top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The ecology of plant litter decomposition in stream ecosystems / / Christopher M. Swan, Luz Boyero and Cristina Canhoto (editors)
The ecology of plant litter decomposition in stream ecosystems / / Christopher M. Swan, Luz Boyero and Cristina Canhoto (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (518 pages)
Disciplina 577.64
Soggetto topico Plant litter - Biodegradation
Stream ecology
Fulles
Biodegradació
Ecologia fluvial
Soggetto genere / forma Llibres electrònics
ISBN 3-030-72854-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Contents -- Part I General Overview on Plant Litter Decomposition in Streams -- 1 The Ecology of Plant Litter Decomposition in Stream Ecosystems: An Overview -- References -- 2 Multi-Scale Biophysical Factors Driving Litter Dynamics in Streams -- 2.1 Streams as Hotspots of Organic Matter Processing -- 2.2 Dynamics of Litter Inputs and Storage in Streams -- 2.3 Mechanisms of Litter Fluxes in Streams: Local and Regional Scales -- 2.3.1 Litter Inputs -- 2.3.2 Litter Storage -- 2.3.3 Litter Decomposition -- 2.4 Future Research Needs -- References -- 3 Stoichiometry of Plant Litter Decomposition in Stream Ecosystems -- 3.1 Ecological Stoichiometry: Conceptual Bases in Detritus-Based Ecosystems -- 3.2 From the Riparian Zone to Freshwaters: The Stoichiometry of Leaf Litter -- 3.3 Stoichiometry of Litter Microbial Decomposition in Freshwaters -- 3.4 Stoichiometry of Metazoan Detritivores -- 3.5 Stoichiometry for Linking Organisms Requirements to Freshwater Ecosystems Functioning -- 3.6 Conclusions and Main Perspectives of Research -- 3.6.1 Complementary Nutritional Constraints for Litter Decomposition -- 3.6.2 Stoichiometric Interactions with Other Organisms -- 3.6.3 Stoichiometry of Litter Decomposition in a Changing World -- 3.6.4 More Conceptualization to Disentangle Stoichiometric Controls and Other Mechanisms at Play -- References -- 4 Global Patterns of Plant Litter Decomposition in Streams -- 4.1 Introduction -- 4.2 Assessing Global Patterns to Inform About Global Change -- 4.3 Approaches to Determining Global Patterns -- 4.4 Distinguishing Decomposition Pathways -- 4.5 Global Patterns and Drivers of Microbial Decomposition -- 4.6 Global Patterns and Drivers of Detritivore-Mediated Decomposition -- 4.7 Conclusion and Perspectives -- References -- 5 Plant Litter Decomposition in Intermittent Rivers and Ephemeral Streams.
5.1 What Are Intermittent Rivers and Ephemeral Streams? -- 5.1.1 Habitat Mosaic and Hydrological Phases -- 5.1.2 Abundance and Distribution -- 5.1.3 Drivers of Flow Intermittence and Trends -- 5.2 Rates, Agents and Processes of Leaf Litter Decomposition in IRES Habitats -- 5.2.1 Leaf Litter Decomposition in Flowing Water Conditions -- 5.2.2 Leaf Litter Decomposition in the Terrestrial-Aquatic Habitat Mosaic During Drying -- 5.3 Dynamics of Leaf Litter Decomposition in IRES -- 5.3.1 IRES Act Locally as Punctuated Biogeochemical Reactors -- 5.3.2 Leaf Litter Decomposition Across River Networks: IRES as Dynamic Metaecosystems -- 5.4 Roadmap for Research and Applications -- References -- 6 Plant Litter Decomposition in Terrestrial Ecosystems Compared to Streams -- 6.1 Introduction -- 6.2 Main Biotic and Abiotic Drivers of Litter Decomposition in Terrestrial Ecosystems Compared to Streams -- 6.2.1 The Role of Litter Quality and Climatic Conditions -- 6.2.2 The Role of Decomposer Organisms -- 6.2.3 Temporal Dynamics of Biotic and Abiotic Drivers of Litter Decomposition -- 6.3 Diversity and Litter Decomposition in Terrestrial Ecosystems Compared to Streams -- 6.3.1 Leaf Litter Diversity -- 6.3.2 Multi-trophic Diversity -- 6.4 Global Change and Litter Decomposition in Terrestrial Ecosystems Compared to Streams -- 6.4.1 Climate Warming -- 6.4.2 Nitrogen Enrichment -- 6.4.3 Biotic Invasions -- 6.5 Suggested Approaches for Future Studies -- 6.5.1 Future Studies Looking at Biotic and Abiotic Drivers -- 6.5.2 Future Studies Looking at Diversity Effects -- 6.5.3 Future Studies Looking at Global Change Effects -- 6.6 Summary -- References -- Part II Biodiversity and Plant Litter Decomposition -- 7 Biodiversity and Plant Litter Decomposition in Streams -- 7.1 Introduction -- 7.2 What Limits Rates of Decomposition? -- 7.3 Litter Diversity Effects on Decomposition.
7.4 Consumer Effects on Mixed Litter Decomposition -- 7.5 Nutrient Transfer, Immobilization and Litter Species Mixtures -- 7.6 Structural Heterogeneity in Litter Mixtures -- 7.7 Litter Mixing Effects on Shredders -- 7.8 Decomposer Diversity Effects on Decomposition -- 7.8.1 Shredder Diversity -- 7.8.2 Microbial Diversity -- 7.9 Vertical Diversity -- References -- 8 The Role of Key Plant Species on Litter Decomposition in Streams: Alder as Experimental Model -- 8.1 The Key Species Concept -- 8.2 Alder Litter in Field Experiments -- 8.2.1 Alder and Stream Litter Processing Capacity -- 8.2.2 Dissolved Nutrients and Alder Decomposition -- 8.2.3 Alder: The Top of the Class -- 8.2.4 Alder Is Always Welcome -- 8.3 Alder Litter in Laboratory Experiments -- 8.3.1 Alder Is a Good Resource for Consumers -- 8.3.2 Alder Is a Key Driver of Litter Diversity Effects on Decomposition -- 8.3.3 Alder Can Inform About Early Effects of Environmental Change -- 8.4 Comparisons Between Alder and Poor-Quality Litter -- 8.5 Conclusions -- References -- 9 Linking Microbial Decomposer Diversity to Plant Litter Decomposition and Associated Processes in Streams -- 9.1 An Introduction to Microbial Decomposers in Freshwaters -- 9.2 Profiling Microbial Decomposers to Unravel Microbial Diversity and Functions in Freshwaters -- 9.2.1 Identification of Aquatic Hyphomycetes -- 9.2.2 Genetic diversity -- 9.2.3 Phylogeny and Diversity -- 9.2.4 Leaf Litter Associated Microbial Communities -- 9.2.5 Microbial Biomass Accrual and Reproduction -- 9.2.6 Catabolic Reactions and Enzymatic Activity -- 9.2.7 Discriminating Individual Species Performances Within Communities -- 9.3 Microbial Metabolism and Stoichiometry -- 9.3.1 Carbon Quality and Priming Effect on Litter Decomposition -- 9.3.2 Microbial Leaf Litter Decomposition Budgets -- 9.3.3 Microbial Stoichiometry and Carbon-Use Efficiency.
9.4 Substrate Diversity and Quality for Microbial Decomposers -- 9.5 Microbial Diversity and Litter Decomposition Under Global Change -- 9.6 Functional Consequences of Microbial Biodiversity Loss -- 9.7 Outlook -- References -- 10 The Role of Macroinvertebrates on Plant Litter Decomposition in Streams -- 10.1 Introduction -- 10.2 Macroinvertebrate Shredder Functional Traits -- 10.3 Inter- and Intraspecific Interactions -- 10.4 Impacts of Global Change on Litter Decomposition via Effect on Invertebrate Shredders -- 10.4.1 Warming -- 10.4.2 Climate-Induced Changes in Vegetation -- 10.4.3 Direct and Indirect Effects of Changed Precipitation -- 10.4.4 Fire and Strong Winds -- 10.4.5 Human Activities -- 10.5 Conclusion -- References -- 11 The Role of Protozoans and Microscopically Small Metazoans in Aquatic Plant Litter Decomposition -- 11.1 Decomposing Leaves as 'Micro-Worlds' -- 11.2 Protozoans and Micro-metazoans Are Omnipresent in Aquatic Systems and Part of the Food Web -- 11.3 Is Identification Key? -- 11.4 Do Protozoans and Micro-metazoans Play a Role in Leaf Litter Decomposition? What Is the Evidence? -- 11.5 Theoretical Approach to Assess Possible Indirect Effects of Protozoans and Micro-metazoans -- 11.6 Synthesis and Where Do We Go from Here -- References -- Part III Global Change and Plant Litter Decomposition -- 12 Individual and Interacting Effects of Elevated CO2, Warming, and Hydrologic Intensification on Leaf Litter Decomposition in Streams -- 12.1 Predicted Individual Effects of Elevated Atmospheric CO2 Concentration, Warming, and Hydrologic Intensification on Leaf Litter Decomposition -- 12.2 Effect Size of Elevated Atmospheric CO2 Concentration and Warming on Litter Decomposition -- 12.2.1 Elevated Atmospheric CO2 Concentration -- 12.2.2 Elevated Temperature -- 12.3 Quantifying the Temperature Dependence of Litter Decomposition.
12.3.1 Theory -- 12.3.2 Results from Past Studies -- 12.3.3 Modulation of Temperature Sensitivity by Biotic and Abiotic Factors -- 12.4 Interactions Between Elevated CO2, Elevated Temperature, and Altered Hydrologic Flow on Litter Decomposition Mediated by Microbes and Detritivores -- 12.5 Significance of Leaf Litter Decomposition Responses to Climate Change -- 12.5.1 Global C Budget -- 12.5.2 Food Webs -- 12.6 Conclusions -- References -- 13 Causes and Consequences of Changes in Riparian Vegetation for Plant Litter Decomposition Throughout River Networks -- 13.1 Riparia & -- River Networks -- 13.2 Global Changes in Riparian Vegetation: Streams, Rivers, & -- Coastal Wetlands -- 13.2.1 Climate Change: Temperature, Precipitation, Hydrology, and CO2 Concentrations -- 13.2.2 Native and Non-native Plant Species Changes -- 13.2.3 Agriculture and Forest Harvesting -- 13.2.4 Urbanization -- 13.3 Impacts of Altered Litter Decomposition Throughout River Networks -- 13.3.1 Land-Use Change Impacts -- 13.3.2 Climate Change and Eutrophication Impacts -- 13.3.3 Impacts of Altered Hydrologic Connectivity -- 13.3.4 Impacts on Ecosystem Services -- References -- 14 Effects of Exotic Tree Plantations on Plant Litter Decomposition in Streams -- 14.1 Introduction -- 14.2 Case Studies -- 14.2.1 Eucalyptus Plantations (Fig. 14.3) -- 14.2.2 Conifer Plantations (Fig. 14.5) -- 14.3 Other Planted Species and Management of Plantations -- 14.4 Concluding Remarks -- References -- 15 Salt Modulates Plant Litter Decomposition in Stream Ecosystems -- 15.1 Stream Salinization -- 15.2 Stream Ecosystems Are Intimately Linked to Their Surroundings -- 15.3 Effects of Stream Salinization on Litter Decomposition -- 15.3.1 Microbial-Mediated Decomposition -- 15.3.2 Invertebrate-Mediated Decomposition -- 15.4 Factors Modulating Salinization Effects on Litter Decomposition.
15.5 Decomposition in Saline Streams.
Record Nr. UNINA-9910488710103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Methods to study litter decomposition : a practical guide / edited by Manuel A. S. Graca, Felix Barlocher and Mark O. Gessner
Methods to study litter decomposition : a practical guide / edited by Manuel A. S. Graca, Felix Barlocher and Mark O. Gessner
Pubbl/distr/stampa Dordrecht ; New York : Springer, 2005
Descrizione fisica x, 329 p. : ill. ; 25 cm
Disciplina 581.714
Altri autori (Persone) Graca, Manuel A. S.
Barlocher, Felix
Gessner, Mark O.
Soggetto topico Plant litter - Biodegradation
ISBN 1402033486
Classificazione LC QH541.5.S6M48
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001383459707536
Dordrecht ; New York : Springer, 2005
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Plant litter : decomposition, humus formation, carbon sequestration / / Bjorn Berg, Charles McClaugherty
Plant litter : decomposition, humus formation, carbon sequestration / / Bjorn Berg, Charles McClaugherty
Autore Berg Björn
Edizione [3rd ed. 2014.]
Pubbl/distr/stampa Heidelberg, Germany : , : Springer, , 2014
Descrizione fisica 1 online resource (xvii, 315 pages) : illustrations
Disciplina 333.7
333.72
570
577
Collana Gale eBooks
Soggetto topico Plant litter - Biodegradation
Humification
Carbon sequestration
Soil ecology
ISBN 3-642-38821-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Decomposition as a process – some main features -- Decomposer organisms -- Initial litter chemical composition -- Changes in substrate composition during decomposition -- Chemical constituents as rate regulating: initial variation and changes during decomposition. New and traditional analytical techniques -- Climatic environment -- Decomposition of fine root and woody litter -- Models that describe litter decomposition -- Some possible influences on decomposition pattern, regression model, stable fraction and C sequestration -- Does humus accumulate and where? What factors may influence? Estimating carbon sequestration rates on a regional scale.
Record Nr. UNINA-9910298303003321
Berg Björn  
Heidelberg, Germany : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui