top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Boletín de arqueología PUCP
Boletín de arqueología PUCP
Pubbl/distr/stampa Lima, Perú : , : Departamento de Humanidades, PUCP, , 1997-
Soggetto topico Excavations (Archaeology) - Peru
Excavations (Archaeology) - South America
Indians of South America - Peru - Antiquities
Indians of South America - Antiquities
Antiquities
Excavations (Archaeology)
Arqueologia
Etnohistòria
Antropologia
Antropologia física
Lingüística
Arqueometria
Geoarqueologia
Història de l'art
Patrimoni cultural
Soggetto genere / forma Periodicals.
Revistes electròniques.
ISSN 2304-4292
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione spa
Altri titoli varianti Boletín de arqueología Pontificia Universidad Católica del Perú
Revista arqueología PUCP
Record Nr. UNINA-9910891461703321
Lima, Perú : , : Departamento de Humanidades, PUCP, , 1997-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data analytics for cultural heritage : current trends and concepts / / Abdelhak Belhi [and three others] editors
Data analytics for cultural heritage : current trends and concepts / / Abdelhak Belhi [and three others] editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (288 pages)
Disciplina 363.69
Soggetto topico Cultural property - Data processing
Patrimoni cultural
Digitalització
Processament de dades
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
ISBN 3-030-66777-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgment -- Contents -- About the Editors -- NoisyArt: Exploiting the Noisy Web for Zero-shot Classification and Artwork Instance Recognition -- 1 Introduction -- 2 Related Work -- 3 The NoisyArt Dataset -- 3.1 Data Sources -- 3.2 Data Collection -- 3.3 Discussion -- 4 Webly-Supervised Artwork Recognition -- 4.1 Baseline Classifier Model -- 4.2 Labelflip Noise -- 4.3 Entropy Scaling for Outlier Mitigation -- 4.4 Gradual Bootstrapping -- 4.5 Domain Shift Mitigation and L2 Normalization -- 5 Zero-Shot Artwork Recognition -- 5.1 Compatibility Models -- 5.2 Zero-shot Learning with Webly-Labeled Data -- 6 Experimental Results: Artwork Instance Recognition -- 6.1 Datasets -- 6.2 Webly-Supervised Classification -- 6.3 Identifying Problem Classes -- 7 Experimental Results: Zero-Shot Recognition -- 7.1 Zero-shot Recognition with Webly-Labeled Data -- 8 Conclusions and Future Work -- References -- Cultural Heritage Image Classification -- 1 Introduction -- 1.1 Artificial Neural Networks -- 2 CNN Architectures -- 3 Data and Methodology -- 3.1 Data -- 3.2 Methodology -- 3.3 Model Configuration -- 4 Results and Discussion -- References -- Study and Evaluation of Pre-trained CNN Networks for Cultural Heritage Image Classification -- 1 Introduction -- 2 Related Work -- 2.1 Feature Extraction Approaches -- 2.2 Feature Learning Approaches -- 3 The Cultural Heritage Image Classification Problem -- 3.1 Architectural Heritage Elements Dataset (AHE) -- 3.2 The WikiArt Dataset -- 4 The CNN-Based Pre-trained Networks -- 4.1 The Oxford Visual Geometry Group Models (VGG16 and VGG19) -- 4.2 Residual Networks -- 4.3 The Inception-V3 Model -- 5 Transfer Learning of the Pre-trained Networks to CH Image Classification -- 6 The Experimental Study -- 6.1 Experimental Setup -- 6.2 Experimental Results -- 6.3 Discussion -- 7 Conclusion.
References -- Visual Classification of Intangible Cultural Heritage Images in the Mekong Delta -- 1 Background and Purpose -- 2 Approach -- 2.1 Data Collection of Intangible Cultural Heritage Images -- 2.2 Visual Approaches for Classifying Intangible Cultural Heritage Images -- 3 Results -- 3.1 Tuning Parameters -- 3.2 Classification Results for 17 ICH Categories -- 4 Conclusions -- References -- Digital Image Inpainting Techniques for Cultural Heritage Preservation and Restoration -- 1 Introduction -- 1.1 The Importance of Inpainting in Cultural Heritage -- 1.2 The Image Inpainting Problem -- 2 Interpolation -- 3 Digital Image Inpainting Methods -- 3.1 Diffusion-Based Methods -- 3.2 Texture Synthesis-Based Inpainting -- 3.3 Exemplar-Based Methods -- 3.4 Hybrid Inpainting Methods -- 3.5 Semiautomatic and Fast Inpainting Technique -- 3.6 Deep Learning-Based Technique -- 3.6.1 CNN-Based Inpainting Method -- 3.6.2 GAN-Based Inpainting Method -- 4 A Two-Stage Method for CH Digital Image Inpainting -- 5 Results and Comparisons -- 6 Conclusion -- References -- Crowd Source Framework for Indian Digital Heritage Space -- 1 Introduction -- 2 Crowd Source Framework for IHDS -- 3 Data Preprocessing -- 3.1 Redundancy Removal -- 3.2 Blur Removal -- 3.3 Super-Resolution -- 3.3.1 GAN Network Architecture -- 3.3.2 Generator Network -- 3.3.3 Discriminator Network -- 3.3.4 Perceptual Loss Function -- 4 Classification -- 4.1 Deep Neural Network -- 4.2 MobileNet Architecture -- 4.3 Transfer Learning -- 5 Results -- 5.1 IHDS Dataset -- 5.2 Blur Removal -- 5.3 Super-Resolution -- 5.3.1 Training Details -- 5.4 Transfer Learning Classification Results -- 5.5 Screenshots of Framework Working (GUI) -- 6 Conclusions -- References -- A Robust Method for Text, Line, and Word Segmentation for Historical Arabic Manuscripts -- 1 Introduction -- 2 Related Works.
2.1 Text Segmentation Methods -- 2.2 Line Segmentation Methods -- 2.3 Word Segmentation Methods -- 3 Proposed Method -- 3.1 Texture Component Extraction -- 3.2 Encoder-Decoder Architecture -- 3.3 Line Segmentation -- 3.3.1 Smoothing -- 3.4 Word Segmentation -- 3.4.1 The Smoothed Generalized Chamfer Distance -- 3.4.2 Classification of Inter/intra-Word Distances -- 3.5 Classification of Beginning and Ending of Words -- 3.6 Classification of First and Last Characters -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Metrics -- 4.3 Analysis -- 5 Conclusion -- References -- Aesthetical Issues with Stochastic Evaluation -- 1 Introduction -- 1.1 Aesthetical Issues and Mathematics -- 1.2 Aesthetical Issues and Stochastic Analysis -- 2 Methodology -- 2.1 Stochastic Analysis in 2D -- 2.2 Illustration of Stochastic Analysis in 2D -- 3 Examples of Stochastic Analysis -- 3.1 Range of Fluctuations in Groups of Images -- 3.1.1 Data Analysis -- 3.1.2 Evaluation -- 3.2 Evaluation of Urban and Natural Landscapes Transformed by Technological and Civil Infrastructure through Climacogram Subtraction -- 3.2.1 Data Analysis -- 3.2.2 Evaluation -- 3.3 Qualitative Evaluation Aspect of Climacogram Curves -- 3.3.1 Data Analysis -- 4 Conclusions -- References -- 3D Visual Interaction for Cultural Heritage Sector -- 1 Introduction -- 2 Human-Computer Interaction -- 3 Visual Interaction in Cultural Heritage -- 4 Human-Computer Gesture Recognition -- 5 Hand Gesture Visual Processing Techniques -- 5.1 Hand Detection -- 5.1.1 3D Modelling -- 5.1.2 Pixel Values -- 5.1.3 Shape -- 5.1.4 Skin Colour -- 5.2 Hand Tracking -- 5.2.1 Estimation Based -- 5.2.2 Template Based -- 5.3 Gesture Recognition -- 6 Product Markets of Vision-Based Sensing Devices -- 6.1 Microsoft Kinect -- 6.2 Leap Motion Controller -- 7 Software Development Environments -- 7.1 Unity 3D -- 7.2 OpenCV.
8 Proposed Approach -- 8.1 Data Acquisition -- 8.2 Data Pre-processing -- 8.2.1 Motion Interpolation -- 8.2.2 Super-Resolution -- 8.3 Photogrammetry -- 8.4 3D Model Adaptation -- 8.5 3D Model Visualisation -- 8.6 3D Interaction -- 9 Evaluation Work and Discussion -- 9.1 Evaluation Methodology -- 9.2 Results and Discussions -- 10 Summary and Conclusions -- References -- Retrieving Visually Linked Digitized Paintings -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 4 Experiment -- 4.1 Time Period Classification -- 4.2 Link Retrieval -- 5 Conclusion -- References -- Named Entity Recognition for Cultural Heritage Preservation -- 1 Introduction -- 1.1 Natural Language Processing in Cultural Heritage Domain -- 2 Named Entity Recognition -- 2.1 NER Process -- 2.2 NER Approaches -- 2.2.1 Rule-Based Approaches -- 2.2.2 Machine Learning Approaches -- 2.2.3 Deep Learning Approaches -- 2.3 Pre-trained NER Tools -- 2.4 Performance Measures for NER -- 3 Named Entity Recognition in Cultural Heritage Domain and Historical Texts -- 4 Discussion -- 4.1 NLP Challenges in Cultural Heritage Domain -- 4.1.1 Lack of Consistent Orthography -- 4.1.2 Solution Methods -- 5 Conclusion -- References -- Index.
Record Nr. UNINA-9910484619103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microorganisms in the Deterioration and Preservation of Cultural Heritage / / edited by Edith Joseph
Microorganisms in the Deterioration and Preservation of Cultural Heritage / / edited by Edith Joseph
Autore Joseph Edith
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (XII, 367 p. 80 illus., 62 illus. in color.)
Disciplina 579
Soggetto topico Microbiology
Cultural property
Microbial ecology
Microbial genetics
Microbial genomics
Enzymology
Cultural Heritage
Microbial Ecology
Microbial Genetics and Genomics
Applied Microbiology
Patrimoni cultural
Protecció del patrimoni cultural
Microorganismes
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Microbiology
Cultural Heritage
Microbial Ecology
Microbial Genetics and Genomics
Enzymology
Applied Microbiology
Microbial Genetics
Industrial Microbiology
Open Access
Restoration
Conservation
Biodeterioration
Bioweathering
Bioremediation
Biocleaning
Biotechnology
Green Chemistry
Fungi
Bacteria
Artwork
Antimicrobial protection
Biocides
Microbiology (non-medical)
Cultural studies
Social & cultural history
Ecological science, the Biosphere
Genetics (non-medical)
Biochemistry
ISBN 3-030-69411-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1: Occurrence of microorganisms in heritage materials -- Chapter 1: Microbial growth and its effects on inorganic heritage materials -- Chapter 2: Microbiota and biochemical processes involved for biodeterioration of cultural heritage and protection -- Chapter 3: Molecular-based techniques for the study of microbial communities in artworks -- Chapter 4: Extreme colonizers and rapid profiteers: the challenging world of microorganisms that attack paper and parchment -- Part 2: Green methods again biodeterioration -- Chapter 5: Novel antibiofilm non-biocide strategies -- Chapter 6: Green mitigation strategy for cultural heritage using bacterial biocides -- Chapter 7: New perspectives against biodeterioration through public lighting -- Part 3: Biocleaning and bio-based conservation methods -- Chapter 8: Bioremoval of graffiti in the context of current biocleaning research -- Chapter 9: Ancient textiles deterioration and restoration: the case of biocleaning of an Egyptian shroud held in the Torino Museum” -- Chapter 10: Advanced biocleaning system for historical wall paintings -- Chapter 11: Sustainable restoration through biotechnological processes: a proof of concept -- Chapter 12: The role microorganisms for the removal of nitrates and sulfates on artistic stoneworks -- Chapter 13: Protection and consolidation of stone heritage by bacterial carbonatogenesis -- Chapter 14: Siderophore-removal of iron corrosion products from wood and textiles -- Chapter 15: Bio-based corrosion inhibitors for metal heritage. .
Record Nr. UNINA-9910476914403321
Joseph Edith  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui