top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in piezoelectric transducers / / edited by Farzad Ebrahimi
Advances in piezoelectric transducers / / edited by Farzad Ebrahimi
Pubbl/distr/stampa Rijeka, Croatia : , : InTech, , [2011]
Descrizione fisica 1 online resource (140 pages) : illustrations
Disciplina 681.2
Soggetto topico Piezoelectric transducers
ISBN 953-51-6105-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910138265703321
Rijeka, Croatia : , : InTech, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems / / C.T. Pan, Y.M. Hwang, Liwei Lin, and Ying-Chung Chen
Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems / / C.T. Pan, Y.M. Hwang, Liwei Lin, and Ying-Chung Chen
Autore Pan C. T.
Pubbl/distr/stampa Singapore : , : Wiley, IEEE, , 2014
Descrizione fisica 1 online resource (269 p.)
Disciplina 621.31/3
Soggetto topico Microharvesters (Microelectronics)
Piezoelectric transducers
Electric machinery - Rotors
ISBN 1-118-48782-6
1-118-48781-8
1-306-63896-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: About the Authors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Background 1 1.2 Energy Harvesters 2 1.2.1 Piezoelectric ZnO Energy Harvester 3 1.2.2 Vibrational Electromagnetic Generators 3 1.2.3 Rotary Electromagnetic Generators 4 1.2.4 NFES Piezoelectric PVDF Energy Harvester 4 1.3 Overview 5 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 7 2.1 Introduction 7 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters 10 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester 10 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film 12 2.2.3 Optimal Thickness of PET Substrate 15 2.2.4 Model Solution of Cantilever Plate Equation 15 2.2.5 Vibration-Induced Electric Potential and Electric Power 18 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate 19 2.2.7 Model Analysis and Harmonic Analysis 21 2.2.8 Results of Model Analysis and Harmonic Analysis 23 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates 27 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates 27 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates 29 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates 29 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering 31 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions 34 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module 39 2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System 40 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators 48 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 48 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 50 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 51 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators 52 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 54 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates 56 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 59 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 61 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator 63 2.5 Summary 66 References 67 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators 71 3.1 Introduction 71 3.2 Comparisons between MCTG and SMTG 74 3.2.1 Magnetic Core-Type Generator (MCTG) 74 3.2.2 Sided Magnet-Type Generator (SMTG) 76 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators 76 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators 77 3.3.2 Analysis Mode of the Microvibration Structure 78 3.3.3 Analysis Mode of Magnetic Field 81 3.3.4 Evaluation of Various Parameters of Power Output 84 3.4 Analytical Results and Discussion 88 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring 90 3.4.2 Finite Element Models for Magnetic Density Distribution 93 3.4.3 Power Output Evaluation 97 3.5 Fabrication of Microcoil for Microgenerator 103 3.5.1 Microspring and Induction Coil 103 3.5.2 Microspring and Magnet 105 3.6 Tests and Experiments 106 3.6.1 Measurement System 106 3.6.2 Measurement Results and Discussion 107 3.6.3 Comparison between Measured Results and Analytical Values 110 3.7 Conclusions 112 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field 112 3.7.2 Fabrication of LTCC Microsensor 112 3.7.3 Measurement and Analysis Results 113 3.8 Summary 113 References 114 4 Design and Fabrication of Rotary Electromagnetic Microgenerator 117 4.1 Introduction 117 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators 119 4.1.2 Vibrational Electromagnetic Generators 119 4.1.3 Rotary Electromagnetic Generators 120 4.1.4 Generator Processes 121 4.1.5 Lithographie Galvanoformung Abformung Process 122 4.1.6 Winding Processes 123 4.1.7 LTCC 123 