top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational liquid crystal photonics : fundamentals, modelling and applications / / Salah Obayya, Mohamed Farhat O. Hameed and Nihal F. F. Areed
Computational liquid crystal photonics : fundamentals, modelling and applications / / Salah Obayya, Mohamed Farhat O. Hameed and Nihal F. F. Areed
Autore Obayya Salah
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (283 p.)
Disciplina 621.3815422
Soggetto topico Liquid crystal devices - Mathematical models
Integrated optics - Mathematics
Photonics - Mathematics
ISBN 1-119-04198-8
1-119-04200-3
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Preface; Part I Basic Principles; Chapter 1 Principles of Waveguides; 1.1 Introduction; 1.2 Basic Optical Waveguides; 1.3 Maxwell's Equations; 1.4 The Wave Equation and Its Solutions; 1.5 Boundary Conditions; 1.6 Phase and Group Velocity; 1.6.1 Phase Velocity; 1.6.2 Group Velocity; 1.7 Modes in Planar Optical Waveguide; 1.7.1 Radiation Modes; 1.7.2 Confinement Modes; 1.8 Dispersion in Planar Waveguide; 1.8.1 lntermodal Dispersion; 1.8.2 lntramodal Dispersion; 1.9 Summary; References; Chapter 2 Fundamentals of Photonic Crystals; 2.1 Introduction
2.2 Types of PhCs2.2.1 1D PhCs; 2.2.2 2D PhCs; 2.2.3 3D PhCs; 2.3 Photonic Band Calculations; 2.3.1 Maxwell's Equations and the PhC; 2.3.2 Floquet-Bloch Theorem, Reciprocal Lattice, and Brillouin Zones; 2.3.3 Plane Wave Expansion Method; 2.3.4 FDTD Method; 2.3.5 Photonic Band for Square Lattice; 2.4 Defects in PhCs; 2.5 Fabrication Techniques of PhCs; 2.5.1 Electron-Beam Lithography; 2.5.2 Interference Lithography; 2.5.3 Nano-Imprint Lithography; 2.5.4 Colloidal Self-Assembly; 2.6 Applications of PhCs; 2.7 Photonic Crystal Fiber; 2.7.1 Construction; 2.7.2 Modes of Operation
2.7.3 Fabrication of PCF2.7.4 Applications of PCF; 2.8 Summary; References; Chapter 3 Fundamentals of Liquid Crystals; 3.1 Introduction; 3.2 Molecular Structure and Chemical Composition of an LC Cell; 3.3 LC Phases; 3.3.1 Thermotropic LCs; 3.3.2 Lyotropic LCs; 3.3.3 Metallotropic LCs; 3.4 LC Physical Properties in External Fields; 3.4.1 Electric Field Effect; 3.4.2 Magnetic Field Effect; 3.5 Theortitcal Tratment of LC; 3.5.1 LC Parameters; 3.5.2 LC Models; 3.6 LC Sample Preparation; 3.7 LCs for Display Applications; 3.8 LC Thermometers; 3.9 Optical Imaging
3.10 LC into Fiber Optics and LC Planar Photonic Crystal3.11 LC Solar Cell; References; Part II Numerical Techniques; Chapter 4 Full-Vectorial Finite-Difference Method; 4.1 Introduction; 4.2 Overview of Modeling Methods; 4.3 Formulation of the FVFDM; 4.3.1 Maxwell's Equations; 4.3.2 Wave Equation; 4.3.3 Boundary Conditions; 4.3.4 Maxwell's Equations in Complex Coordinate; 4.3.5 Matrix Solution; 4.4 Summary; References; Chapter 5 Assessment of the Full-Vectorial Finite-Difference Method; 5.1 Introduction; 5.2 Overview of the LC-PCF; 5.3 Soft Glass; 5.4 Design of Soft Glass PCF with LC Core
5.5 Numerical Results5.5.1 FVFDM Validation; 5.5.2 Modal Hybridness; 5.5.3 Effective Index; 5.5.4 Effective Mode Area; 5.5.5 Nonlinearity; 5.5.6 Birefringence; 5.5.7 Effect of the NLC Rotation Angle; 5.5.8 Effect of the Temperature; 5.5.9 Elliptical SGLC-PCF; 5.6 Experimental Results of LC-PCF; 5.6.1 Filling Temperature; 5.6.2 Filling Time; 5.7 Summary; References; Chapter 6 Full-Vectorial Beam Propagation Method; 6.1 Introduction; 6.2 Overview of the BPMs; 6.3 Formulation of the FV-BPM; 6.3.1 Slowly Varying Envelope Approximation; 6.3.2 Paraxial and Wide-Angle Approximation
6.4 Numerical Assessment
Record Nr. UNINA-9910136781803321
Obayya Salah  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational liquid crystal photonics : fundamentals, modelling and applications / / Salah Obayya, Mohamed Farhat O. Hameed and Nihal F. F. Areed
Computational liquid crystal photonics : fundamentals, modelling and applications / / Salah Obayya, Mohamed Farhat O. Hameed and Nihal F. F. Areed
Autore Obayya Salah
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (283 p.)
Disciplina 621.3815422
Soggetto topico Liquid crystal devices - Mathematical models
Integrated optics - Mathematics
Photonics - Mathematics
ISBN 1-119-04198-8
1-119-04200-3
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Preface; Part I Basic Principles; Chapter 1 Principles of Waveguides; 1.1 Introduction; 1.2 Basic Optical Waveguides; 1.3 Maxwell's Equations; 1.4 The Wave Equation and Its Solutions; 1.5 Boundary Conditions; 1.6 Phase and Group Velocity; 1.6.1 Phase Velocity; 1.6.2 Group Velocity; 1.7 Modes in Planar Optical Waveguide; 1.7.1 Radiation Modes; 1.7.2 Confinement Modes; 1.8 Dispersion in Planar Waveguide; 1.8.1 lntermodal Dispersion; 1.8.2 lntramodal Dispersion; 1.9 Summary; References; Chapter 2 Fundamentals of Photonic Crystals; 2.1 Introduction
2.2 Types of PhCs2.2.1 1D PhCs; 2.2.2 2D PhCs; 2.2.3 3D PhCs; 2.3 Photonic Band Calculations; 2.3.1 Maxwell's Equations and the PhC; 2.3.2 Floquet-Bloch Theorem, Reciprocal Lattice, and Brillouin Zones; 2.3.3 Plane Wave Expansion Method; 2.3.4 FDTD Method; 2.3.5 Photonic Band for Square Lattice; 2.4 Defects in PhCs; 2.5 Fabrication Techniques of PhCs; 2.5.1 Electron-Beam Lithography; 2.5.2 Interference Lithography; 2.5.3 Nano-Imprint Lithography; 2.5.4 Colloidal Self-Assembly; 2.6 Applications of PhCs; 2.7 Photonic Crystal Fiber; 2.7.1 Construction; 2.7.2 Modes of Operation
2.7.3 Fabrication of PCF2.7.4 Applications of PCF; 2.8 Summary; References; Chapter 3 Fundamentals of Liquid Crystals; 3.1 Introduction; 3.2 Molecular Structure and Chemical Composition of an LC Cell; 3.3 LC Phases; 3.3.1 Thermotropic LCs; 3.3.2 Lyotropic LCs; 3.3.3 Metallotropic LCs; 3.4 LC Physical Properties in External Fields; 3.4.1 Electric Field Effect; 3.4.2 Magnetic Field Effect; 3.5 Theortitcal Tratment of LC; 3.5.1 LC Parameters; 3.5.2 LC Models; 3.6 LC Sample Preparation; 3.7 LCs for Display Applications; 3.8 LC Thermometers; 3.9 Optical Imaging
3.10 LC into Fiber Optics and LC Planar Photonic Crystal3.11 LC Solar Cell; References; Part II Numerical Techniques; Chapter 4 Full-Vectorial Finite-Difference Method; 4.1 Introduction; 4.2 Overview of Modeling Methods; 4.3 Formulation of the FVFDM; 4.3.1 Maxwell's Equations; 4.3.2 Wave Equation; 4.3.3 Boundary Conditions; 4.3.4 Maxwell's Equations in Complex Coordinate; 4.3.5 Matrix Solution; 4.4 Summary; References; Chapter 5 Assessment of the Full-Vectorial Finite-Difference Method; 5.1 Introduction; 5.2 Overview of the LC-PCF; 5.3 Soft Glass; 5.4 Design of Soft Glass PCF with LC Core
5.5 Numerical Results5.5.1 FVFDM Validation; 5.5.2 Modal Hybridness; 5.5.3 Effective Index; 5.5.4 Effective Mode Area; 5.5.5 Nonlinearity; 5.5.6 Birefringence; 5.5.7 Effect of the NLC Rotation Angle; 5.5.8 Effect of the Temperature; 5.5.9 Elliptical SGLC-PCF; 5.6 Experimental Results of LC-PCF; 5.6.1 Filling Temperature; 5.6.2 Filling Time; 5.7 Summary; References; Chapter 6 Full-Vectorial Beam Propagation Method; 6.1 Introduction; 6.2 Overview of the BPMs; 6.3 Formulation of the FV-BPM; 6.3.1 Slowly Varying Envelope Approximation; 6.3.2 Paraxial and Wide-Angle Approximation
6.4 Numerical Assessment
Record Nr. UNINA-9910808946703321
Obayya Salah  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational photonics / / Salah Obayya
Computational photonics / / Salah Obayya
Autore Obayya Salah
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : Wiley, , c2011
Descrizione fisica 1 online resource (324 p.)
Disciplina 621.36
Soggetto topico Optoelectronic devices - Mathematical models
Photonics - Mathematics
ISBN 1-119-95750-8
1-282-78263-0
9786612782633
0-470-66706-0
0-470-66707-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction 1.1 Photonics: the countless possibilities of light propagation 1.2 Modelling photonics 2 Full-vectorial Beam Propagation Method 2.1 Introduction 2.2 Overview of the beam propagation methods 2.3 Maxwell's Equations 2.4 Magnetic field formulation of the wave equation 2.5 Electric field formulation of the wave equation 2.6 Perfectly-Matched Layer 2.7 Finite Element Analysis 2.8 Derivation of BPM Equations 2.9 Imaginary-Distance BPM: Mode Solver 3 Assessment of Full-Vectorial Beam Propagation Method 3.1 Introduction 3.2 Analysis of Rectangular waveguide 3.3 Photonic Crystal Fibre 3.4 Liquid Crystal Based Photonic Crystal Fibre 3.5 Electro-optical Modulators 3.6 Switches 4 Bidirectional Beam Propagation Method 4.1 Introduction 4.2 Optical Waveguide Discontinuity Problem 4.3 Finite element analysis of discontinuity problems 4.4 Derivation of Finite Element Matrices 4.5 Application of Taylor's Series Expansion 4.6 Computation of Reflected, Transmitted and Radiation Waves 4.7 Optical fiber-facet problem 4.8 Finite element analysis of optical fiber facets 4.9 Iterative analysis of multiple-discontinuities 4.10 Numerical assessment 5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment 5.1 Introduction 5.2 Maxwell's equations 5.3 Brief history of Finite Difference Time Domain (FDTD) Method 5.4 Finite Difference Time Domain (FDTD) Method 5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit 5.6 Complex-Envelope ADI-FDTD (CE-ADI- 5.7 Perfectly Matched Layer (PML) Boundary Conditions 5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition 5.9 PML Parameters 5.10 PML Boundary Conditions for CE-ADI-FDTD 5.11 PhC Resonant Cavities 5.12 5x5 Rectangular Lattice PhC Cavity 5.13 Triangular Lattice PhC Cavity 5.14 Wavelength Division Multiplexing 5.15 Conclusions 6. Finite Volume time Domain (FVTD) Method 6.1 Introduction 6.2 Numerical analysis 6.3 UPWIND Scheme for the Calculation 6.4 NON-DIFFUSIVE Scheme for the Flux Calculation 6.5 2D Formulation of the FVTD Method 6.6 Boundary Conditions 6.7 Nonlinear Optics 6.8 Nonlinear Optical Interactions 6.9 Extension of the FDTD Method to Nonlinear Problems 6.10 Extension of the FVTD Method to Nonlinear Problems 6.11 Conclusions 7 Numerical Analysis of Linear and Nonlinear PhC Based Devices 7.1 Introduction 7.2 FVTD Method Assessment: PhC Cavity 7.3 FVTD Method Assessment: PhC Waveguide 7.4 FVTD Method Assessment: PBG T-Branch 7.5 PhC Multimode Resonant Cavity 7.6 FDTD Analysis of Nonlinear Devices 7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires 7.8 Conclusions 8 Multiresolution Time Domain 8.1 Introduction 8.2 MRTD basics 8.3 MRTD update scheme 8.4 Scaling-MRTD 8.5 Conclusions 9 MRTD Analysis of PhC-Devices 9.1 Introduction 9.2 UPML-MRTD: test and code validation 9.3 MRTD vs FDTD for the analysis of linear photonic crystals 9.4 Conclusions 10 MRTD Analysis of SHG PhC-Devices 10.1 Introduction 10.2 Second harmonic generation in optics 10.3 Extended S-MRTD for SHG analysis 10.4 SHG in PhC-waveguide 10.5 Selective SHG in compound PhC-based structures 10.6 New design for selective SHG: PhC-microcavities coupling 10.7 Conclusions 11 Dispersive Nonlinear MRTD for SHG Applications 11.1 Introduction 11.2 Dispersion analysis 11.3 SHG-MRTD scheme for dispersive materials 11.4 Simulation results 11.5 Conclusions.
Record Nr. UNINA-9910140755803321
Obayya Salah  
Chichester, West Sussex, U.K. : , : Wiley, , c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational photonics / / Salah Obayya
Computational photonics / / Salah Obayya
Autore Obayya Salah
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : Wiley, 2010
Descrizione fisica 1 online resource (324 p.)
Disciplina 621.36
Soggetto topico Optoelectronic devices - Mathematical models
Photonics - Mathematics
ISBN 9786612782633
9781119957508
1119957508
9781282782631
1282782630
9780470667064
0470667060
9780470667071
0470667079
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction 1.1 Photonics: the countless possibilities of light propagation 1.2 Modelling photonics 2 Full-vectorial Beam Propagation Method 2.1 Introduction 2.2 Overview of the beam propagation methods 2.3 Maxwell's Equations 2.4 Magnetic field formulation of the wave equation 2.5 Electric field formulation of the wave equation 2.6 Perfectly-Matched Layer 2.7 Finite Element Analysis 2.8 Derivation of BPM Equations 2.9 Imaginary-Distance BPM: Mode Solver 3 Assessment of Full-Vectorial Beam Propagation Method 3.1 Introduction 3.2 Analysis of Rectangular waveguide 3.3 Photonic Crystal Fibre 3.4 Liquid Crystal Based Photonic Crystal Fibre 3.5 Electro-optical Modulators 3.6 Switches 4 Bidirectional Beam Propagation Method 4.1 Introduction 4.2 Optical Waveguide Discontinuity Problem 4.3 Finite element analysis of discontinuity problems 4.4 Derivation of Finite Element Matrices 4.5 Application of Taylor's Series Expansion 4.6 Computation of Reflected, Transmitted and Radiation Waves 4.7 Optical fiber-facet problem 4.8 Finite element analysis of optical fiber facets 4.9 Iterative analysis of multiple-discontinuities 4.10 Numerical assessment 5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment 5.1 Introduction 5.2 Maxwell's equations 5.3 Brief history of Finite Difference Time Domain (FDTD) Method 5.4 Finite Difference Time Domain (FDTD) Method 5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit 5.6 Complex-Envelope ADI-FDTD (CE-ADI- 5.7 Perfectly Matched Layer (PML) Boundary Conditions 5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition 5.9 PML Parameters 5.10 PML Boundary Conditions for CE-ADI-FDTD 5.11 PhC Resonant Cavities 5.12 5x5 Rectangular Lattice PhC Cavity 5.13 Triangular Lattice PhC Cavity 5.14 Wavelength Division Multiplexing 5.15 Conclusions 6. Finite Volume time Domain (FVTD) Method 6.1 Introduction 6.2 Numerical analysis 6.3 UPWIND Scheme for the Calculation 6.4 NON-DIFFUSIVE Scheme for the Flux Calculation 6.5 2D Formulation of the FVTD Method 6.6 Boundary Conditions 6.7 Nonlinear Optics 6.8 Nonlinear Optical Interactions 6.9 Extension of the FDTD Method to Nonlinear Problems 6.10 Extension of the FVTD Method to Nonlinear Problems 6.11 Conclusions 7 Numerical Analysis of Linear and Nonlinear PhC Based Devices 7.1 Introduction 7.2 FVTD Method Assessment: PhC Cavity 7.3 FVTD Method Assessment: PhC Waveguide 7.4 FVTD Method Assessment: PBG T-Branch 7.5 PhC Multimode Resonant Cavity 7.6 FDTD Analysis of Nonlinear Devices 7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires 7.8 Conclusions 8 Multiresolution Time Domain 8.1 Introduction 8.2 MRTD basics 8.3 MRTD update scheme 8.4 Scaling-MRTD 8.5 Conclusions 9 MRTD Analysis of PhC-Devices 9.1 Introduction 9.2 UPML-MRTD: test and code validation 9.3 MRTD vs FDTD for the analysis of linear photonic crystals 9.4 Conclusions 10 MRTD Analysis of SHG PhC-Devices 10.1 Introduction 10.2 Second harmonic generation in optics 10.3 Extended S-MRTD for SHG analysis 10.4 SHG in PhC-waveguide 10.5 Selective SHG in compound PhC-based structures 10.6 New design for selective SHG: PhC-microcavities coupling 10.7 Conclusions 11 Dispersive Nonlinear MRTD for SHG Applications 11.1 Introduction 11.2 Dispersion analysis 11.3 SHG-MRTD scheme for dispersive materials 11.4 Simulation results 11.5 Conclusions.
Record Nr. UNINA-9910817725903321
Obayya Salah  
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : Wiley, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational photonics : an introduction with MATLAB / / Marek S. Wartak, Wilfrid Laurier University [[electronic resource]]
Computational photonics : an introduction with MATLAB / / Marek S. Wartak, Wilfrid Laurier University [[electronic resource]]
Autore Wartak Marek S.
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xiii, 452 pages) : digital, PDF file(s)
Disciplina 621.3815/2
Soggetto topico Optoelectronic devices - Mathematical models
Photonics - Mathematics
ISBN 1-139-85376-7
1-107-23424-7
0-511-79424-X
1-139-84468-7
1-139-84232-3
1-139-83994-2
1-283-87088-6
1-139-84113-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1. Introduction; 2. Basic facts from optics; 3. Basic facts from electromagnetism; 4. Slab waveguides; 5. Linear optical fibre and signal degradation; 6. Propagation of linear pulses; 7. Optical sources; 8. Optical amplifiers and EDFA; 9. Semiconductor optical amplifiers (SOA); 10. Optical receivers; 11. Finite difference time domain (FDTD) formulation; 12. Solar cells; 13. Metamaterials; Appendices; Index.
Record Nr. UNINA-9910452863603321
Wartak Marek S.  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational photonics : an introduction with MATLAB / / Marek S. Wartak, Wilfrid Laurier University [[electronic resource]]
Computational photonics : an introduction with MATLAB / / Marek S. Wartak, Wilfrid Laurier University [[electronic resource]]
Autore Wartak Marek S.
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xiii, 452 pages) : digital, PDF file(s)
Disciplina 621.3815/2
Soggetto topico Optoelectronic devices - Mathematical models
Photonics - Mathematics
ISBN 1-139-85376-7
1-107-23424-7
0-511-79424-X
1-139-84468-7
1-139-84232-3
1-139-83994-2
1-283-87088-6
1-139-84113-0
Classificazione SCI053000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1. Introduction; 2. Basic facts from optics; 3. Basic facts from electromagnetism; 4. Slab waveguides; 5. Linear optical fibre and signal degradation; 6. Propagation of linear pulses; 7. Optical sources; 8. Optical amplifiers and EDFA; 9. Semiconductor optical amplifiers (SOA); 10. Optical receivers; 11. Finite difference time domain (FDTD) formulation; 12. Solar cells; 13. Metamaterials; Appendices; Index.
Record Nr. UNINA-9910779439203321
Wartak Marek S.  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational photonics : an introduction with MATLAB / / Marek S. Wartak, Wilfrid Laurier University [[electronic resource]]
Computational photonics : an introduction with MATLAB / / Marek S. Wartak, Wilfrid Laurier University [[electronic resource]]
Autore Wartak Marek S.
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xiii, 452 pages) : digital, PDF file(s)
Disciplina 621.3815/2
Soggetto topico Optoelectronic devices - Mathematical models
Photonics - Mathematics
ISBN 1-139-85376-7
1-107-23424-7
0-511-79424-X
1-139-84468-7
1-139-84232-3
1-139-83994-2
1-283-87088-6
1-139-84113-0
Classificazione SCI053000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1. Introduction; 2. Basic facts from optics; 3. Basic facts from electromagnetism; 4. Slab waveguides; 5. Linear optical fibre and signal degradation; 6. Propagation of linear pulses; 7. Optical sources; 8. Optical amplifiers and EDFA; 9. Semiconductor optical amplifiers (SOA); 10. Optical receivers; 11. Finite difference time domain (FDTD) formulation; 12. Solar cells; 13. Metamaterials; Appendices; Index.
Record Nr. UNINA-9910825208303321
Wartak Marek S.  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic and photonic simulation for the beginner : finite-difference frequency-domain in MATLAB / / Raymond C. Rumpf
Electromagnetic and photonic simulation for the beginner : finite-difference frequency-domain in MATLAB / / Raymond C. Rumpf
Autore Rumpf Raymond C (Raymond Charles)
Pubbl/distr/stampa Norwood : , : Artech House, , 2022
Descrizione fisica 1 online resource (355 pages)
Disciplina 537.0151
Soggetto topico Electromagnetism - Mathematics
Photonics - Mathematics
Finite differences
Photonique - Mathématiques
Différences finies
ISBN 1-63081-927-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® -- Contents -- Foreword -- Preface -- Introduction -- Chapter 1 MATLAB Preliminaries -- 1.1 Basic Structure of an FDFD Program in MATLAB -- 1.1.1 MATLAB Code for Ideal Structure of a Program -- 1.2 MATLAB and Linear Algebra -- 1.2.1 Special Matrices -- 1.2.2 Matrix Algebra -- 1.3 Setting Up a Grid in MATLAB -- 1.3.1 MATLAB Array Indexing -- 1.3.2 Parameters Describing a Grid in MATLAB -- 1.3.3 Calculating the Grid Parameters -- 1.4 Building Geometries onto Grids -- 1.4.1 Adding Rectangles to a Grid -- 1.4.2 The Centering Algorithm -- 1.4.3 The Meshgrid -- 1.4.4 Adding Circles and Ellipses to a Grid -- 1.4.5 Grid Rotation -- 1.4.6 Boolean Operations -- 1.5 Three-Dimensional Grids -- 1.6 Visualization Techniques -- 1.6.1 Visualizing Data on Grids -- 1.6.2 Visualizing Three-Dimensional Data -- 1.6.3 Visualizing Complex Data -- 1.6.4 Animating the Fields Calculated by FDFD -- Reference -- Chapter 2 Electromagnetic Preliminaries -- 2.1 Maxwell's Equations -- 2.2 The Constitutive Parameters -- 2.2.1 Anisotropy, Tensors, and Rotation Matrices -- 2.2.2 Rotation Matrices and Tensor Rotation -- 2.3 Expansion of Maxwell's Curl Equations in Cartesian Coordinates -- 2.4 The Electromagnetic Wave Equation -- 2.5 Electromagnetic Waves in LHI Media -- 2.5.1 Wave Polarization -- 2.6 The Dispersion Relation for LHI Media -- 2.7 Scattering at an Interface -- 2.7.1 Reflectance and Transmittance -- 2.8 What is a Two-Dimensional Simulation? -- 2.9 Diffraction from Gratings -- 2.9.1 The Grating Equation -- 2.9.2 Diffraction Efficiency -- 2.9.3 Generalization to Crossed Gratings -- 2.10 Waveguides and Transmission Lines -- 2.10.1 Waveguide Modes and Parameters -- 2.10.2 Transmission Line Parameters -- 2.11 Scalability of Maxwell's Equations.
2.12 Numerical Solution to Maxwell's Equations -- References -- Chapter 3 The Finite-Difference Method -- 3.1 Introduction -- 3.2 Finite-Difference Approximations -- 3.2.1 Deriving Expressions for Finite-Difference Approximations -- 3.2.2 Example #1-Interpolations and Derivatives from Three Points -- 3.2.3 Example #2-Interpolations and Derivatives from Two Points -- 3.2.4 Example #3-Interpolations and Derivatives from Four Points -- 3.3 Numerical Differentiation -- 3.4 Numerical Boundary Conditions -- 3.4.1 Dirichlet Boundary Conditions -- 3.4.2 Periodic Boundary Conditions -- 3.5 Derivative Matrices -- 3.6 Finite-Difference Approximation of Differential Equations -- 3.7 Solving Matrix Differential Equations -- 3.7.1 Example-Solving a Single-Variable Differential Equation -- 3.8 Multiple Variables and Staggered Grids -- 3.8.1 Example-Solving a Multivariable Problem -- References -- Chapter 4 Finite-Difference Approximation of Maxwell's Equations -- 4.1 Introduction to the Yee Grid Scheme -- 4.2 Preparing Maxwell's Equations for FDFD Analysis -- 4.3 Finite-Difference Approximation of Maxwell's Curl Equations -- 4.4 Finite-Difference Equations for Two-Dimensional FDFD -- 4.4.1 Derivation of E Mode Equations When Frequency Is Not Known -- 4.4.2 Derivation of H Mode Equations When Frequency Is Not Known -- 4.4.3 Derivation of E Mode Equations When Frequency Is Known -- 4.4.4 Derivation of H Mode Equations When Frequency Is Known -- 4.5 Derivative Matrices for Two-Dimensional FDFD -- 4.5.1 Derivative Matrices Incorporating Dirichlet Boundary Conditions -- 4.5.2 Periodic Boundary Conditions -- 4.5.3 Derivative Matrices Incorporating Periodic Boundary Conditions -- 4.5.4 Relationship Between the Derivative Matrices -- 4.6 Derivative Matrices for Three-Dimensional FDFD -- 4.6.1 Relationship Between the Derivative Matrices.
4.7 Programming the YEEDER2D() Function in MATLAB -- 4.7.1 Using the yeeder2d() Function -- 4.8 Programming the YEEDER3D() Function in MATLAB -- 4.8.1 Using the yeeder3d() Function -- 4.9 The 2× Grid Technique -- 4.10 Numerical Dispersion -- References -- Chapter 5 The Perfectly Matched Layer Absorbing Boundary -- 5.1 The Absorbing Boundary -- 5.2 Derivation of the UPML Absorbing Boundary -- 5.3 Incorporating the UPML into Maxwell's Equations -- 5.4 Calculating the UPML Parameters -- 5.5 Implementation of the UPML in MATLAB -- 5.5.1 Using the addupml2d() Function -- 5.6 The SCPML Absorbing Boundary -- 5.6.1 MATLAB Implementation of calcpml3d() -- 5.6.2 Using the calcpml3d() Function -- References -- Chapter 6 FDFD for Calculating Guided Modes -- 6.1 Formulation for Rigorous Hybrid Mode Calculation -- 6.2 Formulation for Rigorous Slab Waveguide Mode Calculation -- 6.2.1 Formulation of E Mode Slab Waveguide Analysis -- 6.2.2 Formulation of H Mode Slab Waveguide Analysis -- 6.2.3 Formulations for Slab Waveguides in Other Orientations -- 6.2.4 The Effective Index Method -- 6.3 Implementation of Waveguide Mode Calculations -- 6.3.1 MATLAB Implementation of Rib Waveguide Analysis -- 6.3.2 MATLAB Implementation of Slab Waveguide Analysis -- 6.3.3 Animating the Slab Waveguide Mode -- 6.3.4 Convergence -- 6.3.5 MATLAB Implementation for Calculating SPPs -- 6.4 Implementation of Transmission Line Analysis -- References -- Chapter 7 FDFD for Calculating Photonic Bands -- 7.1 Photonic Bands for Rectangular Lattices -- 7.2 Formulation for Rectangular Lattices -- 7.3 Implementation of Photonic Band Calculation -- 7.3.1 Description of MATLAB Code for Calculating Photonic Band Diagrams -- 7.3.2 Description of MATLAB Code for Calculating IFCs -- References -- Chapter 8 FDFD for Scattering Analysis -- 8.1 Formulation of FDFD for Scattering Analysis.
8.1.1 Matrix Wave Equations for Two-Dimensional Analysis -- 8.2 Incorporating Sources -- 8.2.1 Derivation of the QAAQ Equation -- 8.2.2 Calculating the Source Field fsrc(x,y) -- 8.2.3 Calculating the SF Masking Matrix Q -- 8.2.4 Compensating for Numerical Dispersion -- 8.3 Calculating Reflection and Transmission for Periodic Structures -- 8.4 Implementation of the FDFD Method for Scattering Analysis -- 8.4.1 Standard Sequence of Simulations for a Newly Written FDFD Code -- 8.4.2 FDFD Analysis of a Sawtooth Diffraction Grating -- 8.4.3 FDFD Analysis of a Self-Collimating Photonic Crystal -- 8.4.4 FDFD Analysis of an OIC Directional Coupler -- References -- Chapter 9 Parameter Sweeps with FDFD -- 9.1 Introduction to Parameter Sweeps -- 9.2 Modifying FDFD for Parameter Sweeps -- 9.2.1 Generic MATLAB Function to Simulate Periodic Structures -- 9.2.2 Main MATLAB Program to Simulate the GMRF -- 9.2.3 Main MATLAB Programs to Analyze a Metal Polarizer -- 9.3 Identifying Common Problems in FDFD -- References -- Chapter 10 FDFD Analysis of Three-Dimensional and Anisotropic Devices -- 10.1 Formulation of Three-Dimensional FDFD -- 10.1.1 Finite-Difference Approximation of Maxwell's Curl Equations -- 10.1.2 Maxwell's Equations in Matrix Form -- 10.1.3 Interpolation Matrices -- 10.1.4 Three-Dimensional Matrix Wave Equation -- 10.2 Incorporating Sources into Three-Dimensional FDFD -- 10.3 Iterative Solution for FDFD -- 10.4 Calculating Reflection and Transmission for Doubly Periodic Structures -- 10.5 Implementation of Three-Dimensional FDFD and Examples -- 10.5.1 Standard Sequence of Simulations for a Newly Written Three-Dimensional FDFD Code -- 10.5.2 Generic Three-Dimensional FDFD Function to Simulate Periodic Structures -- 10.5.3 Simulation of a Crossed-Grating GMRF -- 10.5.4 Simulation of a Frequency Selective Surface.
10.5.5 Parameter Retrieval for a Left-Handed Metamaterial -- 10.5.6 Simulation of an Invisibility Cloak -- References -- Appendix A -- A.1 Best Practices for Building Devices onto Yee Grids -- A.2 Method Summaries -- List of Acronyms and Abbreviations -- About the Author -- Index.
Record Nr. UNINA-9910795885903321
Rumpf Raymond C (Raymond Charles)  
Norwood : , : Artech House, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic and photonic simulation for the beginner : finite-difference frequency-domain in MATLAB / / Raymond C. Rumpf
Electromagnetic and photonic simulation for the beginner : finite-difference frequency-domain in MATLAB / / Raymond C. Rumpf
Autore Rumpf Raymond C (Raymond Charles)
Pubbl/distr/stampa Norwood : , : Artech House, , 2022
Descrizione fisica 1 online resource (355 pages)
Disciplina 537.0151
Soggetto topico Electromagnetism - Mathematics
Photonics - Mathematics
Finite differences
Photonique - Mathématiques
Différences finies
ISBN 1-63081-927-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® -- Contents -- Foreword -- Preface -- Introduction -- Chapter 1 MATLAB Preliminaries -- 1.1 Basic Structure of an FDFD Program in MATLAB -- 1.1.1 MATLAB Code for Ideal Structure of a Program -- 1.2 MATLAB and Linear Algebra -- 1.2.1 Special Matrices -- 1.2.2 Matrix Algebra -- 1.3 Setting Up a Grid in MATLAB -- 1.3.1 MATLAB Array Indexing -- 1.3.2 Parameters Describing a Grid in MATLAB -- 1.3.3 Calculating the Grid Parameters -- 1.4 Building Geometries onto Grids -- 1.4.1 Adding Rectangles to a Grid -- 1.4.2 The Centering Algorithm -- 1.4.3 The Meshgrid -- 1.4.4 Adding Circles and Ellipses to a Grid -- 1.4.5 Grid Rotation -- 1.4.6 Boolean Operations -- 1.5 Three-Dimensional Grids -- 1.6 Visualization Techniques -- 1.6.1 Visualizing Data on Grids -- 1.6.2 Visualizing Three-Dimensional Data -- 1.6.3 Visualizing Complex Data -- 1.6.4 Animating the Fields Calculated by FDFD -- Reference -- Chapter 2 Electromagnetic Preliminaries -- 2.1 Maxwell's Equations -- 2.2 The Constitutive Parameters -- 2.2.1 Anisotropy, Tensors, and Rotation Matrices -- 2.2.2 Rotation Matrices and Tensor Rotation -- 2.3 Expansion of Maxwell's Curl Equations in Cartesian Coordinates -- 2.4 The Electromagnetic Wave Equation -- 2.5 Electromagnetic Waves in LHI Media -- 2.5.1 Wave Polarization -- 2.6 The Dispersion Relation for LHI Media -- 2.7 Scattering at an Interface -- 2.7.1 Reflectance and Transmittance -- 2.8 What is a Two-Dimensional Simulation? -- 2.9 Diffraction from Gratings -- 2.9.1 The Grating Equation -- 2.9.2 Diffraction Efficiency -- 2.9.3 Generalization to Crossed Gratings -- 2.10 Waveguides and Transmission Lines -- 2.10.1 Waveguide Modes and Parameters -- 2.10.2 Transmission Line Parameters -- 2.11 Scalability of Maxwell's Equations.
2.12 Numerical Solution to Maxwell's Equations -- References -- Chapter 3 The Finite-Difference Method -- 3.1 Introduction -- 3.2 Finite-Difference Approximations -- 3.2.1 Deriving Expressions for Finite-Difference Approximations -- 3.2.2 Example #1-Interpolations and Derivatives from Three Points -- 3.2.3 Example #2-Interpolations and Derivatives from Two Points -- 3.2.4 Example #3-Interpolations and Derivatives from Four Points -- 3.3 Numerical Differentiation -- 3.4 Numerical Boundary Conditions -- 3.4.1 Dirichlet Boundary Conditions -- 3.4.2 Periodic Boundary Conditions -- 3.5 Derivative Matrices -- 3.6 Finite-Difference Approximation of Differential Equations -- 3.7 Solving Matrix Differential Equations -- 3.7.1 Example-Solving a Single-Variable Differential Equation -- 3.8 Multiple Variables and Staggered Grids -- 3.8.1 Example-Solving a Multivariable Problem -- References -- Chapter 4 Finite-Difference Approximation of Maxwell's Equations -- 4.1 Introduction to the Yee Grid Scheme -- 4.2 Preparing Maxwell's Equations for FDFD Analysis -- 4.3 Finite-Difference Approximation of Maxwell's Curl Equations -- 4.4 Finite-Difference Equations for Two-Dimensional FDFD -- 4.4.1 Derivation of E Mode Equations When Frequency Is Not Known -- 4.4.2 Derivation of H Mode Equations When Frequency Is Not Known -- 4.4.3 Derivation of E Mode Equations When Frequency Is Known -- 4.4.4 Derivation of H Mode Equations When Frequency Is Known -- 4.5 Derivative Matrices for Two-Dimensional FDFD -- 4.5.1 Derivative Matrices Incorporating Dirichlet Boundary Conditions -- 4.5.2 Periodic Boundary Conditions -- 4.5.3 Derivative Matrices Incorporating Periodic Boundary Conditions -- 4.5.4 Relationship Between the Derivative Matrices -- 4.6 Derivative Matrices for Three-Dimensional FDFD -- 4.6.1 Relationship Between the Derivative Matrices.
4.7 Programming the YEEDER2D() Function in MATLAB -- 4.7.1 Using the yeeder2d() Function -- 4.8 Programming the YEEDER3D() Function in MATLAB -- 4.8.1 Using the yeeder3d() Function -- 4.9 The 2× Grid Technique -- 4.10 Numerical Dispersion -- References -- Chapter 5 The Perfectly Matched Layer Absorbing Boundary -- 5.1 The Absorbing Boundary -- 5.2 Derivation of the UPML Absorbing Boundary -- 5.3 Incorporating the UPML into Maxwell's Equations -- 5.4 Calculating the UPML Parameters -- 5.5 Implementation of the UPML in MATLAB -- 5.5.1 Using the addupml2d() Function -- 5.6 The SCPML Absorbing Boundary -- 5.6.1 MATLAB Implementation of calcpml3d() -- 5.6.2 Using the calcpml3d() Function -- References -- Chapter 6 FDFD for Calculating Guided Modes -- 6.1 Formulation for Rigorous Hybrid Mode Calculation -- 6.2 Formulation for Rigorous Slab Waveguide Mode Calculation -- 6.2.1 Formulation of E Mode Slab Waveguide Analysis -- 6.2.2 Formulation of H Mode Slab Waveguide Analysis -- 6.2.3 Formulations for Slab Waveguides in Other Orientations -- 6.2.4 The Effective Index Method -- 6.3 Implementation of Waveguide Mode Calculations -- 6.3.1 MATLAB Implementation of Rib Waveguide Analysis -- 6.3.2 MATLAB Implementation of Slab Waveguide Analysis -- 6.3.3 Animating the Slab Waveguide Mode -- 6.3.4 Convergence -- 6.3.5 MATLAB Implementation for Calculating SPPs -- 6.4 Implementation of Transmission Line Analysis -- References -- Chapter 7 FDFD for Calculating Photonic Bands -- 7.1 Photonic Bands for Rectangular Lattices -- 7.2 Formulation for Rectangular Lattices -- 7.3 Implementation of Photonic Band Calculation -- 7.3.1 Description of MATLAB Code for Calculating Photonic Band Diagrams -- 7.3.2 Description of MATLAB Code for Calculating IFCs -- References -- Chapter 8 FDFD for Scattering Analysis -- 8.1 Formulation of FDFD for Scattering Analysis.
8.1.1 Matrix Wave Equations for Two-Dimensional Analysis -- 8.2 Incorporating Sources -- 8.2.1 Derivation of the QAAQ Equation -- 8.2.2 Calculating the Source Field fsrc(x,y) -- 8.2.3 Calculating the SF Masking Matrix Q -- 8.2.4 Compensating for Numerical Dispersion -- 8.3 Calculating Reflection and Transmission for Periodic Structures -- 8.4 Implementation of the FDFD Method for Scattering Analysis -- 8.4.1 Standard Sequence of Simulations for a Newly Written FDFD Code -- 8.4.2 FDFD Analysis of a Sawtooth Diffraction Grating -- 8.4.3 FDFD Analysis of a Self-Collimating Photonic Crystal -- 8.4.4 FDFD Analysis of an OIC Directional Coupler -- References -- Chapter 9 Parameter Sweeps with FDFD -- 9.1 Introduction to Parameter Sweeps -- 9.2 Modifying FDFD for Parameter Sweeps -- 9.2.1 Generic MATLAB Function to Simulate Periodic Structures -- 9.2.2 Main MATLAB Program to Simulate the GMRF -- 9.2.3 Main MATLAB Programs to Analyze a Metal Polarizer -- 9.3 Identifying Common Problems in FDFD -- References -- Chapter 10 FDFD Analysis of Three-Dimensional and Anisotropic Devices -- 10.1 Formulation of Three-Dimensional FDFD -- 10.1.1 Finite-Difference Approximation of Maxwell's Curl Equations -- 10.1.2 Maxwell's Equations in Matrix Form -- 10.1.3 Interpolation Matrices -- 10.1.4 Three-Dimensional Matrix Wave Equation -- 10.2 Incorporating Sources into Three-Dimensional FDFD -- 10.3 Iterative Solution for FDFD -- 10.4 Calculating Reflection and Transmission for Doubly Periodic Structures -- 10.5 Implementation of Three-Dimensional FDFD and Examples -- 10.5.1 Standard Sequence of Simulations for a Newly Written Three-Dimensional FDFD Code -- 10.5.2 Generic Three-Dimensional FDFD Function to Simulate Periodic Structures -- 10.5.3 Simulation of a Crossed-Grating GMRF -- 10.5.4 Simulation of a Frequency Selective Surface.
10.5.5 Parameter Retrieval for a Left-Handed Metamaterial -- 10.5.6 Simulation of an Invisibility Cloak -- References -- Appendix A -- A.1 Best Practices for Building Devices onto Yee Grids -- A.2 Method Summaries -- List of Acronyms and Abbreviations -- About the Author -- Index.
Record Nr. UNINA-9910810293903321
Rumpf Raymond C (Raymond Charles)  
Norwood : , : Artech House, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photonic crystals : mathematical analysis and numerical approximation / Willy Dorfler ... [et al.]
Photonic crystals : mathematical analysis and numerical approximation / Willy Dorfler ... [et al.]
Pubbl/distr/stampa Karlsruhe : Birkhauser, c2011
Descrizione fisica viii, 162 p. : ill. (some col.) ; 24 cm
Disciplina 535.01951
Altri autori (Persone) Dorfler, Willibald
Collana Oberwolfach seminars ; 42
Soggetto topico Light - Transmission - Mathematical models
Photonic crystals
Photonics - Mathematics
Optoelectronic devices
ISBN 9783034801126
Classificazione AMS 35B
AMS 35Q
AMS 35R
AMS 78A
LC QC793.5.P427P75
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001809919707536
Karlsruhe : Birkhauser, c2011
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui