top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied multiphase flow in pipes and flow assurance : oil and gas production / / Eissa M. Al-Safran, James P. Brill
Applied multiphase flow in pipes and flow assurance : oil and gas production / / Eissa M. Al-Safran, James P. Brill
Autore Al-Safran Eissa M.
Pubbl/distr/stampa Richardson, Texas : , : Society of Petroleum Engineers, , 2017
Descrizione fisica 1 online resource (566 pages) : illustrations, graphs
Disciplina 621.8672
Soggetto topico Pipe - Fluid dynamics
Multiphase flow
Pipelines
Soggetto genere / forma Electronic books.
ISBN 1-61399-581-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910467342703321
Al-Safran Eissa M.  
Richardson, Texas : , : Society of Petroleum Engineers, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental investigation of two-phase flows in large-diameter pipes and evaluation of flow models applied to worst-case-discharge calculations / / Paulo J. Waltrich [and eight others]
Experimental investigation of two-phase flows in large-diameter pipes and evaluation of flow models applied to worst-case-discharge calculations / / Paulo J. Waltrich [and eight others]
Autore Waltrich Paulo J.
Pubbl/distr/stampa [Washington, D.C.] : , : US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Gulf of Mexico OCS Region, , 2016
Descrizione fisica 1 online resource (various pagings) : illustrations
Soggetto topico Pipe - Fluid dynamics
Two-phase flow
Fluid dynamic measurements
Turbulence
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Experimental investigation of two phase flows in large-diameter pipes and evaluation of flow models applied to worst-case-discharge calculations
Record Nr. UNINA-9910706959203321
Waltrich Paulo J.  
[Washington, D.C.] : , : US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Gulf of Mexico OCS Region, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experiments in pipe flows at transitional and very high Reynolds numbers / / Emir Öngüner
Experiments in pipe flows at transitional and very high Reynolds numbers / / Emir Öngüner
Autore Öngüner Emir
Pubbl/distr/stampa Göttingen : , : Cuvillier Verlag, , [2018]
Descrizione fisica 1 online resource (163 pages)
Disciplina 621.8672
Soggetto topico Pipe - Fluid dynamics
ISBN 3-7369-8783-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910796753203321
Öngüner Emir  
Göttingen : , : Cuvillier Verlag, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experiments in pipe flows at transitional and very high Reynolds numbers / / Emir Öngüner
Experiments in pipe flows at transitional and very high Reynolds numbers / / Emir Öngüner
Autore Öngüner Emir
Pubbl/distr/stampa Göttingen : , : Cuvillier Verlag, , [2018]
Descrizione fisica 1 online resource (163 pages)
Disciplina 621.8672
Soggetto topico Pipe - Fluid dynamics
ISBN 3-7369-8783-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910817494903321
Öngüner Emir  
Göttingen : , : Cuvillier Verlag, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid mechanics and pipe flow [[electronic resource] ] : turbulence, simulation, and dynamics / / Donald Matos and Cristian Valerio, editors
Fluid mechanics and pipe flow [[electronic resource] ] : turbulence, simulation, and dynamics / / Donald Matos and Cristian Valerio, editors
Pubbl/distr/stampa New York, : Nova Science Publishers, 2009
Descrizione fisica 1 online resource (483 p.)
Disciplina 620.1/06
Altri autori (Persone) MatosDonald
ValerioCristian
Soggetto topico Fluid mechanics
Pipe - Fluid dynamics
Soggetto genere / forma Electronic books.
ISBN 1-61668-990-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATION AND DYNAMICS""; ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATIONAND DYNAMICS""; ""CONTENTS""; ""PREFACE""; ""SOLUTE TRANSPORT, DISPERSION, AND SEPARATIONIN NANOFLUIDIC CHANNELS""; ""Abstract""; ""1. Introduction""; ""2. Nomenclature""; ""3. Fluid Flow in Nanochannels""; ""3.1. Electroosmotic Flow""; ""3.2. Pressure-Driven Flow""; ""4. Solute Transport in Nanochannels""; ""5. Solute Dispersion in Nanochannels""; ""5.1. Electroosmotic Flow""; ""5.2. Pressure-Driven Flow""; ""5.3. Neutral Solutes""
""6. Solute Separation in Nanochannels""""6.1. Selectivity""; ""6.2. Plate Height""; ""6.3. Resolution""; ""7. Conclusion""; ""References""; ""H2O IN THE MANTLE: FROM FLUID TO HIGH-PRESSURE HYDROUS SILICATES""; ""Abstract""; ""Introduction""; ""Samples and Collected Data""; ""Sample Description""; ""H2O Content in the Olivine Samples""; ""Extrinsic H2O in Olivine Samples""; ""Discussion""; ""Olivine as Water Storage in the Mantle""; ""Post-Crystallization H2O Behavior in Olivine""; ""H2O Fluid in Kimberlite Melt""; ""OH-Bearing Nanoinclusions and Intracrystalline H2O Fluid""; ""Conclusion""
""References""""ON THE NUMERICAL SIMULATION OF TURBULENCE MODULATION IN TWO-PHASE FLOWS""; ""Abstract""; ""Introduction""; ""Conservation Equations""; ""3.1. Gas-Particle and Liquid-Particle Flows""; ""3.1.1. Governing Equations for Carrier Phase Modeling""; ""3.1.2. Governing Equations for Particulate Phase Modeling""; ""3.1.3. Turbulence Modeling for Carrier Phase""; ""3.1.4. Turbulence Modeling for the Dispersed Phase""; ""3.2. Liquid-Air Flows (Micro-bubble)""; ""3.2.1. Inhomogeneous Two-Fluid Model""; ""3.2.1.1. Mass Conservation""; ""3.2.1.2. Momentum Conservation""
""3.2.1.3. Interfacial Area Density""""3.2.2. MUSIG Model""; ""3.2.2.1. MUSIG Break-up Rate""; ""3.2.2.2. MUSIG Coalescence Rate""; ""Numerical Procedure""; ""Numerical Predictions""; ""Gas Particle Flow""; ""4.1. Code Verification""; ""4.1.1. Mean Streamwise Velocities""; ""4.1.2. Mean Streamwise Fluctuations""; ""4.2. Results and Discussion""; ""4.2.1. Turbulence Modulation (TM)""; ""4.2.1.1. Analysis of Experimental Data""; ""4.2.2. TM & (Particle Number Density) PND Results""; ""4.2.3. Effect of Particle Reynolds Number on TM""; ""Liquid Particle Flow""
""5.1. Analysis of Experimental Data""""5.2. Numerical Code Validation""; ""5.3. Results and Discussion""; ""5.4.1. Particle Response- Mean Velocity Level""; ""5.4.2. Particle Response-Turbulence Level""; ""5.4.3. Summary of Particulate Responsitivity""; ""Air-Liquid Flows""; ""6.1. Results and Discussion""; ""6.1.1. Experimental Validation (Inhomogeneous Model)""; ""6.1.2. Investigation of Mechanisms of Drag Reduction""; ""6.1.3. Turbulence Modulation (TM)""; ""6.1.3. Effect of Bubble Coalescence and Break-up in Drag Reduction""; ""Conclusion""; ""Untitled""
""A REVIEW OF POPULATION BALANCE MODELLING FOR MULTIPHASE FLOWS: APPROACHES,APPLICATIONS AND FUTURE ASPECTS""
Record Nr. UNINA-9910456498203321
New York, : Nova Science Publishers, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid mechanics and pipe flow [[electronic resource] ] : turbulence, simulation, and dynamics / / Donald Matos and Cristian Valerio, editors
Fluid mechanics and pipe flow [[electronic resource] ] : turbulence, simulation, and dynamics / / Donald Matos and Cristian Valerio, editors
Pubbl/distr/stampa New York, : Nova Science Publishers, 2009
Descrizione fisica 1 online resource (483 p.)
Disciplina 620.1/06
Altri autori (Persone) MatosDonald
ValerioCristian
Soggetto topico Fluid mechanics
Pipe - Fluid dynamics
ISBN 1-61668-990-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATION AND DYNAMICS""; ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATIONAND DYNAMICS""; ""CONTENTS""; ""PREFACE""; ""SOLUTE TRANSPORT, DISPERSION, AND SEPARATIONIN NANOFLUIDIC CHANNELS""; ""Abstract""; ""1. Introduction""; ""2. Nomenclature""; ""3. Fluid Flow in Nanochannels""; ""3.1. Electroosmotic Flow""; ""3.2. Pressure-Driven Flow""; ""4. Solute Transport in Nanochannels""; ""5. Solute Dispersion in Nanochannels""; ""5.1. Electroosmotic Flow""; ""5.2. Pressure-Driven Flow""; ""5.3. Neutral Solutes""
""6. Solute Separation in Nanochannels""""6.1. Selectivity""; ""6.2. Plate Height""; ""6.3. Resolution""; ""7. Conclusion""; ""References""; ""H2O IN THE MANTLE: FROM FLUID TO HIGH-PRESSURE HYDROUS SILICATES""; ""Abstract""; ""Introduction""; ""Samples and Collected Data""; ""Sample Description""; ""H2O Content in the Olivine Samples""; ""Extrinsic H2O in Olivine Samples""; ""Discussion""; ""Olivine as Water Storage in the Mantle""; ""Post-Crystallization H2O Behavior in Olivine""; ""H2O Fluid in Kimberlite Melt""; ""OH-Bearing Nanoinclusions and Intracrystalline H2O Fluid""; ""Conclusion""
""References""""ON THE NUMERICAL SIMULATION OF TURBULENCE MODULATION IN TWO-PHASE FLOWS""; ""Abstract""; ""Introduction""; ""Conservation Equations""; ""3.1. Gas-Particle and Liquid-Particle Flows""; ""3.1.1. Governing Equations for Carrier Phase Modeling""; ""3.1.2. Governing Equations for Particulate Phase Modeling""; ""3.1.3. Turbulence Modeling for Carrier Phase""; ""3.1.4. Turbulence Modeling for the Dispersed Phase""; ""3.2. Liquid-Air Flows (Micro-bubble)""; ""3.2.1. Inhomogeneous Two-Fluid Model""; ""3.2.1.1. Mass Conservation""; ""3.2.1.2. Momentum Conservation""
""3.2.1.3. Interfacial Area Density""""3.2.2. MUSIG Model""; ""3.2.2.1. MUSIG Break-up Rate""; ""3.2.2.2. MUSIG Coalescence Rate""; ""Numerical Procedure""; ""Numerical Predictions""; ""Gas Particle Flow""; ""4.1. Code Verification""; ""4.1.1. Mean Streamwise Velocities""; ""4.1.2. Mean Streamwise Fluctuations""; ""4.2. Results and Discussion""; ""4.2.1. Turbulence Modulation (TM)""; ""4.2.1.1. Analysis of Experimental Data""; ""4.2.2. TM & (Particle Number Density) PND Results""; ""4.2.3. Effect of Particle Reynolds Number on TM""; ""Liquid Particle Flow""
""5.1. Analysis of Experimental Data""""5.2. Numerical Code Validation""; ""5.3. Results and Discussion""; ""5.4.1. Particle Response- Mean Velocity Level""; ""5.4.2. Particle Response-Turbulence Level""; ""5.4.3. Summary of Particulate Responsitivity""; ""Air-Liquid Flows""; ""6.1. Results and Discussion""; ""6.1.1. Experimental Validation (Inhomogeneous Model)""; ""6.1.2. Investigation of Mechanisms of Drag Reduction""; ""6.1.3. Turbulence Modulation (TM)""; ""6.1.3. Effect of Bubble Coalescence and Break-up in Drag Reduction""; ""Conclusion""; ""Untitled""
""A REVIEW OF POPULATION BALANCE MODELLING FOR MULTIPHASE FLOWS: APPROACHES,APPLICATIONS AND FUTURE ASPECTS""
Record Nr. UNINA-9910781173103321
New York, : Nova Science Publishers, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid mechanics and pipe flow [[electronic resource] ] : turbulence, simulation, and dynamics / / Donald Matos and Cristian Valerio, editors
Fluid mechanics and pipe flow [[electronic resource] ] : turbulence, simulation, and dynamics / / Donald Matos and Cristian Valerio, editors
Pubbl/distr/stampa New York, : Nova Science Publishers, 2009
Descrizione fisica 1 online resource (483 p.)
Disciplina 620.1/06
Altri autori (Persone) MatosDonald
ValerioCristian
Soggetto topico Fluid mechanics
Pipe - Fluid dynamics
ISBN 1-61668-990-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATION AND DYNAMICS""; ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATIONAND DYNAMICS""; ""CONTENTS""; ""PREFACE""; ""SOLUTE TRANSPORT, DISPERSION, AND SEPARATIONIN NANOFLUIDIC CHANNELS""; ""Abstract""; ""1. Introduction""; ""2. Nomenclature""; ""3. Fluid Flow in Nanochannels""; ""3.1. Electroosmotic Flow""; ""3.2. Pressure-Driven Flow""; ""4. Solute Transport in Nanochannels""; ""5. Solute Dispersion in Nanochannels""; ""5.1. Electroosmotic Flow""; ""5.2. Pressure-Driven Flow""; ""5.3. Neutral Solutes""
""6. Solute Separation in Nanochannels""""6.1. Selectivity""; ""6.2. Plate Height""; ""6.3. Resolution""; ""7. Conclusion""; ""References""; ""H2O IN THE MANTLE: FROM FLUID TO HIGH-PRESSURE HYDROUS SILICATES""; ""Abstract""; ""Introduction""; ""Samples and Collected Data""; ""Sample Description""; ""H2O Content in the Olivine Samples""; ""Extrinsic H2O in Olivine Samples""; ""Discussion""; ""Olivine as Water Storage in the Mantle""; ""Post-Crystallization H2O Behavior in Olivine""; ""H2O Fluid in Kimberlite Melt""; ""OH-Bearing Nanoinclusions and Intracrystalline H2O Fluid""; ""Conclusion""
""References""""ON THE NUMERICAL SIMULATION OF TURBULENCE MODULATION IN TWO-PHASE FLOWS""; ""Abstract""; ""Introduction""; ""Conservation Equations""; ""3.1. Gas-Particle and Liquid-Particle Flows""; ""3.1.1. Governing Equations for Carrier Phase Modeling""; ""3.1.2. Governing Equations for Particulate Phase Modeling""; ""3.1.3. Turbulence Modeling for Carrier Phase""; ""3.1.4. Turbulence Modeling for the Dispersed Phase""; ""3.2. Liquid-Air Flows (Micro-bubble)""; ""3.2.1. Inhomogeneous Two-Fluid Model""; ""3.2.1.1. Mass Conservation""; ""3.2.1.2. Momentum Conservation""
""3.2.1.3. Interfacial Area Density""""3.2.2. MUSIG Model""; ""3.2.2.1. MUSIG Break-up Rate""; ""3.2.2.2. MUSIG Coalescence Rate""; ""Numerical Procedure""; ""Numerical Predictions""; ""Gas Particle Flow""; ""4.1. Code Verification""; ""4.1.1. Mean Streamwise Velocities""; ""4.1.2. Mean Streamwise Fluctuations""; ""4.2. Results and Discussion""; ""4.2.1. Turbulence Modulation (TM)""; ""4.2.1.1. Analysis of Experimental Data""; ""4.2.2. TM & (Particle Number Density) PND Results""; ""4.2.3. Effect of Particle Reynolds Number on TM""; ""Liquid Particle Flow""
""5.1. Analysis of Experimental Data""""5.2. Numerical Code Validation""; ""5.3. Results and Discussion""; ""5.4.1. Particle Response- Mean Velocity Level""; ""5.4.2. Particle Response-Turbulence Level""; ""5.4.3. Summary of Particulate Responsitivity""; ""Air-Liquid Flows""; ""6.1. Results and Discussion""; ""6.1.1. Experimental Validation (Inhomogeneous Model)""; ""6.1.2. Investigation of Mechanisms of Drag Reduction""; ""6.1.3. Turbulence Modulation (TM)""; ""6.1.3. Effect of Bubble Coalescence and Break-up in Drag Reduction""; ""Conclusion""; ""Untitled""
""A REVIEW OF POPULATION BALANCE MODELLING FOR MULTIPHASE FLOWS: APPROACHES,APPLICATIONS AND FUTURE ASPECTS""
Record Nr. UNINA-9910823423203321
New York, : Nova Science Publishers, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid-structure interaction : numerical simulation techniques for naval applications / / coordinated by Jean-François Sigrist, Cédric Leblond
Fluid-structure interaction : numerical simulation techniques for naval applications / / coordinated by Jean-François Sigrist, Cédric Leblond
Pubbl/distr/stampa Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons Inc, , [2022]
Descrizione fisica 1 online resource (400 pages)
Disciplina 624.171
Soggetto topico Fluid-structure interaction
Pipe - Fluid dynamics
Pressure vessels
ISBN 1-394-18822-6
1-394-18820-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Foreword: Numerical Simulation: A Strategic Challenge for Our Industrial Sovereignty -- Preface: Fluid-Structure Interactions in Naval Engineering -- Acknowledgments -- Chapter 1. A Brief History of Naval Hydrodynamics -- 1.1. The emergence of a new science -- 1.2. Perfecting the theory -- 1.2.1. Fluids, viscosity and turbulence -- 1.2.2. Potential theories -- 1.2.3. Waves -- 1.3. Ship theory -- 1.3.1. Stability -- 1.3.2. Resistance to forward motion -- 1.3.3. Roll, pitch and seakeeping -- 1.3.4. Propeller and cavitation -- 1.4. The numerical revolution -- 1.5. References -- Chapter 2. Numerical Methods for Vibro-acoustics of Ships in the "Low frequency" Range -- 2.1. The acoustic signature of maritime platforms -- 2.2. Vibro-acoustic models -- 2.2.1. Vibro-acoustics without dissipative effects -- 2.2.2. Dissipation of energy in a fluid -- 2.2.3. Dissipation of energy in materials -- 2.3. Calculating the frequency response -- 2.3.1. Numerical model, vibro-acoustic equation -- 2.3.2. Direct and modal methods -- 2.4. Improving the predictive character of simulations -- 2.4.1. The medium- and high-frequency domains -- 2.4.2. Uncertainty propagation and parametric dependency -- 2.5. References -- Chapter 3. Hybrid Methods for the Vibro-acoustic Response of Submerged Structures -- 3.1. Noise and vibration of a submerged structure -- 3.1.1. Why vibro-acoustics? -- 3.1.2. From the real-world problem to the physical model -- 3.2. Solving the vibro-acoustic problem -- 3.2.1. Substructuring approach -- 3.2.2. Point admittance method -- 3.2.3. Condensed transfer function method -- 3.2.4. Examples of condensation functions -- 3.2.5. Spectral theory of cylindrical shells -- 3.2.6. FEM calculation for internal structures.
3.3. Physical analysis of the vibro-acoustic behavior of a submerged cylindrical shell -- 3.3.1. The influence of heavy fluid -- 3.3.2. Vibration behavior of the cylindrical shell -- 3.3.3. The influence of stiffeners -- 3.3.4. Influence of non-axisymmetric internal structures -- 3.4. Conclusion -- 3.5. References -- Chapter 4. "Advanced" Methods for the Vibro-acoustic Response of Naval Structures -- 4.1. On reducing computing time -- 4.2. Parametric reduced-order models in the harmonic regime -- 4.2.1. Bibliographical elements. -- 4.2.2. Standard construction of the parametric reduced-order model -- 4.2.3. Constructing a goal-oriented parametric reduced-order model -- 4.3. Parametric reduced-order models in the time domain -- 4.3.1. Motivation -- 4.3.2. On the stability of full vibro-acoustic models -- 4.3.3. Construction of stable reduced-order models -- 4.3.4. Offline construction of the reduced-basis -- 4.3.5. Illustration of the temporal approach -- 4.4. Conclusion -- 4.5. References -- Chapter 5. Calculating Hydrodynamic Flows: LBM and POD Methods -- 5.1. Model reduction -- 5.2. Proper orthogonal decomposition -- 5.2.1. Calculation of the reduced basis POD -- 5.2.2. Using POD in fluid-structure interaction -- 5.2.3. Sensitivity to parameters and interpolation of POD bases -- 5.3. Lattice Boltzmann method -- 5.3.1. History -- 5.3.2. MRT/BGK -- 5.3.3. Real parameters/LBM parameters -- 5.4. LBM and FSI -- 5.4.1. Boundary conditions in the LBM -- 5.4.2. Immersed boundary method -- 5.5. Conclusion -- 5.6. References -- Chapter 6. Dynamic Behavior of Tube Bundles with Fluid-Structure Interaction -- 6.1. Introduction -- 6.1.1. Tube bundles in the nuclear industry -- 6.1.2. Tube bundles, industrial problems -- 6.1.3. Modeling FSI in exchangers -- 6.2. Physical models and equations -- 6.2.1. Fluid-structure interaction with Euler equations.
6.2.2. Numerical methods for Euler equations with FSI -- 6.2.3. Homogenization in the case of tube bundles -- 6.2.4. Numerical methods for homogenization -- 6.2.5. Euler equations, Rayleigh damping -- 6.2.6. Homogenization, Rayleigh damping -- 6.2.7. Implementing the homogenization method -- 6.3. Validation and illustration of the homogenization method -- 6.3.1. Vibrational eigenmodes -- 6.3.2. Rayleigh damping: direct and homogenization methods -- 6.4. Homogenization methods for Navier-Stokes equations -- 6.5. Applications -- 6.5.1. Dynamic behavior of RNR-Na cores -- 6.5.2. Onboard steam generator -- 6.6. Conclusion -- 6.7. References -- Chapter 7. Calculating Turbulent Pressure Spectra -- 7.1. Vibrations caused by turbulent flow -- 7.2. Characteristics of the wall pressure spectrum -- 7.2.1. Turbulent boundary layer without a pressure gradient -- 7.2.2. Flow with a pressure gradient -- 7.3. Empirical models -- 7.3.1. Corcos model -- 7.3.2. Chase models -- 7.3.3. Smol'yakov model -- 7.3.4. Goody's model -- 7.3.5. Rozenberg model -- 7.3.6. Model comparison -- 7.4. Solving the Poisson equation for wall pressure fluctuations -- 7.4.1. Formulations for the TMS part of the wall pressure -- 7.4.2. Formulations for the TMS and TT parts of the wall pressure -- 7.5. Conclusion -- 7.6. References -- Chapter 8. Calculating Fluid-Structure Interactions Using Co-simulation Techniques -- 8.1. Introduction -- 8.2. The physics of fluid-structure interaction -- 8.2.1. Dimensionless numbers for the fluid flow -- 8.2.2. Dimensionless numbers for the motion of structures -- 8.2.3. Dimensionless numbers linked to fluid-structure coupling -- 8.2.4. Additional dimensionless numbers and the generic effects of a fluid on a structure -- 8.2.5. Summary of dimensionless numbers and fluid-structure coupling intensity.
8.3. Mathematical formulation of the fluid-structure interaction -- 8.3.1. Mathematical formulation of the fluid problem -- 8.3.2. Mathematical formulation of the structural problem -- 8.3.3. Mathematical formulation of interface coupling conditions -- 8.4. Numerical methods in the dynamics of fluids and structures -- 8.4.1. Numerical methods in the dynamics of fluids -- 8.4.2. Numerical methods in structural dynamics -- 8.4.3. Arbitrary Lagrange-Euler (ALE) formulation and moving meshes -- 8.5. Numerical solution of the fluid-structure interaction -- 8.5.1. Software strategy -- 8.5.2. Time coupling methods in the case of partitioning approaches -- 8.5.3. Methods of space coupling -- 8.5.4. The added mass effect -- 8.6. Examples of applications to naval hydrodynamics -- 8.6.1. Foils in composite materials -- 8.6.2. Hydrodynamics of hulls -- 8.7. Conclusion: Which method for which physics? -- 8.8. References -- Chapter 9. The Seakeeping of Ships -- 9.1. Why predict ships' seakeeping ability? -- 9.1.1. Guaranteeing structural reliability -- 9.1.2. Guaranteeing a ship's safety at sea -- 9.1.3. Predicting operability domains -- 9.1.4. Improving operability -- 9.1.5. Getting to know the environment and how the ship disrupts it -- 9.1.6. The particular case of multibodies -- 9.1.7. Knowing average or low-frequency forces resulting from swell -- 9.2. Waves -- 9.2.1. Origin, nature and description of waves -- 9.2.2. Monochromatic swell -- 9.2.3. Irregular swell -- 9.2.4. Complete nonlinear wave modeling -- 9.2.5. Considering a ship's forward speed -- 9.3. The hydromechanical linear frequency solution -- 9.3.1. Hypotheses and general formulation -- 9.3.2. Response on regular swell -- 9.3.3. Response on irregular swell -- 9.4. Nonlinear time solution based on force models -- 9.4.1. Principles of the method -- 9.4.2. Results.
9.4.3. Tools: uses and limitations -- 9.5. Complete solution of the Navier‒Stokes equations -- 9.5.1. Method -- 9.5.2. Applications to the problem of seakeeping -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Modeling the Effects of Underwater Explosions on Submerged Structures -- 10.1. Underwater explosions -- 10.1.1. Characterizing the threat -- 10.1.2. Calculating the flow -- 10.1.3. Semi-analytical models for the response of submerged structures -- 10.2. Semi-analytical models for the motion of a rigid hull -- 10.2.1. Local motion of a rigid hull with or without equipment -- 10.2.2. Overall motion of a rigid hull with or without equipment -- 10.3. Semi-analytical models of the motion of a deformable hull -- 10.3.1. Shock signal on a deformable hull alone -- 10.3.2. Correction of the rigid body motion -- 10.3.3. Device rigidly mounted on the hull -- 10.3.4. Simplified representation of hull stiffeners -- 10.4. Notes on implementing models -- 10.5. Conclusion -- 10.6. References -- Chapter 11. Resistance of Composite Structures Under Extreme Hydrodynamic Loads -- 11.1. The behavior of composite materials -- 11.1.1. Orthotropic linear elastic behavior -- 11.1.2. Non-elastic behavior -- 11.1.3. Strain rate dependency -- 11.2. Underwater explosions -- 11.2.1. Categorizing phenomena -- 11.2.2. Analytical formulations and simple experiments -- 11.2.3. Numerical methods -- 11.3. Slamming: phenomenon and formulation -- 11.4. Conclusion -- 11.5. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910831080803321
Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons Inc, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pipe flow : a practical and comprehensive guide / / Donald C. Rennels
Pipe flow : a practical and comprehensive guide / / Donald C. Rennels
Autore Rennels Donald C. <1937->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (387 pages)
Disciplina 620.1064
Soggetto topico Pipe - Fluid dynamics
Water-pipes - Hydrodynamics
Fluid mechanics
ISBN 1-119-75646-4
1-119-75644-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566693703321
Rennels Donald C. <1937->  
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pipe flow : a practical and comprehensive guide / / Donald C. Rennels
Pipe flow : a practical and comprehensive guide / / Donald C. Rennels
Autore Rennels Donald C. <1937->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (387 pages)
Disciplina 620.1064
Soggetto topico Pipe - Fluid dynamics
Water-pipes - Hydrodynamics
Fluid mechanics
ISBN 1-119-75646-4
1-119-75644-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910676642503321
Rennels Donald C. <1937->  
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui