants -- 10.5 Omics Approaches in Cobalt Stress Tolerance -- 10.5.1 Transcriptomic -- 10.5.2 Metabolomics -- 10.5.3 Proteomics -- 10.6 Conclusion and Future Prospects -- Acknowledgments -- References. Chapter 11 Nickel Toxicity and Tolerance in Plants -- 11.1 Introduction -- 11.2 Sources of Ni -- 11.2.1 Natural Sources of Ni -- 11.2.2 Anthropogenic Sources of Ni -- 11.3 Role of Ni in Plants -- 11.4 Ni Uptake and Accumulation in Plants -- 11.5 Ni Toxicity in Plants -- 11.5.1 Growth Inhibition -- 11.5.2 Photosynthesis Inhibition of Ni -- 11.5.3 Induction of Oxidative Stress -- 11.6 Tolerance Mechanisms -- 11.7 Omics Approaches in Ni Stress Tolerance -- 11.7.1 Transcriptomics -- 11.7.2 Proteomics -- 11.7.3 Metabolomics -- 11.8 Conclusion -- References -- Chapter 12 Copper Toxicity and Tolerance in Plants: Insights from Omics Studies -- 12.1 Introduction -- 12.2 Copper in Plants -- 12.2.1 Functions of Copper -- 12.2.2 Uptake, Transport, Distribution, and Remobilization Mechanisms -- 12.2.3 Deficient, Sufficient, and Toxic Levels of Copper in Plants -- 12.2.4 Copper Sources: Fertilizers and Fungicides -- 12.3 Omics Approaches for Cu Responses and Tolerance in Plants -- 12.3.1 Genomics -- 12.3.2 Transcriptomics -- 12.3.3 Proteomics -- 12.3.4 Metabolomics -- 12.3.5 miRNAomics -- 12.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Zinc Toxicity and Tolerance in Plants: Insights from Omics Studies -- 13.1 Introduction -- 13.1.1 Zinc Uptake and Translocation Mechanisms in Plants -- 13.1.2 Transporters and Metal-Binding Compounds Involved in Zinc Homeostasis -- 13.2 Impact of Excess Zinc on Physio-genetics Aspects of Plants -- 13.2.1 Effect of Zinc Toxicity on Seed Germination and Growth of Plants -- 13.2.2 Effect of Zinc Toxicity on Oxidative Metabolism in Plants -- 13.2.3 Effect of Zn Toxicity on Physiology and Biochemistry of Plants -- 13.3 Plants Stress Adaptation to Zinc Toxicity -- 13.4 Multi-omics Approaches for Zinc Toxicity and Tolerance in Plants -- 13.4.1 Genomics and Metabolomics -- 13.4.2 Proteomics and Transcriptomics. 13.4.3 miRNA Omics and CRISPR/Cas9 System. |
Record Nr. | UNINA-9910877326603321 |
Hossain Mohammad Anwar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Phytoremediation and stress [[electronic resource] ] : evaluation of heavy metal-induced stress in plants / / Jana Kadukova and Jana Kavulicova |
Autore | Kadukova Jana |
Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
Descrizione fisica | 1 online resource (144 p.) |
Disciplina | 571.9/2 |
Altri autori (Persone) | KavulicovaJana |
Collana | Botanical research and practices |
Soggetto topico |
Plants - Effect of heavy metals on
Plants - Effect of stress on Phytoremediation |
Soggetto genere / forma | Electronic books. |
ISBN | 1-61122-108-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910461083903321 |
Kadukova Jana | ||
New York, : Nova Science Publishers, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Phytoremediation and stress [[electronic resource] ] : evaluation of heavy metal-induced stress in plants / / Jana Kadukova and Jana Kavulicova |
Autore | Kadukova Jana |
Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
Descrizione fisica | 1 online resource (144 p.) |
Disciplina | 571.9/2 |
Altri autori (Persone) | KavulicovaJana |
Collana | Botanical research and practices |
Soggetto topico |
Plants - Effect of heavy metals on
Plants - Effect of stress on Phytoremediation |
ISBN | 1-61122-108-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910790064403321 |
Kadukova Jana | ||
New York, : Nova Science Publishers, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Phytoremediation and stress : evaluation of heavy metal-induced stress in plants / / Jana Kadukova and Jana Kavulicova |
Autore | Kadukova Jana |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
Descrizione fisica | 1 online resource (144 p.) |
Disciplina | 571.9/2 |
Altri autori (Persone) | KavulicovaJana |
Collana | Botanical research and practices |
Soggetto topico |
Plants - Effect of heavy metals on
Plants - Effect of stress on Phytoremediation |
ISBN | 1-61122-108-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- PHYTOREMEDIATION AND STRESS: EVALUATION OF HEAVY METAL-INDUCED STRESS IN PLANTS -- PHYTOREMEDIATION AND STRESS: EVALUATION OF HEAVY METAL-INDUCED STRESS IN PLANTS -- CONTENTS -- PREFACE -- Introduction -- Chapter 1 PHYTOREMEDIATION -- 1.1. Phytoremediation Techniques -- 1.2. Practical Application of Phytoremediation -- 1.2.1. Phytostabilization -- Phytostabilization Field Case Studies -- Guadiamar River Valley, Spain -- Sanlúcar la Mayor, Seville, Spain -- Torviscosa, Udine, Italy -- 1.2.2. Phytoextraction -- Phytoextraction Field Case Studies -- Nottingham, UK -- St. Petersburg Region, Russia -- La Bouzule, Lorraine, France -- Woburn Market Garden, Bedfordshire, UK -- Guangzhou, China -- Bazoches and Toulouse, France -- Lommel, Belgium -- 1.2.3. Phytomining -- Phytomining Field Case Studies -- Fazenda Brasileiro Gold Mine, Brazil -- Pojske, Pogradec, Albania -- Mont Pelato, Livorno, Italy -- Chapter 2 STRESS PHYSIOLOGY -- Generation of Stress Proteins -- Generation and Removal of Reactive Oxygen Species -- Generation of "Stress" Hormones -- Accumulation of Osmolytes -- Chapter 3 METAL STRESS -- 3.1. Sources of Metals in Soils -- 3.2. Metal Phytotoxicity Symptoms -- 3.3. Mechanisms of Metal Accumulation by Plants -- 1. Mobilization, Root Uptake and Sequestration -- 2. Translocation -- 3. Tissue Distribution and Storage -- 3.4. Plant Adaptation to Metal Stress -- 3.5. Metal-Induced Stress -- 3.5.1. Formation of Phytochelatins and Metallothioneins -- 3.5.2. Reduction and Consequent Stimulation of Antioxidant Systems -- Fenton Reaction -- Haber-Weiss Reaction -- ROS Detoxification - Antioxidant Systems -- Non-Enzymatic ROS Scavenging Mechanisms -- Enzymatic ROS Scavenging Mechanisms -- 3.5.3. Influence on Photosynthetic System -- Chapter 4 STRESS EVALUATION -- 4.1. Germination -- 4.2. Reduction in Growth.
4.3. Photosynthetic Pigments -- 4.4. Antioxidant Enzymes -- 4.5. Antioxidants -- 4.6. Phytochelatins -- Chapter 5 CONCLUSION -- ACKNOWLEDGEMENT -- REFERENCES -- INDEX -- Blank Page. |
Altri titoli varianti | Evaluation of heavy metal-induced stress in plants |
Record Nr. | UNINA-9910827185703321 |
Kadukova Jana | ||
New York, : Nova Science Publishers, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Plant metal and metalloid transporters / / Kundan Kumar and Sudhakar Srivastava, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (455 pages) |
Disciplina | 582.019214 |
Soggetto topico |
Plants - Effect of metals on
Metals - Transport properties Plants - Effect of heavy metals on |
ISBN | 981-19-6103-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- 1: Plant Metal and Metalloid Transporters -- 1.1 Introduction -- 1.2 Metals and Their Significance in Plants -- 1.3 Metalloids and Their Significance in Plants -- 1.4 Metal Transporters -- 1.4.1 NRAMP Transporters -- 1.4.2 CDF Transporters -- 1.4.3 ZIP Transporters -- 1.4.4 ABC Transporters -- 1.4.5 Heavy Metal ATPases (HMAs) -- 1.5 Metalloid Transporters -- 1.5.1 Diversity of Plant Metalloid Transporters -- 1.5.2 Metalloid Absorption Channels -- 1.5.3 Metalloid Channel Transporters and Their Specificity -- 1.6 Metalloid Transporter Types -- 1.6.1 Aquaporin Transporters -- 1.6.1.1 NIP Transporters -- 1.6.2 Metalloid Efflux Transporters in Plants -- 1.6.2.1 BOR Transporters -- 1.6.2.2 Lsi2 Transporters -- 1.7 Directional Transport Systems for Metalloid Uptake -- 1.7.1 Polar Localization of Metalloid Transporters in Plants -- 1.8 Distribution of Metalloids by Transporters -- 1.8.1 Transporters for B Distribution -- 1.8.2 Transporters for Si Distribution -- 1.8.3 Transporters for As Distribution -- 1.9 Conclusions and Future Perspectives -- References -- 2: Heavy Metals: Transport in Plants and Their Physiological and Toxicological Effects -- 2.1 Introduction -- 2.2 Different Sources of Heavy Metal Pollution -- 2.3 Properties of Heavy Metal -- 2.4 Effects and Transport of Metal Pollutants into the Ecosystem -- 2.4.1 Translocation of Metals in Soil -- 2.4.2 Translocation of Metals in Water -- 2.4.3 Translocation of Metals in Air -- 2.5 Heavy Metal Pollution in the Atmosphere: A Need for Great Attention -- 2.6 Heavy Metals and Their Translocation in Plants -- 2.6.1 Chromium -- 2.6.2 Toxicology Processes -- 2.6.3 Fluoride -- 2.6.4 Toxicological Processes -- 2.6.5 Manganese -- 2.6.6 Cobalt -- 2.6.7 Nickel -- 2.6.8 Copper -- 2.6.9 Zinc -- 2.6.10 Mercury -- 2.6.11 Lead -- 2.7 Conclusion.
References -- 3: The Role of ABC Transporters in Metal Transport in Plants -- 3.1 Introduction -- 3.2 ABC Transporter Family -- 3.3 Molecular Structure of ABC Transporters -- 3.4 Primary Superfamilies of Plant ABC Transporters -- 3.4.1 MDR Superfamily -- 3.4.2 MRP Superfamily -- 3.5 Classes of Plant ABC Transporters -- 3.6 Role of ABC Transporters -- 3.6.1 Role in Growth and Development: Transport of Hormones, Fatty Acids, and Phytate -- 3.6.2 Role in Pathogen Defense -- 3.7 ABC Transporters in Metal Transport and Sequestration -- 3.8 Future Prospects -- References -- 4: Cadmium, a Nonessential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism -- 4.1 Introduction -- 4.2 Cadmium Transporters: Uptake and Translocation -- 4.3 NRAMP Transporters -- 4.4 ZIP Transporters -- 4.5 YSL Transporters -- 4.6 Transporters Involved in Shoot Uptake of Cadmium -- 4.7 Cadmium Stress Signaling -- 4.8 Phytochelatins and Metallothioneins: Role in Cd Detoxification -- 4.9 Cadmium Toxicity and Amino Acid Metabolism -- 4.10 Conclusion -- References -- 5: Natural Resistance-Associated Macrophage Proteins (NRAMPs): Functional Significance of Metal Transport in Plants -- 5.1 Introduction -- 5.2 Genomic Analysis -- 5.3 Structural Analysis -- 5.4 Functional Characterization -- 5.5 Expression Pattern and Regulation -- 5.6 Conclusion -- References -- 6: Role of Heavy Metal ATPases in Transport of Cadmium and Zinc in Plants -- 6.1 Introduction -- 6.2 Heavy Metal ATPases in Alleviating Heavy Metal Toxicity -- 6.3 Cadmium Toxicity in Plants -- 6.3.1 Transporters in Alleviating Cadmium Stress -- 6.3.2 Activities of HMA Within the Roots in Response to Cadmium Stress -- 6.3.3 Heavy Metal ATPase Associated with Cadmium Translocation -- 6.3.4 Heavy Metal ATPase Associated with Xylem Unloading and Cadmium Distribution. 6.4 Zinc Toxicity in Plants -- 6.4.1 Heavy Metal ATPases in Zinc Homeostasis -- 6.5 Expression of Heavy Metal ATPases -- 6.6 Prospects and Conclusion -- References -- 7: The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport -- 7.1 Introduction -- 7.2 PIP Members as Metalloid Transporters -- 7.3 NIP Members as Metalloid Transporters -- 7.4 XIP Members as Metalloid Transporters -- 7.5 Role of TIPs in Metalloid Transport and Tolerance -- 7.6 Future Perspectives -- References -- 8: The Multidrug and Toxic Compound Extrusion (MATE) Family in Plants and Their Significance in Metal Transport -- 8.1 Introduction -- 8.2 Structure of MATEs -- 8.3 Function of MATE Transporters in Metal Toxicity Tolerance -- 8.3.1 Role of MATE Transporters in Xenobiotic Toxicity Tolerance -- 8.3.2 Effect of Aluminum on Plants -- 8.3.2.1 MATE Transporters Exude Citrate in Response to Aluminum Toxicity -- 8.3.3 Role of MATE Transporters in Iron Homeostasis -- 8.4 Other Functions of MATE Transporters in Plants -- 8.4.1 Secondary Metabolite Transport -- 8.4.2 Developmental Roles -- 8.4.3 Biotic Stress -- 8.5 Conclusion and Future Perspectives -- References -- 9: Molecular Mechanism of Aluminum Tolerance in Plants: An Overview -- 9.1 Aluminum Toxicity and Tolerance in Plants: An Introduction -- 9.2 Effect of Aluminum Stress in Plants -- 9.3 Aluminum Tolerance Mechanism -- 9.3.1 External Tolerance Mechanism -- 9.3.2 Internal Tolerance Mechanism -- 9.3.3 Transcription Factors Involved in Combatting Aluminum Stress -- 9.3.4 Plant Hormones Involved in Aluminum Stress Adaptation -- 9.4 Manipulation of Aluminum-Tolerant Genes Using Transgenic Approaches -- 9.5 Conclusion and Future Perspective -- References -- 10: Functional, Structural, and Transport Aspects of ZIP in Plants -- 10.1 Introduction -- 10.2 Role of Zn in Plants -- 10.3 Zn Transport Protein in Plants. 10.3.1 Zn Uptake and Transport in Plants -- 10.4 ZIP in Plants -- 10.4.1 Structural and Functional Aspect of ZIP in Plants -- 10.4.2 Regulation of ZIP in Plants -- 10.5 Conclusion and Future Prospectus -- References -- 11: The Function of HAK as K+ Transporter and AKT as Inward-Rectifying Agent in the K+ Channel -- 11.1 Introduction -- 11.2 HAK-AKT Transporters Present in Various Plants -- 11.3 K+ Channels and Transporters -- 11.4 Adaptive Responses of Plants to Salinity Stress -- 11.5 Mechanism of Action of HAK and AKT -- 11.6 Conclusion -- References -- 12: The Mechanism of Silicon Transport in Plants -- 12.1 Silicon -- 12.2 Silicon in Plants -- 12.3 Silicon in Soil -- 12.4 Silicon and Abiotic Stresses -- 12.4.1 Water-Deficit Stress -- 12.4.2 Temperature Stress -- 12.4.3 Ultraviolet Stress -- 12.4.4 Mechanical Injury -- 12.4.5 Heavy Metal Stress -- 12.4.6 Excessive Mineral Nutrient Stress -- 12.4.7 Saline Stress -- 12.5 Silicon and Biotic Stress Mitigation -- 12.6 Omics Studies on Silicon Application on Crops -- 12.7 Reactive Oxygen Species Regulation -- 12.8 Silicon and Phytohormone Cross Talk -- 12.9 Si Accumulation and Transporters in the Plant Kingdom -- 12.10 Silicon Accumulation and Uptake -- 12.11 Silicon Transport in Xylem -- 12.12 Elements Effecting Silicon Uptake and Distribution -- 12.13 Silicon Uptake Mechanism: Influx and Efflux Transporters (Table 12.2) -- 12.14 Silicon Transport -- 12.14.1 Channel-Type Transporters -- 12.15 Silicon Uptake in Major Crops -- 12.15.1 Silicon Uptake in Rice -- 12.15.2 Silicon Uptake in Sugarcane -- 12.15.3 Silicon Uptake in Pepper -- 12.15.4 Silicon Uptake in Tomato -- 12.15.5 Silicon Uptake in Wheat -- 12.15.6 Silicon Uptake in Maize -- 12.15.7 Silicon Uptake in Cucumber -- 12.15.8 Silicon Uptake in Barley -- 12.15.9 Silicon Uptake in Arabidopsis -- 12.15.10 Silicon Uptake in Cannabis. 12.16 Silicon Controversy -- 12.17 Conclusion -- 12.18 Future Recommendation -- References -- 13: The Copper Transport Mechanism in Plants -- 13.1 Introduction -- 13.2 Mechanism of Copper (Cu) Transport in Plants -- 13.3 P-Type ATPase Copper Transporters -- 13.4 COPT Copper Transporters -- 13.5 Copper Chaperones -- 13.6 Natural Resistance-Associated Macrophage Protein (NRAMP) -- 13.7 Relating the Biosynthetic and Homeostatic Roles of Cu Transport Systems -- 13.8 Conclusion -- References -- 14: Plant Metal Tolerance Proteins: Insight into Their Roles in Metal Transport and Homeostasis for Future Biotechnological Ap... -- 14.1 Introduction -- 14.2 Regulation of Cellular Metal Homeostasis -- 14.2.1 Role of MTPs in Vacuolar Compartmentalization for Metal Homeostasis -- 14.2.2 Plasma Membrane-Localized MTP Transporter Responsible for Distal Transport of Mn -- 14.2.3 MTP Transporter as Manganese Transport Proteins in Endomembranes -- 14.2.4 MTP Member Assures Mn Homeostasis During Seed Development and Germination -- 14.3 Potential of MTP in Biotechnological Application -- 14.4 Future Prospects -- References -- 15: Co-Transport Mechanism in Plants for Metals and Metalloids -- 15.1 Introduction -- 15.2 Cation Diffusion Facilitators (CDF) Transporter -- 15.3 Lsi Transporter -- 15.4 Yellow Stripe-Like Proteins (YSL) Transporter -- 15.5 Heavy Metal ATPases (HMAs) Transporters -- 15.6 ZIP Transporter -- 15.7 NRAMP (Natural Resistance-Associated Macrophage Protein) Transporters -- 15.8 ABC Transporter -- 15.9 Aquaglyceroporin Transporter -- 15.10 Conclusions -- References -- 16: Metal Nanoparticle Implication, Transport, and Detection in Plants -- 16.1 Introduction -- 16.2 Metal NPs Implications on Plants -- 16.2.1 Metal NPs Implications on Seed Germination -- 16.2.2 Metal NPs Implications on Plant Growth and Root Elongation. 16.2.3 Metal NP Implications on Photosynthetic Pigments. |
Record Nr. | UNINA-9910624382803321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unraveling of plant-soil-microbe interactions for phytoremediation of heavy metal contaminated soils considering future climate change impacts / / Ying Ma |
Autore | Ma Ying (Ecologist) |
Pubbl/distr/stampa | Hauppauge, New York : , : Nova Science Publishers, Incorporated, , [2016] |
Descrizione fisica | 1 online resource (169 pages) : illustrations (some color) |
Disciplina | 628.5/5 |
Collana | Air, water and soil pollution science and technology |
Soggetto topico |
Phytoremediation
Plants - Effect of heavy metals on Plants - Effect of global warming on Soils - Heavy metal content Heavy metals - Environmental aspects Soil microbial ecology |
ISBN | 1-5361-0257-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Heavy metal availability, uptake, transport and distribution in plants -- Phytoremediation -- Role of beneficial microbes in accelerating phytoremediation of metalliferous soils -- Plant-microbe-metal interactions in phytoremediation -- Climate change effect on plant-microbe-metal interactions. |
Record Nr. | UNINA-9910150313503321 |
Ma Ying (Ecologist) | ||
Hauppauge, New York : , : Nova Science Publishers, Incorporated, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|