top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fundamentals of attosecond optics / / Zenghu Chang
Fundamentals of attosecond optics / / Zenghu Chang
Autore Chang Zenghu
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2011
Descrizione fisica 1 online resource (547 p.)
Disciplina 621.36
Soggetto topico Quantum optics
Picosecond pulses
Soggetto genere / forma Electronic books.
ISBN 0-429-19302-5
1-4200-8938-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Dedication; Brief Table of Contents; Contents; Preface; Author; Chapter 1. Quest for Attosecond Optical Pulses; Chapter 2. Femtosecond Driving Lasers; Chapter 3. Stabilization of Carrier-Envelope Phase; Chapter 4. Semiclassical Model; Chapter 5. Strong Field Approximation; Chapter 6. Phase Matching; Chapter 7. Attosecond Pulse Trains; Chapter 8. Single Isolated Attosecond Pulses; Chapter 9. Applications of Attosecond Pulses; Appendix A: Solutions to Selected Problems; Back cover
Record Nr. UNINA-9910464394503321
Chang Zenghu  
Boca Raton, Fla. : , : CRC Press, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of attosecond optics / / Zenghu Chang
Fundamentals of attosecond optics / / Zenghu Chang
Autore Chang Zenghu
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2011
Descrizione fisica 1 online resource (547 p.)
Disciplina 621.36
Soggetto topico Quantum optics
Picosecond pulses
ISBN 0-429-19302-5
1-4200-8938-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Dedication; Brief Table of Contents; Contents; Preface; Author; Chapter 1. Quest for Attosecond Optical Pulses; Chapter 2. Femtosecond Driving Lasers; Chapter 3. Stabilization of Carrier-Envelope Phase; Chapter 4. Semiclassical Model; Chapter 5. Strong Field Approximation; Chapter 6. Phase Matching; Chapter 7. Attosecond Pulse Trains; Chapter 8. Single Isolated Attosecond Pulses; Chapter 9. Applications of Attosecond Pulses; Appendix A: Solutions to Selected Problems; Back cover
Record Nr. UNINA-9910788728003321
Chang Zenghu  
Boca Raton, Fla. : , : CRC Press, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of attosecond optics / / Zenghu Chang
Fundamentals of attosecond optics / / Zenghu Chang
Autore Chang Zenghu
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2011
Descrizione fisica 1 online resource (547 p.)
Disciplina 621.36
Soggetto topico Quantum optics
Picosecond pulses
ISBN 0-429-19302-5
1-4200-8938-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Dedication; Brief Table of Contents; Contents; Preface; Author; Chapter 1. Quest for Attosecond Optical Pulses; Chapter 2. Femtosecond Driving Lasers; Chapter 3. Stabilization of Carrier-Envelope Phase; Chapter 4. Semiclassical Model; Chapter 5. Strong Field Approximation; Chapter 6. Phase Matching; Chapter 7. Attosecond Pulse Trains; Chapter 8. Single Isolated Attosecond Pulses; Chapter 9. Applications of Attosecond Pulses; Appendix A: Solutions to Selected Problems; Back cover
Record Nr. UNINA-9910800157703321
Chang Zenghu  
Boca Raton, Fla. : , : CRC Press, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of attosecond optics / / Zenghu Chang
Fundamentals of attosecond optics / / Zenghu Chang
Autore Chang Zenghu
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2011
Descrizione fisica 1 online resource (547 p.)
Disciplina 621.36
Soggetto topico Quantum optics
Picosecond pulses
ISBN 0-429-19302-5
1-4200-8938-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Dedication; Brief Table of Contents; Contents; Preface; Author; Chapter 1. Quest for Attosecond Optical Pulses; Chapter 2. Femtosecond Driving Lasers; Chapter 3. Stabilization of Carrier-Envelope Phase; Chapter 4. Semiclassical Model; Chapter 5. Strong Field Approximation; Chapter 6. Phase Matching; Chapter 7. Attosecond Pulse Trains; Chapter 8. Single Isolated Attosecond Pulses; Chapter 9. Applications of Attosecond Pulses; Appendix A: Solutions to Selected Problems; Back cover
Record Nr. UNINA-9910818305503321
Chang Zenghu  
Boca Raton, Fla. : , : CRC Press, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials interaction with femtosecond lasers : theory and ultra-large-scale simulations of thermal and nonthermal phenomena / / Bernd Bauerhenne
Materials interaction with femtosecond lasers : theory and ultra-large-scale simulations of thermal and nonthermal phenomena / / Bernd Bauerhenne
Autore Bauerhenne Bernd
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (554 pages)
Disciplina 621.366
Soggetto topico Femtosecond lasers
Solids - Effect of lasers on
Picosecond pulses
ISBN 3-030-85135-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgements -- About This Book -- Contents -- About the Author -- Acronyms -- List of Symbols -- 1 Introduction -- References -- 2 Ab-initio Description of Solids -- 2.1 Quantum Mechanical Description -- 2.2 Born-Oppenheimer Approximation -- 2.2.1 Nuclei Motion in the Harmonic Approximation in Crystalline Systems -- 2.3 Density Functional Theory -- 2.3.1 Hohenberg-Kohn Theorems -- 2.3.2 Kohn-Sham Equations -- 2.3.3 Approximations to the Exchange Correlation Functional -- 2.3.4 Bloch Waves in Crystalline Systems -- 2.3.5 Using a Set of Basis Functions -- 2.3.6 Solving the Kohn-Sham Equations Self Consistently -- 2.3.7 Density Mixing to Speed up the Solution of the Kohn-Sham Equations -- 2.3.8 Pseudopotentials -- 2.3.9 Electronic Band Structure of Solids -- 2.4 Te-dependent Density Functional Theory -- 2.4.1 Basic Considerations of Thermodynamics -- 2.4.2 Basic Considerations of Statistical Mechanics -- 2.4.3 Mermin's Theorems -- 2.4.4 Te-dependent Kohn-Sham Equations -- 2.5 Summary -- References -- 3 Ab-initio Description of a Fs-laser Excitation -- 3.1 Basic Considerations of Electrodynamics -- 3.1.1 Maxwell Equations in Vacuum -- 3.1.2 Radiation of Electromagnetic Waves -- 3.1.3 Energy in Electromagnetic Fields -- 3.1.4 Interaction of a Charged Particle with an Electromagnetic Wave -- 3.2 Basic Considerations of Second Quantization -- 3.2.1 Second Quantization for Electrons -- 3.2.2 Second Quantization for Phonons -- 3.3 Reduced Electron Density Matrices -- 3.4 Effects of a Fs-laser Interaction on Matter -- 3.4.1 Effects of the Fs-Laser Field -- 3.4.2 Electron Relaxation -- 3.4.3 Electron-Phonon Relaxation -- 3.4.4 Electron-Phonon Coupling Strength -- 3.5 Physical Picture of the Fs-laser Excitation -- 3.6 Code for Highly Excited Valence Electron Systems (CHIVES) -- 3.7 Summary -- References.
4 Ab-Initio MD Simulations of the Excited Potential Energy Surface -- 4.1 Molecular Dynamics Simulation Setup -- 4.1.1 Velocity Verlet Algorithm -- 4.1.2 Preparation of Initial Conditions -- 4.2 Calculation of the Diffraction Peak Intensities -- 4.3 Fs-Laser Induced Thermal Phonon Squeezing and Antisqueezing -- 4.4 DFT Calculations and MD Simulations of Si at Various Te's -- 4.4.1 Equilibrium Structure -- 4.4.2 Cohesive Energies at Various Te's -- 4.4.3 Phonon Band Structure at Various Te's -- 4.4.4 MD Simulations of Thermal Phonon Antisqueezing at Moderate Te's -- 4.4.5 MD Simulations of Non-thermal Melting at High Te's -- 4.4.6 Behavior of the Electronic Indirect Band Gap -- 4.4.7 MD Simulations of a Thin-Film at Various Te's -- 4.4.8 Summary of the Effects Induced by an Increased Te -- 4.5 DFT Calculations and MD Simulations of Sb at Various Te's -- 4.5.1 Equilibrium Structure -- 4.5.2 Cohesive Energies at Various Te's -- 4.5.3 Potential Energy Surface and Displacive Excitation of the A1g Phonon -- 4.5.4 Phonon Band Structure at Various Te's -- 4.5.5 MD Simulations of the A1g-Phonon Excitation at Various Te's -- 4.5.6 MD Simulations of Thermal Phonon Antisqueezing at Moderate Te's -- 4.5.7 MD Simulations of Non-thermal Melting at High Te's -- 4.5.8 MD Simulations of a Thin-Film at Various Te's -- 4.5.9 Summary of the Effects Induced by an Increased Te -- 4.6 THz Emission from Coherent Phonon Oscillations in BNNTs -- 4.6.1 Equilibrium Structure -- 4.6.2 Displacive Excitation of Coherent Phonons in BNNTs -- 4.6.3 THz Radiation from Coherent Phonon Oscillations in the (5, 0) Zigzag BNNT -- 4.7 Summary -- References -- 5 Empirical MD Simulations of Laser-Excited Matter -- 5.1 Interatomic Potentials for Ground State Electrons in Solid State Physics -- 5.1.1 Classical Analytical Interatomic Potential Models.
5.1.2 Determining of Interatomic Potential Parameters -- 5.1.3 Machine Learning Interatomic Potentials -- 5.1.4 Performing Large Scale MD Simulations -- 5.2 Simulation of Laser Excitation via Two Temperatures and Velocity Scaling -- 5.3 Simulation of Laser Excitation via Bond-Softening in the Tersoff Potential -- 5.4 Te-Dependent Interatomic Potentials -- 5.4.1 Si Potential of Shokeen and Schelling -- 5.4.2 Si Potential of Darkins et al. -- 5.4.3 MD Simulations with a Te-Dependent Interatomic Potential -- 5.5 Universal Interatomic Potential Parameter Fitting Program -- 5.5.1 Construction of Fit Error Function -- 5.5.2 General Definition of the Analytical Form of the Interatomic Potential -- 5.5.3 Analytical Expressions for the Interatomic Potential Parameter Derivatives -- 5.5.4 Efficient and Parallelized Implementation in Fortran -- 5.6 Summary -- References -- 6 Ab-Initio Theory Considering Excited Potential Energy Surface and e-Phonon Coupling -- 6.1 Usage of Global Temperatures in the Simulation Cell -- 6.1.1 Implementation in the Velocity Verlet Algorithm -- 6.1.2 Remarks -- 6.2 Usage of Local Temperatures in the Simulation Cell -- 6.2.1 Numerical Implementation -- 6.2.2 Remarks -- 6.3 Polynomial Te-Dependent Interatomic Potential Model -- 6.3.1 Polynomial Functional Form -- 6.3.2 Fitting of Coefficients -- 6.3.3 Optimal Polynomial-Degree Combination Selection Procedure -- 6.3.4 Easy Evaluation via Power Lists -- 6.3.5 Efficient Evaluation of the Three-Body Term -- 6.3.6 Efficient Evaluation of the Four-Body Term -- 6.4 Summary -- References -- 7 Study of Femtosecond-Laser Excited Si -- 7.1 Te-Dependent Interatomic Potential for Si -- 7.1.1 Ab-Initio Reference Simulations Used for Fitting -- 7.1.2 Parameter Fitting of Classical Interatomic Potentials -- 7.1.3 Polynomial Interatomic Potential Φ(Si)(Te).
7.1.4 Physical Properties of Polynomial Φ(Si)(Te) -- 7.1.5 Thermophysical Properties of Polynomial Φ(Si)(Te) -- 7.2 MD Simulations of Excited PES and EPC with Polynomial Φ(Si)(Te) -- 7.2.1 Direct Comparison of the Bragg Peak Intensities with Experiments -- 7.2.2 MD Simulations of a Femtosecond-Laser Excited Si Film -- 7.2.3 MD Simulations of Femtosecond-Laser Excited Bulk Si -- 7.3 Correction of the Melting Temperature -- 7.3.1 Correction of the 3-Body Potential Coefficients -- 7.3.2 Melting Temperature and Slope Study on Test Potentials -- 7.3.3 Correction of the 2-Body and 3-Body Potential Coefficients -- 7.4 Summary -- References -- 8 Study of Femtosecond-Laser Excited Sb -- 8.1 Te-dependent Interatomic Potential for Sb -- 8.1.1 Ab-initio Reference Simulations Used for Fitting -- 8.1.2 Optimization of the Functional Form of the Polynomial Potential -- 8.1.3 Physical Properties of Polynomial Φ(Sb)(Te) -- 8.2 Optical Properties of Sb as a Function of the Peierls Parameter -- 8.3 MD Simulations of Excited PES and EPC with Polynomial Φ(Sb)(Te) -- 8.3.1 Direct Comparison of the Bragg Peak Intensities with Experiments -- 8.3.2 Laser-Induced A7 to Sc Transition -- 8.4 Summary -- References -- 9 Summary and Outlook -- 9.1 Overview -- 9.1.1 THz Emission from Coherent Phonon Oscillations -- 9.1.2 Universal Behavior of the Indirect Electronic Band Gap in Laser-Excited Si -- 9.1.3 Theory Allowing MD Simulations Considering Excited Potential Energy Surface and Electron-Phonon Coupling -- 9.1.4 Construction of Efficient and Highly Accurate Te-Dependent Interatomic Potentials -- 9.1.5 Te-Dependent Interatomic Potential Φ(Si)(Te) for Si -- 9.1.6 Correction of the Melting Temperature of Φ(Si)(Te) to the Experimental Value -- 9.1.7 MD Simulations of Femtosecond Laser-Pulse Excited Si -- 9.1.8 Te-Dependent Interatomic Potential Φ(Sb)(Te) for Sb.
9.1.9 MD Simulations of Femtosecond Laser-Pulse Excited Sb -- 9.2 Future Perspectives -- Reference -- Appendix A Additional Information and Tables -- A.1 Review of Vector Calculus -- A.2 Method of Least Squares and Givens Rotations -- A.3 Implementation of the e-Phonon Coupling in Velocity Verlet -- A.4 Calculation of the Pressure in a MD Simulation -- A.5 Electronic Specific Heat of Si -- A.6 Adapted Parameters of Classical Potentials to Describe FS-Laser Excited Si -- A.7 Performance of Reparametrized Classical Potentials for Si -- A.8 Coefficients of the Polynomial Interatomic Potential Φ(Si)(Te) for Si -- A.8.1 Modified Coefficients for the Tm-Corrected Interatomic Potential -- A.9 Coefficients of the Polynomial Interatomic Potential Φ(Sb)(Te) for Sb -- A.10 Electronic Specific Heat of Sb -- A.11 Optical Properties of Sb as a Function of the Peierls Parameter -- A.12 Electron-Phonon Coupling Constant of Sb -- A.13 Gaussian Basis Sets Used in CHIVES -- References -- Index.
Record Nr. UNINA-9910506395803321
Bauerhenne Bernd  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials interaction with femtosecond lasers : theory and ultra-large-scale simulations of thermal and nonthermal phenomena / / Bernd Bauerhenne
Materials interaction with femtosecond lasers : theory and ultra-large-scale simulations of thermal and nonthermal phenomena / / Bernd Bauerhenne
Autore Bauerhenne Bernd
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (554 pages)
Disciplina 621.366
Soggetto topico Femtosecond lasers
Solids - Effect of lasers on
Picosecond pulses
ISBN 3-030-85135-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgements -- About This Book -- Contents -- About the Author -- Acronyms -- List of Symbols -- 1 Introduction -- References -- 2 Ab-initio Description of Solids -- 2.1 Quantum Mechanical Description -- 2.2 Born-Oppenheimer Approximation -- 2.2.1 Nuclei Motion in the Harmonic Approximation in Crystalline Systems -- 2.3 Density Functional Theory -- 2.3.1 Hohenberg-Kohn Theorems -- 2.3.2 Kohn-Sham Equations -- 2.3.3 Approximations to the Exchange Correlation Functional -- 2.3.4 Bloch Waves in Crystalline Systems -- 2.3.5 Using a Set of Basis Functions -- 2.3.6 Solving the Kohn-Sham Equations Self Consistently -- 2.3.7 Density Mixing to Speed up the Solution of the Kohn-Sham Equations -- 2.3.8 Pseudopotentials -- 2.3.9 Electronic Band Structure of Solids -- 2.4 Te-dependent Density Functional Theory -- 2.4.1 Basic Considerations of Thermodynamics -- 2.4.2 Basic Considerations of Statistical Mechanics -- 2.4.3 Mermin's Theorems -- 2.4.4 Te-dependent Kohn-Sham Equations -- 2.5 Summary -- References -- 3 Ab-initio Description of a Fs-laser Excitation -- 3.1 Basic Considerations of Electrodynamics -- 3.1.1 Maxwell Equations in Vacuum -- 3.1.2 Radiation of Electromagnetic Waves -- 3.1.3 Energy in Electromagnetic Fields -- 3.1.4 Interaction of a Charged Particle with an Electromagnetic Wave -- 3.2 Basic Considerations of Second Quantization -- 3.2.1 Second Quantization for Electrons -- 3.2.2 Second Quantization for Phonons -- 3.3 Reduced Electron Density Matrices -- 3.4 Effects of a Fs-laser Interaction on Matter -- 3.4.1 Effects of the Fs-Laser Field -- 3.4.2 Electron Relaxation -- 3.4.3 Electron-Phonon Relaxation -- 3.4.4 Electron-Phonon Coupling Strength -- 3.5 Physical Picture of the Fs-laser Excitation -- 3.6 Code for Highly Excited Valence Electron Systems (CHIVES) -- 3.7 Summary -- References.
4 Ab-Initio MD Simulations of the Excited Potential Energy Surface -- 4.1 Molecular Dynamics Simulation Setup -- 4.1.1 Velocity Verlet Algorithm -- 4.1.2 Preparation of Initial Conditions -- 4.2 Calculation of the Diffraction Peak Intensities -- 4.3 Fs-Laser Induced Thermal Phonon Squeezing and Antisqueezing -- 4.4 DFT Calculations and MD Simulations of Si at Various Te's -- 4.4.1 Equilibrium Structure -- 4.4.2 Cohesive Energies at Various Te's -- 4.4.3 Phonon Band Structure at Various Te's -- 4.4.4 MD Simulations of Thermal Phonon Antisqueezing at Moderate Te's -- 4.4.5 MD Simulations of Non-thermal Melting at High Te's -- 4.4.6 Behavior of the Electronic Indirect Band Gap -- 4.4.7 MD Simulations of a Thin-Film at Various Te's -- 4.4.8 Summary of the Effects Induced by an Increased Te -- 4.5 DFT Calculations and MD Simulations of Sb at Various Te's -- 4.5.1 Equilibrium Structure -- 4.5.2 Cohesive Energies at Various Te's -- 4.5.3 Potential Energy Surface and Displacive Excitation of the A1g Phonon -- 4.5.4 Phonon Band Structure at Various Te's -- 4.5.5 MD Simulations of the A1g-Phonon Excitation at Various Te's -- 4.5.6 MD Simulations of Thermal Phonon Antisqueezing at Moderate Te's -- 4.5.7 MD Simulations of Non-thermal Melting at High Te's -- 4.5.8 MD Simulations of a Thin-Film at Various Te's -- 4.5.9 Summary of the Effects Induced by an Increased Te -- 4.6 THz Emission from Coherent Phonon Oscillations in BNNTs -- 4.6.1 Equilibrium Structure -- 4.6.2 Displacive Excitation of Coherent Phonons in BNNTs -- 4.6.3 THz Radiation from Coherent Phonon Oscillations in the (5, 0) Zigzag BNNT -- 4.7 Summary -- References -- 5 Empirical MD Simulations of Laser-Excited Matter -- 5.1 Interatomic Potentials for Ground State Electrons in Solid State Physics -- 5.1.1 Classical Analytical Interatomic Potential Models.
5.1.2 Determining of Interatomic Potential Parameters -- 5.1.3 Machine Learning Interatomic Potentials -- 5.1.4 Performing Large Scale MD Simulations -- 5.2 Simulation of Laser Excitation via Two Temperatures and Velocity Scaling -- 5.3 Simulation of Laser Excitation via Bond-Softening in the Tersoff Potential -- 5.4 Te-Dependent Interatomic Potentials -- 5.4.1 Si Potential of Shokeen and Schelling -- 5.4.2 Si Potential of Darkins et al. -- 5.4.3 MD Simulations with a Te-Dependent Interatomic Potential -- 5.5 Universal Interatomic Potential Parameter Fitting Program -- 5.5.1 Construction of Fit Error Function -- 5.5.2 General Definition of the Analytical Form of the Interatomic Potential -- 5.5.3 Analytical Expressions for the Interatomic Potential Parameter Derivatives -- 5.5.4 Efficient and Parallelized Implementation in Fortran -- 5.6 Summary -- References -- 6 Ab-Initio Theory Considering Excited Potential Energy Surface and e-Phonon Coupling -- 6.1 Usage of Global Temperatures in the Simulation Cell -- 6.1.1 Implementation in the Velocity Verlet Algorithm -- 6.1.2 Remarks -- 6.2 Usage of Local Temperatures in the Simulation Cell -- 6.2.1 Numerical Implementation -- 6.2.2 Remarks -- 6.3 Polynomial Te-Dependent Interatomic Potential Model -- 6.3.1 Polynomial Functional Form -- 6.3.2 Fitting of Coefficients -- 6.3.3 Optimal Polynomial-Degree Combination Selection Procedure -- 6.3.4 Easy Evaluation via Power Lists -- 6.3.5 Efficient Evaluation of the Three-Body Term -- 6.3.6 Efficient Evaluation of the Four-Body Term -- 6.4 Summary -- References -- 7 Study of Femtosecond-Laser Excited Si -- 7.1 Te-Dependent Interatomic Potential for Si -- 7.1.1 Ab-Initio Reference Simulations Used for Fitting -- 7.1.2 Parameter Fitting of Classical Interatomic Potentials -- 7.1.3 Polynomial Interatomic Potential Φ(Si)(Te).
7.1.4 Physical Properties of Polynomial Φ(Si)(Te) -- 7.1.5 Thermophysical Properties of Polynomial Φ(Si)(Te) -- 7.2 MD Simulations of Excited PES and EPC with Polynomial Φ(Si)(Te) -- 7.2.1 Direct Comparison of the Bragg Peak Intensities with Experiments -- 7.2.2 MD Simulations of a Femtosecond-Laser Excited Si Film -- 7.2.3 MD Simulations of Femtosecond-Laser Excited Bulk Si -- 7.3 Correction of the Melting Temperature -- 7.3.1 Correction of the 3-Body Potential Coefficients -- 7.3.2 Melting Temperature and Slope Study on Test Potentials -- 7.3.3 Correction of the 2-Body and 3-Body Potential Coefficients -- 7.4 Summary -- References -- 8 Study of Femtosecond-Laser Excited Sb -- 8.1 Te-dependent Interatomic Potential for Sb -- 8.1.1 Ab-initio Reference Simulations Used for Fitting -- 8.1.2 Optimization of the Functional Form of the Polynomial Potential -- 8.1.3 Physical Properties of Polynomial Φ(Sb)(Te) -- 8.2 Optical Properties of Sb as a Function of the Peierls Parameter -- 8.3 MD Simulations of Excited PES and EPC with Polynomial Φ(Sb)(Te) -- 8.3.1 Direct Comparison of the Bragg Peak Intensities with Experiments -- 8.3.2 Laser-Induced A7 to Sc Transition -- 8.4 Summary -- References -- 9 Summary and Outlook -- 9.1 Overview -- 9.1.1 THz Emission from Coherent Phonon Oscillations -- 9.1.2 Universal Behavior of the Indirect Electronic Band Gap in Laser-Excited Si -- 9.1.3 Theory Allowing MD Simulations Considering Excited Potential Energy Surface and Electron-Phonon Coupling -- 9.1.4 Construction of Efficient and Highly Accurate Te-Dependent Interatomic Potentials -- 9.1.5 Te-Dependent Interatomic Potential Φ(Si)(Te) for Si -- 9.1.6 Correction of the Melting Temperature of Φ(Si)(Te) to the Experimental Value -- 9.1.7 MD Simulations of Femtosecond Laser-Pulse Excited Si -- 9.1.8 Te-Dependent Interatomic Potential Φ(Sb)(Te) for Sb.
9.1.9 MD Simulations of Femtosecond Laser-Pulse Excited Sb -- 9.2 Future Perspectives -- Reference -- Appendix A Additional Information and Tables -- A.1 Review of Vector Calculus -- A.2 Method of Least Squares and Givens Rotations -- A.3 Implementation of the e-Phonon Coupling in Velocity Verlet -- A.4 Calculation of the Pressure in a MD Simulation -- A.5 Electronic Specific Heat of Si -- A.6 Adapted Parameters of Classical Potentials to Describe FS-Laser Excited Si -- A.7 Performance of Reparametrized Classical Potentials for Si -- A.8 Coefficients of the Polynomial Interatomic Potential Φ(Si)(Te) for Si -- A.8.1 Modified Coefficients for the Tm-Corrected Interatomic Potential -- A.9 Coefficients of the Polynomial Interatomic Potential Φ(Sb)(Te) for Sb -- A.10 Electronic Specific Heat of Sb -- A.11 Optical Properties of Sb as a Function of the Peierls Parameter -- A.12 Electron-Phonon Coupling Constant of Sb -- A.13 Gaussian Basis Sets Used in CHIVES -- References -- Index.
Record Nr. UNISA-996466848703316
Bauerhenne Bernd  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Ultrafast nonlinear optics / / Robert Thomson, Christopher Leburn, Derryck Reid, editors
Ultrafast nonlinear optics / / Robert Thomson, Christopher Leburn, Derryck Reid, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (377 p.)
Disciplina 621.36
Altri autori (Persone) ThomsonRobert
LeburnChristopher
ReidD. T (Derryck T.)
Collana Scottish graduate series
Soggetto topico Nonlinear optics
Picosecond pulses
ISBN 3-319-00017-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the Contents: Measuring Ultrashort Optical Pulses -- Ultra-Broadband Optical Parametric Amplifiers -- Attosecond Generation and High Field Physics -- Advances in Solid-State Ultrafast Laser Oscillators -- Ultrafast Quantum Control in Atoms and Molecules -- Femtosecond Optical Frequency Combs -- Ultrafast Material Science Probed using Coherent X-Ray Pulses from High-Harmonic Generation.
Record Nr. UNINA-9910741180803321
Heidelberg ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui