top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Permanent Magnet Machines and Drives / / edited by Bing Tian, Quntao An, Xinghe Fu
Advanced Permanent Magnet Machines and Drives / / edited by Bing Tian, Quntao An, Xinghe Fu
Pubbl/distr/stampa [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Descrizione fisica 1 online resource (194 pages)
Disciplina 621.46
Soggetto topico Permanent magnet motors
ISBN 3-0365-6304-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design 1 -- Single Line/Phase Open Fault-Tolerant Decoupling Control of a Five-Phase Permanent Magnet Synchronous Motor under Different Stator Connections 13 -- A Study on the Improvement of Torque Density of an Axial Slot-Less Flux Permanent Magnet Synchronous Motor for Collaborative Robot 31 -- Research on a Limit Analytical Method for a Low-Speed Micro Permanent Magnet Torque Motor with Back Winding 45 -- Observer Based Improved Position Estimation in Field-Oriented Controlled PMSM with Misplaced Hall-Effect Sensors 65 -- Variable Weighting Coefficient of EMF-Based Enhanced Sliding Mode Observer for Sensorless PMSM Drives 79 -- Analysis and Error Separation of Capacitive Potential in the Inductosyn 93 -- Dual Three-Phase Permanent Magnet Synchronous Machines Vector Control Based on Triple Rotating Reference Frame 105 -- Influence of the Shielding Winding on the Bearing Voltage in a Permanent Magnet Synchronous Machine 119 -- Virtual Modeling and Experimental Validation of the Line-Start Permanent Magnet Motor in the Presence of Harmonics 139 -- Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems 157.
Record Nr. UNINA-9910647242403321
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Wind Turbine Drivetrain Concepts [[electronic resource] ] : workshop report, June 29-30, 2010
Advanced Wind Turbine Drivetrain Concepts [[electronic resource] ] : workshop report, June 29-30, 2010
Pubbl/distr/stampa [Golden, Colo.] : , : U.S. Dept. of Energy, Energy Efficiency & Renewable Energy, Wind and Water Program, , [2010]
Descrizione fisica 1 online resource (30 pages) : color illustrations
Soggetto topico Wind turbines - Technological innovations - United States
Superconducting generators
Permanent magnet motors
Wind power - Research - United States
Soggetto genere / forma Conference papers and proceedings.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Advanced Wind Turbine Drivetrain Concepts
Record Nr. UNINA-9910703025003321
[Golden, Colo.] : , : U.S. Dept. of Energy, Energy Efficiency & Renewable Energy, Wind and Water Program, , [2010]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distributed generation : induction and permanent magnet generators / / Loi Lei Lai, Tze Fun Chan
Distributed generation : induction and permanent magnet generators / / Loi Lei Lai, Tze Fun Chan
Autore Lai Loi Lei
Pubbl/distr/stampa Chichester, England ; , : IEEE/Wiley, , c2007
Descrizione fisica 1 online resource (263 p.)
Disciplina 621.31
621.31/21
Altri autori (Persone) ChanTze Fun
Soggetto topico Distributed generation of electric power - Equipment and supplies
Electric machinery, Induction
Permanent magnet motors
ISBN 1-282-13788-3
9786612137884
0-470-51182-6
1-60119-638-5
0-470-51181-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Distributed Generation; Contents; Foreword; Preface; Acknowledgements; About the Authors; 1 Distributed Generation; 1.1 Introduction; 1.2 Reasons for DG; 1.3 Technical Impacts of DG; 1.3.1 DG Technologies; 1.3.2 Thermal Issues; 1.3.3 Voltage Profile Issues; 1.3.4 Fault-Level Contributions; 1.3.5 Harmonics and Interactions with Loads; 1.3.6 Interactions Between Generating Units; 1.3.7 Protection Issues; 1.4 Economic Impact of DG; 1.5 Barriers to DG Development; 1.6 Renewable Sources of Energy; 1.7 Renewable Energy Economics; 1.8 Interconnection; 1.8.1 Interconnection Standardization
1.8.2 Rate Design1.9 Recommendations and Guidelines for DG Planning; 1.10 Summary; References; 2 Generators; 2.1 Introduction; 2.2 Synchronous Generator; 2.2.1 Permanent Magnet Materials; 2.2.2 Permanent Magnet Generator; 2.3 Induction Generator; 2.3.1 Three-Phase IGs and SEIGs; 2.3.2 Single-Phase IGs and SEIGs; 2.4 Doubly Fed Induction Generator; 2.4.1 Operation; 2.4.2 Recent Work; 2.5 Summary; References; 3 Three-Phase IG Operating on a Single-Phase Power System; 3.1 Introduction; 3.2 Phase Balancing using Passive Circuit Elements; 3.2.1 Analysis of IG with Phase Converters
3.2.2 Phase Balancing Schemes3.2.3 Case Study; 3.2.4 System Power Factor; 3.2.5 Power and Efficiency; 3.2.6 Operation with Fixed Phase Converters; 3.2.7 Summary; 3.3 Phase Balancing using the Smith Connection; 3.3.1 Three-Phase IG with the Smith Connection; 3.3.2 Performance Analysis; 3.3.3 Balanced Operation; 3.3.4 Case Study; 3.3.5 Effect of Phase Balancing Capacitances; 3.3.6 Dual-Mode Operation; 3.3.7 Summary; 3.4 Microcontroller-Based Multi-Mode Control of SMIG; 3.4.1 Phase Voltage Consideration; 3.4.2 Control System; 3.4.3 Practical Implementation; 3.4.4 Experimental Results
3.4.5 Summary3.5 Phase Balancing using a Line Current Injection Method; 3.5.1 Circuit Connection and Operating Principle; 3.5.2 Performance Analysis; 3.5.3 Balanced Operation; 3.5.4 Case Study; 3.5.5 Summary; References; 4 Finite Element Analysis of Grid-Connected IG with the Steinmetz Connection; 4.1 Introduction; 4.2 Steinmetz Connection and Symmetrical Components Analysis; 4.3 Machine Model; 4.4 Finite Element Analysis; 4.4.1 Basic Field Equations; 4.4.2 Stator Circuit Equations; 4.4.3 Stator EMFs; 4.4.4 Rotor Circuit Model; 4.4.5 Comments on the Proposed Method; 4.5 Computational Aspects
4.6 Case Study4.7 Summary; References; 5 SEIGs for Autonomous Power Systems; 5.1 Introduction; 5.2 Three-Phase SEIG with the Steinmetz Connection; 5.2.1 Circuit Connection and Analysis; 5.2.2 Solution Technique; 5.2.3 Capacitance Requirement; 5.2.4 Computed and Experimental Results; 5.2.5 Capacitance Requirement on Load; 5.2.6 Summary; 5.3 SEIG with Asymmetrically Connected Impedances and Excitation Capacitances; 5.3.1 Circuit Model; 5.3.2 Performance Analysis; 5.3.3 Computed and Experimental Results; 5.3.4 Modified Steinmetz Connection; 5.3.5 Simplified Steinmetz Connection; 5.3.6 Summary
5.4 Self-regulated SEIG for Single-Phase Loads
Record Nr. UNINA-9910144576503321
Lai Loi Lei  
Chichester, England ; , : IEEE/Wiley, , c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distributed generation : induction and permanent magnet generators / / Loi Lei Lai, Tze Fun Chan
Distributed generation : induction and permanent magnet generators / / Loi Lei Lai, Tze Fun Chan
Autore Lai Loi Lei
Pubbl/distr/stampa Chichester, England ; , : IEEE/Wiley, , c2007
Descrizione fisica 1 online resource (263 p.)
Disciplina 621.31
621.31/21
Altri autori (Persone) ChanTze Fun
Soggetto topico Distributed generation of electric power - Equipment and supplies
Electric machinery, Induction
Permanent magnet motors
ISBN 1-282-13788-3
9786612137884
0-470-51182-6
1-60119-638-5
0-470-51181-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Distributed Generation; Contents; Foreword; Preface; Acknowledgements; About the Authors; 1 Distributed Generation; 1.1 Introduction; 1.2 Reasons for DG; 1.3 Technical Impacts of DG; 1.3.1 DG Technologies; 1.3.2 Thermal Issues; 1.3.3 Voltage Profile Issues; 1.3.4 Fault-Level Contributions; 1.3.5 Harmonics and Interactions with Loads; 1.3.6 Interactions Between Generating Units; 1.3.7 Protection Issues; 1.4 Economic Impact of DG; 1.5 Barriers to DG Development; 1.6 Renewable Sources of Energy; 1.7 Renewable Energy Economics; 1.8 Interconnection; 1.8.1 Interconnection Standardization
1.8.2 Rate Design1.9 Recommendations and Guidelines for DG Planning; 1.10 Summary; References; 2 Generators; 2.1 Introduction; 2.2 Synchronous Generator; 2.2.1 Permanent Magnet Materials; 2.2.2 Permanent Magnet Generator; 2.3 Induction Generator; 2.3.1 Three-Phase IGs and SEIGs; 2.3.2 Single-Phase IGs and SEIGs; 2.4 Doubly Fed Induction Generator; 2.4.1 Operation; 2.4.2 Recent Work; 2.5 Summary; References; 3 Three-Phase IG Operating on a Single-Phase Power System; 3.1 Introduction; 3.2 Phase Balancing using Passive Circuit Elements; 3.2.1 Analysis of IG with Phase Converters
3.2.2 Phase Balancing Schemes3.2.3 Case Study; 3.2.4 System Power Factor; 3.2.5 Power and Efficiency; 3.2.6 Operation with Fixed Phase Converters; 3.2.7 Summary; 3.3 Phase Balancing using the Smith Connection; 3.3.1 Three-Phase IG with the Smith Connection; 3.3.2 Performance Analysis; 3.3.3 Balanced Operation; 3.3.4 Case Study; 3.3.5 Effect of Phase Balancing Capacitances; 3.3.6 Dual-Mode Operation; 3.3.7 Summary; 3.4 Microcontroller-Based Multi-Mode Control of SMIG; 3.4.1 Phase Voltage Consideration; 3.4.2 Control System; 3.4.3 Practical Implementation; 3.4.4 Experimental Results
3.4.5 Summary3.5 Phase Balancing using a Line Current Injection Method; 3.5.1 Circuit Connection and Operating Principle; 3.5.2 Performance Analysis; 3.5.3 Balanced Operation; 3.5.4 Case Study; 3.5.5 Summary; References; 4 Finite Element Analysis of Grid-Connected IG with the Steinmetz Connection; 4.1 Introduction; 4.2 Steinmetz Connection and Symmetrical Components Analysis; 4.3 Machine Model; 4.4 Finite Element Analysis; 4.4.1 Basic Field Equations; 4.4.2 Stator Circuit Equations; 4.4.3 Stator EMFs; 4.4.4 Rotor Circuit Model; 4.4.5 Comments on the Proposed Method; 4.5 Computational Aspects
4.6 Case Study4.7 Summary; References; 5 SEIGs for Autonomous Power Systems; 5.1 Introduction; 5.2 Three-Phase SEIG with the Steinmetz Connection; 5.2.1 Circuit Connection and Analysis; 5.2.2 Solution Technique; 5.2.3 Capacitance Requirement; 5.2.4 Computed and Experimental Results; 5.2.5 Capacitance Requirement on Load; 5.2.6 Summary; 5.3 SEIG with Asymmetrically Connected Impedances and Excitation Capacitances; 5.3.1 Circuit Model; 5.3.2 Performance Analysis; 5.3.3 Computed and Experimental Results; 5.3.4 Modified Steinmetz Connection; 5.3.5 Simplified Steinmetz Connection; 5.3.6 Summary
5.4 Self-regulated SEIG for Single-Phase Loads
Record Nr. UNINA-9910830130903321
Lai Loi Lei  
Chichester, England ; , : IEEE/Wiley, , c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1812-2014 : IEEE Trial-Use Guide for Testing Permanent Magnet Machines / / Institute of Electrical and Electronics Engineers
IEEE Std 1812-2014 : IEEE Trial-Use Guide for Testing Permanent Magnet Machines / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway : , : IEEE, , 2015
Descrizione fisica 1 online resource (56 pages)
Disciplina 621.46
Soggetto topico Permanent magnet motors
ISBN 0-7381-9469-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1812-2014: IEEE Trial-Use Guide for Testing Permanent Magnet Machines
Record Nr. UNINA-9910136011803321
Piscataway : , : IEEE, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1812-2014 : IEEE Trial-Use Guide for Testing Permanent Magnet Machines / / Institute of Electrical and Electronics Engineers
IEEE Std 1812-2014 : IEEE Trial-Use Guide for Testing Permanent Magnet Machines / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway : , : IEEE, , 2015
Descrizione fisica 1 online resource (56 pages)
Disciplina 621.46
Soggetto topico Permanent magnet motors
ISBN 0-7381-9469-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1812-2014: IEEE Trial-Use Guide for Testing Permanent Magnet Machines
Record Nr. UNISA-996280680103316
Piscataway : , : IEEE, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Limits, modeling and design of high-speed permanent magnet machines / / Aleksandar Borisavljevic
Limits, modeling and design of high-speed permanent magnet machines / / Aleksandar Borisavljevic
Autore Borisavljevic Aleksandar
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (228 p.)
Disciplina 621.46
Collana Springer theses
Soggetto topico Permanent magnet motors - Design and construction
Permanent magnet motors
ISBN 9781283910590
1283910594
9783642334573
3642334571
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto High-speed PM machines: applications, trends and limits -- Electromagnetic modeling of slotless PM machines -- Structural aspects of PM rotors -- Rotordynamic aspects of high-speed electrical machines -- Bearings for high-speed machines -- Design of the high-speed-spindle motor -- Control of the synchronous PM motor -- Experimental results.
Record Nr. UNINA-9910437889503321
Borisavljevic Aleksandar  
Berlin ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parameter Estimation of Permanent Magnet Synchronous Machines
Parameter Estimation of Permanent Magnet Synchronous Machines
Autore Zhu Ziqiang, Ph. D.
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (291 pages)
Disciplina 621.46
Altri autori (Persone) LiuGan
LiangDawei
Collana IEEE Press Series on Control Systems Theory and Applications Series
Soggetto topico Parameter estimation
Permanent magnet motors
ISBN 1-394-28045-9
1-394-28044-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title Page -- Title Page -- Copyright -- Contents -- Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1: General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.3 Basic Equations and Machine Parameters -- 1.3.1 Fundamental Mathematical Model for PMSMs -- 1.3.2 Mathematical Model Considering Magnetic Saturation, Thermal Effect, and Iron Loss -- 1.3.2.1 Influence of Magnetic Saturation -- 1.3.2.2 Influence of Temperature -- 1.3.2.3 Influence of Iron Loss -- 1.4 Drives and Control Strategies -- 1.4.1 Drive System of PMSM -- 1.4.2 Space Vector Pulse Width Modulation -- 1.5 Outline of Parameter Estimation Techniques -- 1.5.1 Offline Parameter Estimation -- 1.5.2 Online Parameter Estimation -- 1.6 Scope of This Book -- References -- Chapter 2: Critical Issues with Online Parameter Estimation -- 2.1 Rank-Deficient Problem -- 2.1.1 Rank-Deficient Issue -- 2.1.2 Experimental Analysis and Results -- 2.2 Non-linearity of VSI -- 2.2.1 Modelling of VSI Non-linearity -- 2.2.1.1 VSI Modelling in abc Stationary Reference Frame -- 2.2.1.2 VSI Modelling in dq Rotating Reference Frame -- 2.2.2 VSI Non-linearity Estimation and Compensation -- 2.2.2.1 Estimation of VSI Non-linearity -- 2.2.2.2 Online Compensation of VSI Non-linearity -- 2.2.3 Influences of VSI Non-linearity on Parameter Estimation -- 2.3 Ill-Conditioned Problem -- 2.4 Summary -- References -- Chapter 3: Online Estimation of Rotor Flux Linkage with the Aid of Thermocouples in Stator Windings -- 3.1 Introduction -- 3.2 Online Estimation of Rotor Flux Linkage with the Aid of Thermocouples in Stator Windings -- 3.2.1 Online Estimation of Rotor Flux Linkage -- 3.2.2 Thermal Condition Monitoring of Rotor PM -- 3.3 Summary -- References -- Chapter 4: Online Parameter Estimation Based on Current Injections -- 4.1 Introduction.
4.2 Multi-parameter Estimation Based on Current Injection and Error Analysis -- 4.2.1 Designed Parameter Estimation Scheme -- 4.2.2 Error Analysis -- 4.2.3 Experimental Results -- 4.3 Winding Resistance and Rotor Flux Linkage Estimation Based on Current Injection under Constant Torque/Speed Control -- 4.3.1 Designed Parameter Estimation Scheme -- 4.3.2 Error Analysis and Experimental Validation -- 4.4 Summary -- References -- Chapter 5: Online Parameter Estimation Based on Position Offset Injection -- 5.1 Introduction -- 5.2 Phasor Analysis of Rotor Position Offset in PMSMs -- 5.3 Position Offset-based Estimation with id = 0 Under Constant Torque/Speed Control -- 5.3.1 Designed Estimation Method -- 5.3.1.1 Estimation of Rotor PM Flux Linkage pm and Stator Winding Resistance Rs -- 5.3.1.2 Estimation of q-axis Inductance Lq -- 5.3.1.3 Estimation of d-axis Inductance Ld -- 5.3.2 Experimental and FEA Results -- 5.3.2.1 Experimental Results of Estimated pm and Rs -- 5.3.2.2 Experimental Results of Estimated Ld and Lq -- 5.4 Position Offset-based Estimation with id = 0 Under Variable Speed Control -- 5.4.1 Designed Estimation Method -- 5.4.2 Experimental and FEA Results -- 5.5 Position Offset-based Estimation with id ≠ 0 Under Constant Torque/Speed Control -- 5.5.1 Designed Estimation Method -- 5.5.1.1 Estimation of Rotor PM Flux Linkage pm and Inductances' Saliency Δ -- 5.5.1.2 Estimation of dq-axis Inductances -- 5.5.2 Experimental and FEA Results -- 5.6 Position Offset-based Estimation with id = 0 and id ≠ 0 Under Constant and Variable Speed Control -- 5.6.1 Designed Estimation Method -- 5.6.2 Experimental and FEA Results -- 5.7 Analysis of Amplitude of Position Offset Injection -- 5.8 Summary -- References -- Chapter 6: Online Parameter Estimation Under Variable Speed Control -- 6.1 Introduction.
6.2 Estimation of Stator Resistance, Inductances, and Rotor PM Flux Linkage -- 6.2.1 Identifiability Analysis and Influence of VSI Non-linearity -- 6.2.2 Improved Estimation Scheme -- 6.2.3 Experimental Results -- 6.3 Estimation of dq-axis Flux Linkage Maps with Uncertainties of Circuit Resistance and Inverter Non-linearity -- 6.3.1 Modelling of Cost Functions for Identification of Flux Linkages -- 6.3.2 Minimization of Cost Functions -- 6.3.3 Experimental Results -- 6.3.3.1 Data Recording and FE-predicted Flux Linkage Maps -- 6.3.3.2 Identification of dq-axis Flux Linkage Maps -- 6.3.3.3 Influence of Uncertain Circuit Resistance -- 6.3.3.4 Derivation of dq-axis Inductances -- 6.3.3.5 MTPA Current Trajectory Based on dq-axis Flux Linkage Maps -- 6.4 Summary -- References -- Chapter 7: Estimation of Magnetic Saturation and Cross-coupling Based on High-frequency Signal Injection -- 7.1 Introduction -- 7.2 Magnetic Saturation Modelling and Time Delay Effect in HF Signal Injection -- 7.2.1 Fundamental Mathematical Model -- 7.2.2 Time Delay Effect in HF Signal Injection Methods -- 7.3 HF Rotating Voltage Injection Method -- 7.4 HF Pulsating Voltage Injection Method -- 7.4.1 With the Aid of Position Estimator -- 7.4.2 Without the Aid of Position Estimator -- 7.5 Combined HF Rotating and Pulsating Voltage Injection Method -- 7.6 Experimental Results -- 7.6.1 Evaluation of Estimation Performance -- 7.6.2 Comparison with FE Results -- 7.6.3 Selection of Injected Voltage -- 7.7 Summary -- References -- Chapter 8: Offline and Multi-step Parameter Estimation Methods -- 8.1 Introduction -- 8.2 Parameter Estimation at Standstill by Square Voltage Injection -- 8.3 Parameter Estimation at Standstill by HF Current Injection -- 8.3.1 Estimation Based on Current Variations -- 8.3.2 Estimation Based on Zero-crossing Detection -- 8.4 Multi-step Parameter Estimation.
8.4.1 Two-step Estimation Method -- 8.4.2 Three-step Estimation Method -- 8.5 Summary -- References -- Chapter 9: Estimation of Mechanical Parameters -- 9.1 Introduction -- 9.2 Mechanical Parameter Estimation Methods -- 9.2.1 Acceleration/Deceleration-Based Method -- 9.2.2 MRAS Observer-Based Method -- 9.2.3 Fundamental Motion Equation-Based Estimation Method -- 9.2.4 Critical Issue of Torque Prediction -- 9.3 Experimental Results -- 9.3.1 Comparison Between Schemes I and III -- 9.3.2 Comparison Between Schemes II and III -- 9.3.3 Influence of Variation in Rotor PM Flux Linkage -- 9.3.4 Sensitivity Analysis of Sinusoidal Perturbation Signal -- 9.4 Design of PI Speed Regulator -- 9.5 Summary -- References -- Chapter 10: Modern Control and Optimization Theory-Based Parameter Estimation Algorithms -- 10.1 Introduction -- 10.2 Designed Parameter Estimation Scheme -- 10.3 Recursive Least-Squares -- 10.3.1 Basic Principle -- 10.3.2 Application to Parameter Estimation for PMSMs -- 10.4 Kalman Filter -- 10.4.1 Basic Principle -- 10.4.1.1 Conventional Kalman Filter -- 10.4.1.2 Extended Kalman Filters -- 10.4.2 Application to Parameter Estimation for PMSMs -- 10.5 Model Reference Adaptive System -- 10.5.1 Basic Principle -- 10.5.2 Application to Parameter Estimation for PMSMs -- 10.6 Adaline Neural Network -- 10.6.1 Basic Principle -- 10.6.2 Application to Parameter Estimation for PMSMs -- 10.7 Gradient-Based Methods -- 10.7.1 Basic Principle -- 10.7.1.1 Steepest Descent Method -- 10.7.1.2 Newton's Method -- 10.7.1.3 Gauss-Newton Method -- 10.7.2 Application to Parameter Estimation for PMSMs -- 10.8 Particle Swarm Optimization -- 10.8.1 Basic Principle -- 10.8.2 Application to Parameter Estimation for PMSMs -- 10.9 Genetic Algorithm -- 10.9.1 Basic Principle -- 10.9.2 Application to Parameter Estimation for PMSMs -- 10.10 Summary -- References.
Chapter 11: Applications of Parameter Estimation -- 11.1 Introduction -- 11.2 Improvement in Control Performance -- 11.2.1 Design of PI Regulators for FOC -- 11.2.1.1 Parameter-Based PI Regulator Design -- 11.2.1.2 Parameter Estimation -- 11.2.1.3 Designed PI Regulators and Experimental Performance -- 11.2.2 Determination of MTPA Current Trajectory -- 11.3 Improvement in Sensorless Control -- 11.3.1 Improvement in Sensorless Control Performance -- 11.3.1.1 Extended Back-EMF-Based Method -- 11.3.1.2 High-frequency Signal Injection-Based Method -- 11.3.2 Application of Parameter Estimation Under Sensorless Control -- 11.3.2.1 Position-offset-Based Online Parameter Estimation Under Sensorless Control -- 11.3.2.2 Experimental Results -- 11.4 Precise Torque Estimation -- 11.4.1 HF Square Wave Voltage Injection Considering Cross-coupling Effect -- 11.4.2 Torque Estimation Based on Estimated HF Inductances -- 11.5 Thermal Condition Monitoring -- 11.6 Fault Diagnosis -- 11.6.1 Inter-turn Short-circuit Fault -- 11.6.2 Demagnetization Fault -- 11.7 Summary -- References -- Appendix A: Finite Element Calculation of Winding Inductances -- Appendix B: Specifications of Prototype Machines and Experimental Platforms -- Index -- EULA.
Record Nr. UNINA-9911022472203321
Zhu Ziqiang, Ph. D.  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensorless Control of Permanent Magnet Synchronous Machine Drives
Sensorless Control of Permanent Magnet Synchronous Machine Drives
Autore Zhu Ziqiang, Ph. D.
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (498 pages)
Disciplina 621.46
Altri autori (Persone) WuXi Meng
Collana IEEE Press Series on Control Systems Theory and Applications Series
Soggetto topico Permanent magnet motors
Electric machinery, Synchronous
ISBN 9781394194384
1394194382
9781394194377
1394194374
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1 General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.2.1 Topologies -- 1.2.2 Drives -- 1.3 Basic Principle of PM BLAC (PMSM) Drives -- 1.3.1 Modeling -- 1.3.1.1 ABC Reference Frame -- 1.3.1.2 Stationary Reference Frame -- 1.3.1.3 Synchronous Reference Frame -- 1.3.2 Control Strategies -- 1.3.2.1 Space Vector PWM -- 1.3.2.2 Field-Oriented Control -- 1.3.2.3 Direct Torque Control -- 1.3.2.4 Model Predictive Control -- 1.4 Basic Principle of PM BLDC Drives -- 1.4.1 Modeling -- 1.4.2 Control Strategies -- 1.5 Comparison Between PM BLDC (PMSM) and BLAC Drives -- 1.5.1 Square-Wave Back-EMF Machine -- 1.5.2 Sine-Wave Back-EMF Machine -- 1.6 Sensorless Control Techniques and Applications -- 1.6.1 Classification -- 1.6.2 Applications -- 1.7 Scope of This Book -- References -- Chapter 2 Fundamental Model-Based Sensorless Control -- 2.1 Introduction -- 2.2 Flux-Linkage-Based Method -- 2.2.1 Flux-Linkage Method for Non-salient PMSMs -- 2.2.2 Active Flux-Linkage Method for Salient PMSMs -- 2.3 Back-EMF-Based Method -- 2.3.1 Back-EMF Method for Non-salient PMSMs -- 2.3.2 Extended Back-EMF Method for Salient PMSMs -- 2.3.2.1 In Synchronous Reference Frame -- 2.3.2.2 In Stationary Reference Frame -- 2.3.3 Comparison -- 2.3.3.1 Comparison Between Back-EMF and Flux-Linkage Methods -- 2.3.3.2 Comparison of Active Flux and Extended Back-EMF -- 2.4 Position Observer -- 2.4.1 Arctangent Method -- 2.4.2 Phase-Locked Loop -- 2.4.3 Simplified Extended Kalman Filter -- 2.4.4 Simulation Results -- 2.5 Summary -- References -- Chapter 3 Fundamental Model-Based Sensorless Control-Issues and Solutions -- 3.1 Introduction -- 3.2 Integration and Filter.
3.2.1 Initial Value -- 3.2.2 Drift -- 3.2.3 Delay -- 3.3 Back-EMF and Current Harmonics -- 3.3.1 Influence of Back-EMF Harmonics -- 3.3.2 Influence of Current Harmonics -- 3.4 Cross-Coupling Magnetic Saturation -- 3.4.1 Impact on Position Estimation -- 3.4.2 Sensorless Control Accounting for Cross-Coupling Inductance -- 3.5 Parameter Mismatch -- 3.5.1 Impact on Position Estimation -- 3.5.2 Position Correction Method Under Parameter Mismatches -- 3.5.2.1 q-Axis Injection for q-Axis Inductance Mismatch -- 3.5.2.2 d-Axis Injection for Resistance Mismatch -- 3.5.2.3 Amplitude Calculation Technique -- 3.5.2.4 Position Error Correction with LMS Algorithm -- 3.5.2.5 Experimental Results -- 3.6 Parameter Asymmetry -- 3.6.1 Asymmetric Modeling -- 3.6.1.1 Resistance Asymmetry -- 3.6.1.2 Inductance Asymmetry -- 3.6.1.3 Back-EMF Asymmetry -- 3.6.2 Impacts on Position Estimation -- 3.6.3 Harmonic Suppression -- 3.7 Summary -- References -- Chapter 4 Saliency Tracking-Based Sensorless Control Methods -- 4.1 Introduction -- 4.2 High-Frequency Model of PM Machines -- 4.2.1 Model in Synchronous Reference Frame -- 4.2.2 Model in Estimated Synchronous Reference Frame -- 4.2.3 Model in Stationary Reference Frame -- 4.3 High-Frequency Signal Injection in Estimated Synchronous Reference Frame -- 4.3.1 Pulsating Sinusoidal Signal -- 4.3.2 Pulsating Square-Wave Signal -- 4.4 High-Frequency Signal Injection in Stationary Reference Frame -- 4.4.1 Rotating Sinusoidal Signal -- 4.4.2 Pulsating Sinusoidal Signal -- 4.4.2.1 Mathematical Model -- 4.4.2.2 Ip Pre-detection and Compensation -- 4.4.2.3 Experiment Results -- 4.4.3 Pulsating Square-Wave Signal -- 4.4.3.1 Mathematical Model -- 4.4.3.2 IpSQ Pre-detection and Compensation -- 4.4.3.3 Experiment Results -- 4.5 Position Observer -- 4.5.1 Basic Structure -- 4.5.2 Influence of LPF.
4.5.3 Convergence Analysis -- 4.6 Other Saliency Tracking-Based Methods -- 4.6.1 Transient Voltage Vector-Based Method -- 4.6.2 PWM Excitation-Based Method -- 4.7 Summary -- References -- Chapter 5 Saliency Tracking-Based Sensorless Control Methods-Issues and Solutions -- 5.1 Introduction -- 5.2 Cross-Coupling Magnetic Saturation -- 5.2.1 Impact on Position Estimation -- 5.2.2 Compensation Scheme -- 5.2.2.1 Direct Compensation -- 5.2.2.2 Indirect Compensation -- 5.3 Machine Saliency and Load Effect -- 5.3.1 Machine Saliency Investigation -- 5.3.2 Machine Saliency Circle -- 5.4 Multiple Saliency Effect -- 5.5 Asymmetric Parameters -- 5.5.1 High-Frequency Models with Machine Inductance Asymmetry -- 5.5.2 Suppression of Position Errors Due to Inductance Asymmetry -- 5.5.3 Experimental Results -- 5.5.3.1 Position Estimation Under Inductance Asymmetry -- 5.5.3.2 The Second Harmonic Oscillating Error Suppression -- 5.6 Inverter Nonlinearity Effects -- 5.6.1 Mechanism -- 5.6.1.1 Deadtime -- 5.6.1.2 Parasitic Capacitance Effects -- 5.6.2 HF Voltage Distortion -- 5.6.3 HF Current Distortion -- 5.6.3.1 Rotating Signal Injection-Based Method -- 5.6.3.2 Pulsating Signal Injection-Based Method -- 5.6.3.3 Experiment Results -- 5.6.4 Compensation Scheme -- 5.6.4.1 Pre-compensation -- 5.6.4.2 Post-compensation -- 5.6.4.3 Comparison -- 5.7 Signal Processing Delay -- 5.8 Selection of Amplitude and Frequency for Injection Voltage Signal -- 5.8.1 Quantization Error in AD Conversion -- 5.8.2 Sensorless Safe Operation Area -- 5.8.3 Experimental Results of Determining Amplitude and Frequency -- 5.8.4 Sensorless Operation Performance -- 5.8.5 Pseudo-random Selection of Injection Signal -- 5.9 Transition Between Low Speed and High Speed -- 5.10 Summary -- References.
Chapter 6 Saliency Tracking-Based Sensorless Control Method Using Zero Sequence Voltage -- 6.1 Introduction -- 6.2 Rotating Sinusoidal Signal Injection -- 6.2.1 Zero Sequence Voltage Model -- 6.2.2 Signal Demodulation -- 6.3 Conventional Pulsating Sinusoidal Signal Injection -- 6.4 Anti-rotating Pulsating Sinusoidal Signal Injection -- 6.4.1 Anti-rotating Signal Injection -- 6.4.2 Signal Demodulation -- 6.4.3 Cross-Saturation Effect -- 6.4.4 Experimental Results -- 6.4.4.1 Zero Sequence Voltage Model Verification -- 6.4.4.2 Steady- and Dynamic-State Position Estimation Performances -- 6.4.4.3 Robustness and Accuracy Comparison -- 6.5 Conventional Pulsating Square-Wave Signal Injection -- 6.6 Anti-rotating Pulsating Square-Wave Signal Injection -- 6.6.1 Anti-rotating Signal Injection -- 6.6.2 Signal Demodulation -- 6.6.3 Cross-Saturation Effect -- 6.6.4 Experimental Results -- 6.6.4.1 Zero Sequence Voltage Model Verification -- 6.6.4.2 Steady- and Dynamic-State Position Estimation Performance -- 6.6.4.3 Comparison to Square-Wave Injection Method with HF Current Sensing -- 6.7 Summary -- References -- Chapter 7 Sensorless Control of Dual Three-Phase PMSMs and Open-.Winding PMSMs -- 7.1 Introduction -- 7.2 Dual Three-Phase PMSMs -- 7.2.1 Modeling of DTP-PMSM Drive -- 7.2.1.1 Double dq Model -- 7.2.1.2 Vector Space Decomposition -- 7.2.2 HFSI Sensorless Control with Current Response -- 7.2.3 HFSI Sensorless Control with Voltage Response -- 7.2.3.1 Zero Sequence Voltage Measurement -- 7.2.3.2 Modeling of Dual Three-Phase PMSM -- 7.2.3.3 Pulsating Sinusoidal Signal Injection -- 7.2.3.4 Rotating Signal Injection Method -- 7.2.3.5 Experimental Results and Analysis for DTP-PMSM -- 7.2.4 Fundamental Model-Based Sensorless Control -- 7.2.4.1 Extended Back-EMF Model on DTP-PMSM -- 7.2.4.2 Parameter Mismatch Effect.
7.2.4.3 Parameter Mismatch Correction -- 7.2.4.4 Experimental Results -- 7.2.5 Third Harmonic Back-EMF-Based Sensorless Control -- 7.3 Open Winding PMSMs -- 7.3.1 Modeling of OW-PMSM Drive -- 7.3.2 Phase Shift-Based SVPWM for OW-PMSM -- 7.3.3 Zero Sequence Current-Based Sensorless Control -- 7.3.4 Nonparametric Zero Sequence Voltage-Based Sensorless Control -- 7.4 Summary -- References -- Chapter 8 Magnetic Polarity Identification -- 8.1 Introduction -- 8.2 Dual Voltage Pulses Injection-Based Method -- 8.3 d-Axis Current Injection-Based Method -- 8.3.1 HF Current Response -- 8.3.2 HF Zero Sequence Voltage Response -- 8.4 Secondary Harmonic-Based Method -- 8.4.1 Modeling of Secondary Harmonics -- 8.4.2 HF Current Response -- 8.4.3 HF Zero Sequence Voltage Response -- 8.4.4 Experiment Results -- 8.5 Summary -- References -- Chapter 9 Rotor Initial Position Estimation -- 9.1 Introduction -- 9.2 Magnetic Saturation Effect -- 9.3 Basic Pulse Injection Method Using Three Phase Currents -- 9.3.1 Pulse Excitation Configuration -- 9.3.2 Current Response Model -- 9.3.3 Initial Position Estimation -- 9.4 Improved Pulse Injection Method Using Three Phase Currents -- 9.4.1 Utilization of Three Phase Current Responses -- 9.4.2 Pulse Injection Sequence -- 9.4.3 Boundary Detection Strategy -- 9.4.4 Experiment Results -- 9.4.4.1 Estimation Example -- 9.4.4.2 Overall Rotor Initial Position Estimation Performance -- 9.4.4.3 Boundary Detection Performance -- 9.5 Pulse Injection Method Using DC-Link Voltage -- 9.5.1 Utilization of DC-Link Voltage Variation -- 9.5.2 Pulse Injection Process -- 9.5.3 Experiment Results -- 9.5.3.1 Estimation Example -- 9.5.3.2 Overall Estimation Performance -- 9.5.3.3 Comparison with Estimation Using Current Responses -- 9.6 Voltage Pulse Selection -- 9.6.1 Selection of Duration.
9.6.2 Selection of Magnitude.
Record Nr. UNINA-9911019733103321
Zhu Ziqiang, Ph. D.  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Special Electrical Machinery
Special Electrical Machinery
Autore Desai Jigneshkumar P
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (164 pages)
Disciplina 621.31042
Soggetto topico Brushless direct current electric motors
Permanent magnet motors
ISBN 9781394193912
1394193912
9781394193905
1394193904
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Brushless Direct Current Motor -- 1.1 Brushless DC (BLDC) Motors -- 1.2 Construction of Brushless DC (BLDC) Motors -- 1.3 Brushless DC Motor Drive System -- 1.4 Position Sensors -- 1.5 Features and Advantages of BLDC Motors -- 1.6 Permanent Magnet Rotor Configuration -- 1.7 Types of BLDC Motors -- 1.7.1 Trapezoidal Type BLDC Motor -- 1.7.1(a) Advantages -- 1.7.1(b) Disadvantages -- 1.7.2 Sinusoidal Type BLDC Motor -- 1.7.2(a) Advantages -- 1.7.2(b) Disadvantages -- 1.8 Square Wave Brushless Motor -- 1.9 Torque/Speed Characteristics of BLDC Motor -- 1.10 Applications of BLDC Motors -- 1.11 Conclusion -- References -- Chapter 2 Permanent Magnet Synchronous Motors -- 2.1 Fundamentals of Permanent Magnets -- 2.2 Early History of Permanent Magnet -- 2.2.1 Alnico Magnet -- 2.2.2 Ceramic Magnet
Record Nr. UNINA-9911019685703321
Desai Jigneshkumar P  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...