4.1.8 Printed Circuit Board Processes 124 4.1.9 Finite-Element Simulation and Analytical Solutions 126 4.2 Case 1: Winding Generator 126 4.2.1 Design 127 4.2.2 Analytical Formulation 132 4.2.3 Simulation 134 4.2.4 Fabrication Process 138 4.2.5 Results and Discussion (1) 139 4.2.6 Results and Discussion (2) 142 4.3 Case 2: LTCC Generator 146 4.3.1 Simulation 147 4.3.2 Analytical Theorem of Microgenerator Electromagnetism 148 4.3.3 Simplification 152 4.3.4 Analysis of Vector Magnetic Potential 153 4.3.5 Analytical Solutions for Power Generation 154 4.4 Fabrication 157 4.4.1 LTCC Process 157 4.4.2 Magnet Process 159 4.4.3 Measurement Set-up 160 4.5 Results and Discussion 162 4.5.1 Design 162 4.5.2 Analytical Solutions 168 4.5.3 Fabrication 170 References 178 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters 183 5.1 Introduction 183 5.2 Fundamentals of Electrospinning Technology 187 5.2.1 Introduction to Electrospinning 187 5.2.2 Alignment and Assembly of Nanofibers 190 5.3 Near-Field Electrospinning 191 5.3.1 Introduction and Background 191 5.3.2 Principles of Operation 194 5.3.3 Process and Experiment 196 5.3.4 Summary 202 5.4 Continuous NFES 202 5.4.1 Introduction and Background 202 5.4.2 Principles of Operation 202 5.4.3 Controllability and Continuity 205 5.4.4 Process Characterization 208 5.4.5 Summary 211 5.5 Direct-Write Piezoelectric Nanogenerator 211 5.5.1 Introduction and Background 211 5.5.2 Polyvinylidene Fluoride 212 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers 213 5.5.4 Electrospinning of PVDF Nanofibers 216 5.5.5 Detailed Discussion of Process Parameters 219 5.5.6 Experimental Realization of PVDF Nanogenerator 223 5.5.7 Summary 241 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects 241 5.6.1 Material and Structural Characteristics 241 5.6.2 Operation of Nanogenerator 243 5.6.3 Summary and Future Prospects 248 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate 248 5.7.1 Introduction and Background 248 5.7.2 Working Principle 249 5.7.3 Device Fabrication 249 5.7.4 Experimental Results 251 5.7.5 Summary 252 5.8 Conclusion 253 5.8.1 Near-Field Electrospinning 253 5.8.2 Continuous Near-Field Electrospinning 254 5.8.3 Direct-Write Piezoelectric PVDF 254 5.9 Future Directions 255 5.9.1 NFES Integrated Nanofiber Sensors 255 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide 256 5.9.3 NFES Biological Applications 257 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators 258 References 258 Index 265 .
Record Nr. UNINA-9910140430403321
Pan C. T.  
Singapore : , : Wiley, IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems / / C.T. Pan, Y.M. Hwang, Liwei Lin, and Ying-Chung Chen
Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems / / C.T. Pan, Y.M. Hwang, Liwei Lin, and Ying-Chung Chen
Autore Pan C. T.
Pubbl/distr/stampa Singapore : , : Wiley, IEEE, , 2014
Descrizione fisica 1 online resource (269 p.)
Disciplina 621.31/3
Soggetto topico Microharvesters (Microelectronics)
Piezoelectric transducers
Electric machinery - Rotors
ISBN 1-118-48782-6
1-118-48781-8
1-306-63896-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: About the Authors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Background 1 1.2 Energy Harvesters 2 1.2.1 Piezoelectric ZnO Energy Harvester 3 1.2.2 Vibrational Electromagnetic Generators 3 1.2.3 Rotary Electromagnetic Generators 4 1.2.4 NFES Piezoelectric PVDF Energy Harvester 4 1.3 Overview 5 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 7 2.1 Introduction 7 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters 10 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester 10 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film 12 2.2.3 Optimal Thickness of PET Substrate 15 2.2.4 Model Solution of Cantilever Plate Equation 15 2.2.5 Vibration-Induced Electric Potential and Electric Power 18 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate 19 2.2.7 Model Analysis and Harmonic Analysis 21 2.2.8 Results of Model Analysis and Harmonic Analysis 23 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates 27 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates 27 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates 29 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates 29 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering 31 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions 34 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module 39 2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System 40 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators 48 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 48 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 50 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 51 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators 52 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 54 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates 56 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 59 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 61 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator 63 2.5 Summary 66 References 67 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators 71 3.1 Introduction 71 3.2 Comparisons between MCTG and SMTG 74 3.2.1 Magnetic Core-Type Generator (MCTG) 74 3.2.2 Sided Magnet-Type Generator (SMTG) 76 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators 76 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators 77 3.3.2 Analysis Mode of the Microvibration Structure 78 3.3.3 Analysis Mode of Magnetic Field 81 3.3.4 Evaluation of Various Parameters of Power Output 84 3.4 Analytical Results and Discussion 88 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring 90 3.4.2 Finite Element Models for Magnetic Density Distribution 93 3.4.3 Power Output Evaluation 97 3.5 Fabrication of Microcoil for Microgenerator 103 3.5.1 Microspring and Induction Coil 103 3.5.2 Microspring and Magnet 105 3.6 Tests and Experiments 106 3.6.1 Measurement System 106 3.6.2 Measurement Results and Discussion 107 3.6.3 Comparison between Measured Results and Analytical Values 110 3.7 Conclusions 112 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field 112 3.7.2 Fabrication of LTCC Microsensor 112 3.7.3 Measurement and Analysis Results 113 3.8 Summary 113 References 114 4 Design and Fabrication of Rotary Electromagnetic Microgenerator 117 4.1 Introduction 117 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators 119 4.1.2 Vibrational Electromagnetic Generators 119 4.1.3 Rotary Electromagnetic Generators 120 4.1.4 Generator Processes 121 4.1.5 Lithographie Galvanoformung Abformung Process 122 4.1.6 Winding Processes 123 4.1.7 LTCC 123 4.1.8 Printed Circuit Board Processes 124 4.1.9 Finite-Element Simulation and Analytical Solutions 126 4.2 Case 1: Winding Generator 126 4.2.1 Design 127 4.2.2 Analytical Formulation 132 4.2.3 Simulation 134 4.2.4 Fabrication Process 138 4.2.5 Results and Discussion (1) 139 4.2.6 Results and Discussion (2) 142 4.3 Case 2: LTCC Generator 146 4.3.1 Simulation 147 4.3.2 Analytical Theorem of Microgenerator Electromagnetism 148 4.3.3 Simplification 152 4.3.4 Analysis of Vector Magnetic Potential 153 4.3.5 Analytical Solutions for Power Generation 154 4.4 Fabrication 157 4.4.1 LTCC Process 157 4.4.2 Magnet Process 159 4.4.3 Measurement Set-up 160 4.5 Results and Discussion 162 4.5.1 Design 162 4.5.2 Analytical Solutions 168 4.5.3 Fabrication 170 References 178 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters 183 5.1 Introduction 183 5.2 Fundamentals of Electrospinning Technology 187 5.2.1 Introduction to Electrospinning 187 5.2.2 Alignment and Assembly of Nanofibers 190 5.3 Near-Field Electrospinning 191 5.3.1 Introduction and Background 191 5.3.2 Principles of Operation 194 5.3.3 Process and Experiment 196 5.3.4 Summary 202 5.4 Continuous NFES 202 5.4.1 Introduction and Background 202 5.4.2 Principles of Operation 202 5.4.3 Controllability and Continuity 205 5.4.4 Process Characterization 208 5.4.5 Summary 211 5.5 Direct-Write Piezoelectric Nanogenerator 211 5.5.1 Introduction and Background 211 5.5.2 Polyvinylidene Fluoride 212 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers 213 5.5.4 Electrospinning of PVDF Nanofibers 216 5.5.5 Detailed Discussion of Process Parameters 219 5.5.6 Experimental Realization of PVDF Nanogenerator 223 5.5.7 Summary 241 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects 241 5.6.1 Material and Structural Characteristics 241 5.6.2 Operation of Nanogenerator 243 5.6.3 Summary and Future Prospects 248 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate 248 5.7.1 Introduction and Background 248 5.7.2 Working Principle 249 5.7.3 Device Fabrication 249 5.7.4 Experimental Results 251 5.7.5 Summary 252 5.8 Conclusion 253 5.8.1 Near-Field Electrospinning 253 5.8.2 Continuous Near-Field Electrospinning 254 5.8.3 Direct-Write Piezoelectric PVDF 254 5.9 Future Directions 255 5.9.1 NFES Integrated Nanofiber Sensors 255 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide 256 5.9.3 NFES Biological Applications 257 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators 258 References 258 Index 265 .
Record Nr. UNINA-9910815169603321
Pan C. T.  
Singapore : , : Wiley, IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimal topology and experimental evaluation of piezoelectric materials for actively shunted general electric polymer matrix fiber composite blades / / Benjamin B. Choi [and three others]
Optimal topology and experimental evaluation of piezoelectric materials for actively shunted general electric polymer matrix fiber composite blades / / Benjamin B. Choi [and three others]
Autore Choi Benjamin B.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , 2012
Descrizione fisica 1 online resource (16 pages) : color illustrations
Collana NASA/TM
Soggetto topico Piezoelectric transducers
Active control
Polymer matrix composites
Fiber composites
Damping
Spin tests
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910704672103321
Choi Benjamin B.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Piezo-electric electro-acoustic transducers / / Valeriy Sharapov, Zhanna Sotula, Larisa Kunickaya
Piezo-electric electro-acoustic transducers / / Valeriy Sharapov, Zhanna Sotula, Larisa Kunickaya
Autore Sharapov Valeriy
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham [Switzerland] : , : Springer, , 2014
Descrizione fisica 1 online resource (ix, 230 pages) : illustrations (some color)
Disciplina 620.2
Collana Microtechnology and MEMS
Soggetto topico Electroacoustic transducers
Piezoelectric transducers
ISBN 3-319-01198-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto General Information about Electro-Acoustic Transducers -- Piezo-ceramic Elements for PEAT -- Electro-Acoustic Transducers -- Hydro-Acoustic Transducers -- Transducers with Non-Destructive Control -- The Technologies of PEAT Synthesis.
Record Nr. UNINA-9910298647603321
Sharapov Valeriy  
Cham [Switzerland] : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Piezoelectric Electromechanical Transducers for Underwater Sound . Part II / / Boris S. Aronov
Piezoelectric Electromechanical Transducers for Underwater Sound . Part II / / Boris S. Aronov
Autore Aronov Boris S.
Pubbl/distr/stampa Brookline, MA : , : Academic Studies Press, , 2022
Descrizione fisica 1 online resource (vii, 432 pages) : illustrations
Disciplina 681.2
Soggetto topico Underwater acoustics
Piezoelectric transducers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Piezoelectric Electromechanical Transducers for Underwater Sound, Part II
Record Nr. UNINA-9910580259103321
Aronov Boris S.  
Brookline, MA : , : Academic Studies Press, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Piezoelectric Electromechanical Transducers for Underwater Sound . Part III Calculating transducers of different types . Part IV Some aspects of transducers designing / / Boris S. Aronov
Piezoelectric Electromechanical Transducers for Underwater Sound . Part III Calculating transducers of different types . Part IV Some aspects of transducers designing / / Boris S. Aronov
Autore Aronov B. S (Boris Samuilovich)
Edizione [1st ed.]
Pubbl/distr/stampa Boston, MA : , : Academic Studies Press, , [2022]
Descrizione fisica 1 online resource (vii, 262 pages)
Disciplina 681.2
Soggetto topico Piezoelectric transducers
Underwater acoustics
Soggetto non controllato Acoustic Transduction
electroacoustics
electromechanical circuits
piezoelectric transducers
underwater sound
ISBN 1-64469-827-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- PREFACE -- Table Of Contents -- Part III Calculating Transducers of Different Types -- CHAPTER 7 Cylindrical Transducers -- CHAPTER 8 Spherical Transducers -- CHAPTER 9 Flexural Plate Transducers -- CHAPTER 10 Length Expander Transducers and Their Modifications -- Part IV Some Aspects of Transducers Designing -- CHAPTER 11 Effects of Operational and Environmental Conditions -- CHAPTER 12 Hydrostatic Pressure Equalization -- CHAPTER 13 Projectors Designing Related Issues -- CHAPTER 14 Sensors Designing Related Issues -- CHAPTER 15 Combining Finite Element Analysis with Analytical Method -- Afterword -- LIST OF SYMBOLS -- APPENDIX A. Properties of Passive Materials -- APPENDIX B. Properties of Piezoelectric Ceramics -- APPENDIX C. Special Functions
Record Nr. UNISA-996487161303316
Aronov B. S (Boris Samuilovich)  
Boston, MA : , : Academic Studies Press, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Piezoelectric Electromechanical Transducers for Underwater Sound . Part II Subsystems of the electroacoustic transducers / / Boris S. Aronov
Piezoelectric Electromechanical Transducers for Underwater Sound . Part II Subsystems of the electroacoustic transducers / / Boris S. Aronov
Autore Aronov B. S (Boris Samuilovich)
Edizione [1st ed.]
Pubbl/distr/stampa Boston, MA : , : Academic Studies Press, , [2022]
Descrizione fisica 1 online resource (444 p.)
Disciplina 681.2
Soggetto topico Piezoelectric transducers
Underwater acoustics
Technology & Engineering / Acoustics & Sound
Soggetto non controllato Acoustic Transduction
electroacoustics
electromechanical circuits
piezoelectric transducers
underwater sound
ISBN 1-64469-826-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- PREFACE -- TABLE OF CONTENTS -- CHAPTER 4 VIBRATION OF ELASTIC BODIES -- CHAPTER 5 ELECTROMECHANICAL CONVERSION -- CHAPTER 6 ACOUSTIC RADIATION -- LIST OF SYMBOLS -- APPENDIX A. Properties of Passive Materials -- APPENDIX B. Properties of Piezoelectric Ceramics -- APPENDIX C. Special Functions
Record Nr. UNISA-996478964803316
Aronov B. S (Boris Samuilovich)  
Boston, MA : , : Academic Studies Press, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Piezoelectric Electromechanical Transducers for Underwater Sound . Part II Subsystems of the electroacoustic transducers / / Boris S. Aronov
Piezoelectric Electromechanical Transducers for Underwater Sound . Part II Subsystems of the electroacoustic transducers / / Boris S. Aronov
Autore Aronov B. S (Boris Samuilovich)
Edizione [1st ed.]
Pubbl/distr/stampa Boston, MA : , : Academic Studies Press, , [2022]
Descrizione fisica 1 online resource (444 p.)
Disciplina 681.2
Soggetto topico Piezoelectric transducers
Underwater acoustics
Technology & Engineering / Acoustics & Sound
ISBN 9781644698266
1644698269
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- PREFACE -- TABLE OF CONTENTS -- CHAPTER 4 VIBRATION OF ELASTIC BODIES -- CHAPTER 5 ELECTROMECHANICAL CONVERSION -- CHAPTER 6 ACOUSTIC RADIATION -- LIST OF SYMBOLS -- APPENDIX A. Properties of Passive Materials -- APPENDIX B. Properties of Piezoelectric Ceramics -- APPENDIX C. Special Functions
Record Nr. UNINA-9910571891703321
Aronov B. S (Boris Samuilovich)  
Boston, MA : , : Academic Studies Press, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Piezoelectric Electromechanical Transducers for Underwater Sound . Part III Calculating transducers of different types . Part IV Some aspects of transducers designing / / Boris S. Aronov
Piezoelectric Electromechanical Transducers for Underwater Sound . Part III Calculating transducers of different types . Part IV Some aspects of transducers designing / / Boris S. Aronov
Autore Aronov B. S (Boris Samuilovich)
Edizione [1st ed.]
Pubbl/distr/stampa Boston, MA : , : Academic Studies Press, , [2022]
Descrizione fisica 1 online resource (vii, 262 pages)
Disciplina 681.2
Soggetto topico Piezoelectric transducers
Underwater acoustics
ISBN 9781644698273
1644698277
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- PREFACE -- Table Of Contents -- Part III Calculating Transducers of Different Types -- CHAPTER 7 Cylindrical Transducers -- CHAPTER 8 Spherical Transducers -- CHAPTER 9 Flexural Plate Transducers -- CHAPTER 10 Length Expander Transducers and Their Modifications -- Part IV Some Aspects of Transducers Designing -- CHAPTER 11 Effects of Operational and Environmental Conditions -- CHAPTER 12 Hydrostatic Pressure Equalization -- CHAPTER 13 Projectors Designing Related Issues -- CHAPTER 14 Sensors Designing Related Issues -- CHAPTER 15 Combining Finite Element Analysis with Analytical Method -- Afterword -- LIST OF SYMBOLS -- APPENDIX A. Properties of Passive Materials -- APPENDIX B. Properties of Piezoelectric Ceramics -- APPENDIX C. Special Functions
Record Nr. UNINA-9910585999603321
Aronov B. S (Boris Samuilovich)  
Boston, MA : , : Academic Studies Press, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui