Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva
| Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva |
| Autore | Santos Jr Euzeli Cipriano dos |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (730 p.) |
| Disciplina | 621.317 |
| Altri autori (Persone) | SilvaEdison Roberto Cabral da <1942-> |
| Collana | IEEE Press series on power engineering |
| Soggetto topico |
PWM power converters
DC-to-DC converters Power electronics |
| ISBN |
1-118-97205-8
1-118-88695-X 1-118-96822-0 |
| Classificazione | TEC031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Advanced Power Electronics Converters PWM Converters Processing AC Voltages Summary 1 -- Chapter 1 -- Introduction 1.1 Introduction 1.2 Background 1.3 History of Power Switches and Power Converters 1.4 Applications of Power Electronics Converters 1.5 Summary 1.6 References 2 -- Chapter 2 -- Power Switches and Overview of Basic Power Converters 2.1 Introduction 2.2 Power Electronics Devices as Ideal Switches 2.2.1 Static Characteristics 2.2.2 Dynamic Characteristics 2.3 Main Real Power Semiconductors Devices 2.3.1 -- Spontaneous Conduction/Spontaneous Blocking 2.3.2 -- Controlled Conduction/Spontaneous Blocking Devices 2.3.3 -- Controlled Conduction/Controlled Blocking Devices 2.3.4 -- Spontaneous Conduction/Controlled Blocking Devices 2.4 Basic converters 2.4.1 -- Dc-dc Conversion 2.4.2 -- Dc-ac Conversion 2.4.3 -- Ac-dc Conversion 2.4.4 -- Ac-ac Conversion 2.5 Summary 2.6 References 3 -- Chapter 3 -- Power Electronics Converters Processing AC Voltage and Power Blocks Geometry 3.1 Introduction 3.2 Principles of Power Blocks Geometry (PBG) 3.3 Description of Power Blocks 3.4 Application of PBG in Multilevel Configurations 3.4.1 -- Neutral-Point-Clamped Configuration 3.4.2 -- Cascade Configuration 3.4.3 -- Flying Capacitor Configuration 3.4.4 -- Other Multilevel Configurations 3.5 Application of PBG in ac-dc-ac Configurations 3.5.1 -- Three-phase to three-phase configurations 3.5.2 -- Single-phase to single-phase configurations 3.6 Summary 3.7 References 4 -- Chapter 4 -- Neutral-Point-Clamped Configuration 4.1 Introduction 4.2 Three-level configuration 4.3 PWM Implementation (Half-Bridge Topology) 4.4 Full-bridge Topologies 4.5 Three-phase NPC Converter 4.6 Non-Conventional Arrangements by Using Three-Level Legs 4.7 Unbalanced Capacitor Voltage 4.8 Four-level Configuration 4.9 PWM Implementation (Four-level Configuration) 4.10 Full-bridge and Other Circuits (Four-level Configuration) 4.11 Five-level Configuration 4.12 Summary 4.13 References 5 -- Chapter 5 -- Cascade Configuration 5.1 Introduction 5.2 Single H-bridge Converter 5.3 PWM Implementation of a Single H-bridge Converter 5.4 Three-phase converter - one H-bridge converter per phase 5.5 Two H-bridge Converters 5.6 PWM Implementation of Two Cascade H-bridges 5.7 Three-phase converter - two Cascade H-bridges per phase 5.8 Two H-bridge Converters (Seven- and Nine-level topologies) 5.9 Three H-bridge Converters 5.10 Four H-bridge Converters and Generalization 5.11 Summary 5.12 References 6 -- Chapter 6 -- Flying-Capacitor Configuration 6.1 Introduction 6.2 Three-level configuration 6.3 PWM Implementation (Half-Bridge Topology) 6.4 Flying Capacitor Voltage Control 6.5 Full-bridge Topology 6.6 Three-phase FC Converter 6.7 Non-Conventional FC Converters with Three-level Legs 6.8 Four-level Configuration 6.9 Generalization 6.10 Summary 6.11 References 7 -- Chapter 7 -- Other Multilevel Configurations 7.1 Introduction 7.2 Nested configuration 7.3 Topology with Magnetic Element at the Output 7.4 Active-Neutral-Point-Clamped Converters 7.5 More Multilevel Converters 7.6 Summary 7.7 References 8 -- Chapter 8 -- Optimized PWM Approach 8.1 Introduction 8.2 Two-leg Converter 8.2.1 -- Model 8.2.2 -- PWM Implementation 8.2.3 -- Analog and Digital Implementation 8.2.4 -- Influence of [mu] for PWM implementation 8.3 Three-leg Converter and Three-phase Load 8.3.1 -- Model 8.3.2 -- PWM Implementation 8.3.3 -- Analog and Digital Implementation 8.3.4 -- Influence of [mu] for PWM implementation in a three-leg converter 8.3.5 -- Influence of the Three-Phase Machine Connection over Inverter Variables 8.4 Space Vector Modulation (SVPWM) 8.5 Other Configurations with CPWM 8.5.1 -- Three-leg Converter - Two-phase machine 8.5.2 -- Four-leg Converter 8.6 Non-Conventional Topologies with CPWM 8.6.1 -- Inverter with Split-Wound Coupled Inductors 8.6.2 -- Z-Source Converter 8.6.3 -- Open-end Winding Motor Drive System 8.7 Summary 8.8 References 9 -- Chapter 9 -- Control Strategies for Power Converters 9.1 Introduction 9.2 Basic Control Principles 9.3 Hysteresis control 9.3.1 Application of the hysteresis control for dc motor drive 9.3.2 Hysteresis control for regulating an ac variable 9.4 Linear control - dc variable 9.4.1 Proportional controller: RL load 9.4.2 Proportional controller: dc motor drive system 9.4.3 Proportional-Integral controller: RL load 9.4.4 Proportional-Integral controller: Dc motor 9.4.5 Proportional-Integral-Derivative controller: dc motor 9.5 Linear control - ac variable 9.6 Cascade control strategies 9.6.1 Rectifier circuit: voltage-current control 9.6.2 Motor drive: speed-current control 9.7 Summary 9.8 References 10 -- Chapter 10 -- Single-phase to Single-phase Back-to-Back Converter 10.1 Introduction 10.2 Full-Bridge Converter 10.2.1 -- Model 10.2.2 -- PWM Strategy 10.2.3 -- Control Approach 10.2.4 -- Power Analysis 10.2.5 -- Dc-link Capacitor Voltage 10.2.6 -- Capacitor Bank Design 10.3 Topology with Component Count Reduction 10.3.1 -- Model 10.3.2 -- PWM Strategy 10.3.3 -- Dc-link Voltage Requirement 10.3.4 -- Half-bridge Converter 10.4 Topologies with increased number of switches (Converters in Parallel) 10.4.1 -- Model 10.4.2 -- PWM Strategy 10.4.3 -- Control Strategy 10.5 Topologies with increased number of switches (Converters in Series) 10.6 Summary 10.7 References 11 -- Chapter 11 -- Three-phase to Three-phase and Other Backto- Back Converters 11.1 Introduction 11.2 Full-Bridge Converter 11.2.1 -- Model 11.2.2 -- PWM Strategy 11.2.3 -- Control Approach 11.3 Topology with Component Count Reduction 11.3.1 -- Model 11.3.2 -- PWM Strategy 11.3.3 -- Dc-link Voltage Requirement 11.3.4 -- Half-bridge Converter 11.4 Topologies with increased number of switches (Converters in Parallel) 11.4.1 -- Model 11.4.2 -- PWM 11.4.3 -- Control Strategy 11.5 Topologies with increased number of switches (Converters in Series) 11.6 Other Back-to-back Converters 11.7 Summary 11.8 References . |
| Record Nr. | UNINA-9910132343403321 |
Santos Jr Euzeli Cipriano dos
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva
| Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva |
| Autore | Santos Jr Euzeli Cipriano dos |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (730 p.) |
| Disciplina | 621.317 |
| Altri autori (Persone) | SilvaEdison Roberto Cabral da <1942-> |
| Collana | IEEE Press series on power engineering |
| Soggetto topico |
PWM power converters
DC-to-DC converters Power electronics |
| ISBN |
1-118-97205-8
1-118-88695-X 1-118-96822-0 |
| Classificazione | TEC031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Advanced Power Electronics Converters PWM Converters Processing AC Voltages Summary 1 -- Chapter 1 -- Introduction 1.1 Introduction 1.2 Background 1.3 History of Power Switches and Power Converters 1.4 Applications of Power Electronics Converters 1.5 Summary 1.6 References 2 -- Chapter 2 -- Power Switches and Overview of Basic Power Converters 2.1 Introduction 2.2 Power Electronics Devices as Ideal Switches 2.2.1 Static Characteristics 2.2.2 Dynamic Characteristics 2.3 Main Real Power Semiconductors Devices 2.3.1 -- Spontaneous Conduction/Spontaneous Blocking 2.3.2 -- Controlled Conduction/Spontaneous Blocking Devices 2.3.3 -- Controlled Conduction/Controlled Blocking Devices 2.3.4 -- Spontaneous Conduction/Controlled Blocking Devices 2.4 Basic converters 2.4.1 -- Dc-dc Conversion 2.4.2 -- Dc-ac Conversion 2.4.3 -- Ac-dc Conversion 2.4.4 -- Ac-ac Conversion 2.5 Summary 2.6 References 3 -- Chapter 3 -- Power Electronics Converters Processing AC Voltage and Power Blocks Geometry 3.1 Introduction 3.2 Principles of Power Blocks Geometry (PBG) 3.3 Description of Power Blocks 3.4 Application of PBG in Multilevel Configurations 3.4.1 -- Neutral-Point-Clamped Configuration 3.4.2 -- Cascade Configuration 3.4.3 -- Flying Capacitor Configuration 3.4.4 -- Other Multilevel Configurations 3.5 Application of PBG in ac-dc-ac Configurations 3.5.1 -- Three-phase to three-phase configurations 3.5.2 -- Single-phase to single-phase configurations 3.6 Summary 3.7 References 4 -- Chapter 4 -- Neutral-Point-Clamped Configuration 4.1 Introduction 4.2 Three-level configuration 4.3 PWM Implementation (Half-Bridge Topology) 4.4 Full-bridge Topologies 4.5 Three-phase NPC Converter 4.6 Non-Conventional Arrangements by Using Three-Level Legs 4.7 Unbalanced Capacitor Voltage 4.8 Four-level Configuration 4.9 PWM Implementation (Four-level Configuration) 4.10 Full-bridge and Other Circuits (Four-level Configuration) 4.11 Five-level Configuration 4.12 Summary 4.13 References 5 -- Chapter 5 -- Cascade Configuration 5.1 Introduction 5.2 Single H-bridge Converter 5.3 PWM Implementation of a Single H-bridge Converter 5.4 Three-phase converter - one H-bridge converter per phase 5.5 Two H-bridge Converters 5.6 PWM Implementation of Two Cascade H-bridges 5.7 Three-phase converter - two Cascade H-bridges per phase 5.8 Two H-bridge Converters (Seven- and Nine-level topologies) 5.9 Three H-bridge Converters 5.10 Four H-bridge Converters and Generalization 5.11 Summary 5.12 References 6 -- Chapter 6 -- Flying-Capacitor Configuration 6.1 Introduction 6.2 Three-level configuration 6.3 PWM Implementation (Half-Bridge Topology) 6.4 Flying Capacitor Voltage Control 6.5 Full-bridge Topology 6.6 Three-phase FC Converter 6.7 Non-Conventional FC Converters with Three-level Legs 6.8 Four-level Configuration 6.9 Generalization 6.10 Summary 6.11 References 7 -- Chapter 7 -- Other Multilevel Configurations 7.1 Introduction 7.2 Nested configuration 7.3 Topology with Magnetic Element at the Output 7.4 Active-Neutral-Point-Clamped Converters 7.5 More Multilevel Converters 7.6 Summary 7.7 References 8 -- Chapter 8 -- Optimized PWM Approach 8.1 Introduction 8.2 Two-leg Converter 8.2.1 -- Model 8.2.2 -- PWM Implementation 8.2.3 -- Analog and Digital Implementation 8.2.4 -- Influence of [mu] for PWM implementation 8.3 Three-leg Converter and Three-phase Load 8.3.1 -- Model 8.3.2 -- PWM Implementation 8.3.3 -- Analog and Digital Implementation 8.3.4 -- Influence of [mu] for PWM implementation in a three-leg converter 8.3.5 -- