Advanced modelling with the MATLAB reservoir simulation toolbox (MRST) / / editors, Knut-Andreas Lie, Olav Møyner |
Autore | Lie Knut-Andreas |
Pubbl/distr/stampa | Cambridge University Press, 2021 |
Descrizione fisica | 1 online resource (xxvii, 596 pages) : digital, PDF file(s) |
Disciplina | 622/.3382 |
Collana | Physical Sciences |
Soggetto topico |
Hydrocarbon reservoirs - Computer simulation
Oil reservoir engineering - Data processing Petroleum - Migration |
Soggetto non controllato |
Reservoir geomechanics
petroleum geoscience petroleum engineering exploration geoscience geophysics structural geology fluid dynamics |
ISBN |
1-009-02249-0
1-009-02274-1 1-009-01978-3 |
Classificazione | TEC047000TEC047000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I: Grid Generation, Discretizations, and Solvers; 1. Unstructured PEBI Grids Conforming to Lower-Dimensional Objects R. L. Berge, O. S. Klemetsdal, and K.-A. Lie; 2. Nonlinear Finite-Volume Methods for the Flow Equation in Porous Media M. Al Kobaisi and W. Zhang; 3. Implicit Discontinuous Galerkin Methods for Transport Equations in Porous Media O.S. Klemetsdal and K.-A. Lie; 4. Multiscale Pressure Solvers for Stratigraphic and Polytopal Grids K.-A. Lie and O. Moyner; Part II: Rapid Prototyping and Accelerated Computation; 5. Better AD Simulators with Flexible State Functions and Accurate Discretizations O. Moyner; 6. Faster Simulation with Optimized Automatic Differentiation and Compiled Linear Solvers O. Moyner; Part III: Modelling of New Physical Processes; 7. Using State Functions and MRST's AD-OO Framework to Implement Simulators for Chemical EOR X. Sun, K.-A. Lie, and K. Bao; 8. Compositional Simulation with the AD-OO Framework O. Moyner; 9. Embedded Discrete Fracture Models D. Wong, F. Doster, and S. Geiger; 10. Numerical Modelling of Fractured Unconventional Oil and Gas Reservoirs O. Olorode, B. Wang and H. U. Rashid; 11. A Unified Framework for Flow Simulation in Fractured Reservoirs R. March, C. Maier, F. Doster, and S. Geiger; 12. Simulation of Geothermal Systems using MRST M. Collignon, O. S. Klemetsdal, and O. Moyner; 13. A Finite Volume-based Module for Unsaturated Poroelasticity J. Varela, S. Gasda, E. Keilegavlen, and J. M. Nordbotten; 14. A Brief Introduction to Poroelasticity and Simulation of Coupled Geomechanics and Flow in MRST O. Andersen; References. |
Record Nr. | UNINA-9910585959603321 |
Lie Knut-Andreas | ||
Cambridge University Press, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Ground-water flow and migration of hydrocarbons to the Lower Permian White Rim Sandstone, Tar Sand Triangle, southeastern Utah / / by Richard F. Sanford |
Autore | Sanford Richard F. |
Pubbl/distr/stampa | Washington, D.C. : , : U.S. Department of the Interior, U.S. Geological Survey, , 1995 |
Descrizione fisica | 1 online resource (iii, 24 pages) : illustrations, maps |
Collana |
Evolution of sedimentary basins--Paradox Basin
U.S. Geological Survey bulletin |
Soggetto topico |
Groundwater flow - Utah
Petroleum - Migration - Utah Groundwater flow Petroleum - Migration |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910698617403321 |
Sanford Richard F. | ||
Washington, D.C. : , : U.S. Department of the Interior, U.S. Geological Survey, , 1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Physics of fluid flow and transport in unconventional reservoir rocks / / edited by Behzad Ghanbarian, Feng Liang, and Hui-Hai Liu |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] |
Descrizione fisica | 1 online resource (380 pages) |
Disciplina | 622.338 |
Soggetto topico |
Hydrocarbon reservoirs - Analysis
Rocks - Permiability Petroleum - Migration Fluid dynamics |
ISBN |
1-119-72991-2
1-119-72784-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Introduction -- Chapter 1 Unconventional Reservoirs: Advances and Challenges -- 1.1 Background -- 1.2 Advances -- 1.2.1 Wettability -- 1.2.2 Permeability -- 1.3 Challenges -- 1.3.1 Multiscale Systems -- 1.3.2 Hydrocarbon Production -- 1.3.3 Recovery Factor -- 1.3.4 Unproductive Wells -- 1.4 Concluding Remarks -- References -- Part I Pore-Scale Characterizations -- Chapter 2 Pore-Scale Simulations and Digital Rock Physics -- 2.1 Introduction -- 2.2 Physics of Pore-Scale Fluid Flow in Unconventional Rocks -- 2.2.1 Physics of Gas Flow -- 2.2.1.1 Gas Slippage and Knudsen Layer Effect -- 2.2.1.2 Gas Adsorption/Desorption and Surface Diffusion -- 2.2.2 Physics of Water Flow -- 2.2.3 Physics of Condensation -- 2.3 Theory of Pore-Scale Simulation Methods -- 2.3.1 The Isothermal Single-Phase Lattice Boltzmann Method -- 2.3.1.1 Bhatnagar-Gross-Krook (BGK) Collision Operator -- 2.3.1.2 The Multi-Relaxation Time (MRT)-LB Scheme -- 2.3.1.3 The Regularization Procedure -- 2.3.2 Multi-phase Lattice Boltzmann Simulation Method -- 2.3.2.1 Color-Gradient Model -- 2.3.2.2 Shan-Chen Model -- 2.3.3 Capture Fluid Slippage at the Solid Boundary -- 2.3.4 Capture the Knudsen Layer/Effective Viscosity -- 2.3.5 Capture the Adsorption/Desorption and Surface Diffusion Effects -- 2.3.5.1 Modeling of Adsorption in LBM -- 2.3.5.2 Modeling of Surface Diffusion Via LBM -- 2.4 Applications -- 2.4.1 Simulation of Gas Flow in Unconventional Reservoir Rocks -- 2.4.1.1 Gas Slippage -- 2.4.1.2 Gas Adsorption -- 2.4.1.3 Surface Diffusion of Adsorbed Gas -- 2.4.2 Simulation of Water Flow in Unconventional Reservoir Rocks -- 2.4.3 Simulation of Immiscible Two-Phase Flow -- 2.4.4 Simulation of Vapor Condensation -- 2.4.4.1 Model Validations.
2.4.4.2 Vapor Condensation in Two Adjacent Nano-Pores -- 2.5 Conclusion -- References -- Chapter 3 Digital Rock Modeling: A Review -- 3.1 Introduction -- 3.2 Single-Scale Modeling of Digital Rocks -- 3.2.1 Experimental Techniques -- 3.2.1.1 Imaging Technique of Serial Sectioning -- 3.2.1.2 Laser Scanning Confocal Microscopy -- 3.2.1.3 X-Ray Computed Tomography Scanning -- 3.2.2 Computational Methods -- 3.2.2.1 Simulated Annealing -- 3.2.2.2 Markov Chain Monte Carlo -- 3.2.2.3 Sequential Indicator Simulation -- 3.2.2.4 Multiple-Point Statistics -- 3.2.2.5 Machine Learning -- 3.2.2.6 Process-Based Modeling -- 3.3 Multiscale Modeling of Digital Rocks -- 3.3.1 Multiscale Imaging Techniques -- 3.3.2 Computational Methods -- 3.3.2.1 Image Superposition -- 3.3.2.2 Pore-Network Integration -- 3.3.2.3 Image Resolution Enhancement -- 3.3.2.4 Object-Based Reconstruction -- 3.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 4 Scale Dependence of Permeability and Formation Factor: A Simple Scaling Law -- 4.1 Introduction -- 4.2 Theory -- 4.2.1 Funnel Defect Approach -- 4.2.2 Application to Porous Media -- 4.3 Pore-network Simulations -- 4.4 Results and Discussion -- 4.5 Limitations -- 4.6 Conclusion -- Acknowledgment -- References -- Part II Core-Scale Heterogeneity -- Chapter 5 Modeling Gas Permeability in Unconventional Reservoir Rocks -- 5.1 Introduction -- 5.1.1 Theoretical Models -- 5.1.2 Pore-Network Models -- 5.1.3 Gas Transport Mechanisms -- 5.1.4 Objectives -- 5.2 Effective-Medium Theory -- 5.3 Single-Phase Gas Permeability -- 5.3.1 Gas Permeability in a Cylindrical Tube -- 5.3.2 Pore Pressure-Dependent Gas Permeability in Tight Rocks -- 5.3.3 Comparison with Experiments -- 5.3.4 Comparison with Pore-Network Simulations -- 5.3.5 Comparaison with Lattice-Boltzmann Simulations. 5.4 Gas Relative Permeability -- 5.4.1 Hydraulic Flow in a Cylindrical Pore -- 5.4.2 Molecular Flow in a Cylindrical Pore -- 5.4.3 Total Gas Flow in a Cylindrical Pore -- 5.4.4 Gas Relative Permeability in Tight Rocks -- 5.4.5 Comparison with Experiments -- 5.4.6 Comparison with Pore-Network Simulations -- 5.5 Conclusions -- Acknowledgment -- References -- Chapter 6 NMR and Its Applications in Tight Unconventional Reservoir Rocks -- 6.1 Introduction -- 6.2 Basic NMR Physics -- 6.2.1 Nuclear Spin -- 6.2.2 Nuclear Zeeman Splitting and NMR -- 6.2.3 Nuclear Magnetization -- 6.2.4 Bloch Equationsand NMR Relaxation -- 6.2.5 Simple NMR Experiments: Free Induction Decay and CPMG Echoes -- 6.2.6 NMR Relaxation of a Pure Fluid in a Rock Pore -- 6.2.7 Measured NMR CPMG Echoes in a Formation Rock -- 6.2.8 Inversion -- 6.2.8.1 Regularized Linear Least Squares -- 6.2.8.2 Constrains of the Resulted NMR Spectrum in Inversion -- 6.2.9 Data from NMR Measurement -- 6.3 NMR Logging for Unconventional Source Rock Reservoirs -- 6.3.1 Brief Introduction of Unconventional Source Rocks -- 6.3.2 NMR Measurement of Source Rocks -- 6.3.2.1 NMR Log of a Source Rock Reservoir -- 6.3.3 Pore Size Distribution in a Shale Gas Reservoir -- 6.4 NMR Measurement of Long Whole Core -- 6.4.1 Issues of NMR Instrument for Long Sample -- 6.4.2 HSR-NMR of Long Core -- 6.4.3 Application Example -- 6.5 NMR Measurement on Drill Cuttings -- 6.5.1 Measurement Method -- 6.5.1.1 Preparation of Drill Cuttings -- 6.5.1.2 Measurements -- 6.5.2 Results -- 6.6 Conclusions -- References -- Chapter 7 Tight Rock Permeability Measurement in Laboratory: Some Recent Progress -- 7.1 Introduction -- 7.2 Commonly Used Laboratory Methods -- 7.2.1 Steady-State Flow Method -- 7.2.2 Pressure Pulse-Decay Method -- 7.2.3 Gas Research Institute Method. 7.3 Simultaneous Measurement of Fracture and Matrix Permeabilities from Fractured Core Samples -- 7.3.1 Estimation of Fracture and Matrix Permeability from PPD Data forTwoFlowRegimes -- 7.3.2 Mathematical Model -- 7.3.3 Method Validation and Discussion -- 7.4 Direct Measurement of Permeability-Pore Pressure Function -- 7.4.1 Knudsen Diffusion, Slippage Flow, and Effective Gas Permeability -- 7.4.2 Methodology for Directly Measuring Permeability-Pore Pressure Function -- 7.4.3 Experiments -- 7.5 Summary and Conclusions -- References -- Chapter 8 Stress-Dependent Matrix Permeability in Unconventional Reservoir Rocks -- 8.1 Introduction -- 8.2 Sample Descriptions -- 8.3 Permeability Test Program -- 8.4 Permeability Behavior with Confining Stress Cycling -- 8.5 Matrix Permeability Behavior -- 8.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Assessment of Shale Wettability from Spontaneous Imbibition Experiments -- 9.1 Introduction -- 9.2 Spontaneous Imbibition Theory -- 9.3 Samples and Analytical Methods -- 9.3.1 SI Experiments -- 9.3.2 Barnett Shale from United States -- 9.3.3 Silurian Longmaxi Formation and Triassic Yanchang Formation Shales from China -- 9.3.4 Jurassic Ziliujing Formation Shale from China -- 9.4 Results and Discussion -- 9.4.1 Complicated Wettability of Barnett Shale Inferred Qualitatively from SI Experiments -- 9.4.1.1 Wettability of Barnett Shale -- 9.4.1.2 Properties of Barnett Samples and Their Correlation to Wettability -- 9.4.1.3 Low Pore Connectivity to Water of Barnett Samples -- 9.4.2 More Oil-Wet Longmaxi Formation Shale and More Water-Wet Yanchang Formation Shale -- 9.4.2.1 TOC and Mineralogy -- 9.4.2.2 Pore Structure Difference Between Longmaxi and Yanchang Samples -- 9.4.2.3 Water and Oil Imbibition Experiments. 9.4.2.4 Wettability of Longmaxi and Yanchang Shale Samples Deduced from SI Experiments -- 9.4.3 Complicated Wettability of Ziliujing Formation Shale -- 9.4.3.1 TOC and Mineralogy -- 9.4.3.2 Pore Structure -- 9.4.3.3 Water and Oil Imbibition Experiments -- 9.4.3.4 Wettability of Ziliujing Formation Shale Indicated from SI Experiments and its Correlation to Shale Pore Structure and Composition -- 9.4.4 Shale Wettability Evolution Model -- 9.5 Conclusions -- Acknowledgments -- References -- Chapter 10 Permeability Enhancement in Shale Induced by Desorption -- 10.1 Introduction -- 10.1.1 Shale Mineralogical Characteristics -- 10.1.2 Flow Network -- 10.1.2.1 Bedding-Parallel Flow Network -- 10.1.2.2 Bedding-Perpendicular Flow Paths -- 10.2 Adsorption in Shales -- 10.2.1 Langmuir Theory -- 10.2.2 Competing Strains in Permeability Evolution -- 10.2.2.1 Poro-Sorptive Strain -- 10.2.2.2 Thermal-Sorptive Strain -- 10.3 Permeability Models for Sorptive Media -- 10.3.1 Strain Based Models -- 10.4 Competing Processes during Permeability Evolution -- 10.4.1 Resolving Competing Strains -- 10.4.2 Solving for Sorption-Induced Permeability Evolution -- 10.5 Desorption Processes Yielding Permeability Enhancement -- 10.5.1 Pressure Depletion -- 10.5.2 Lowering Partial Pressure -- 10.5.3 Sorptive Gas Injection -- 10.5.4 Desorption with Increased Temperature -- 10.6 Permeability Enhancement Due to Nitrogen Flooding -- 10.7 Discussion -- 10.8 Conclusion -- References -- Chapter 11 Multiscale Experimental Study on Interactions Between Imbibed Stimulation Fluids and Tight Carbonate Source Rocks -- 11.1 Introduction -- 11.2 Fluid Uptake Pathways -- 11.2.1 Experimental Methods -- 11.2.1.1 Materials -- 11.2.1.1.1 Rock Sample -- 11.2.1.2 Experimental Procedure. 11.2.1.2.1 3D Microscale Visualization of Thin-Section Rock Sample in As-Received State. |
Record Nr. | UNINA-9910830019503321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|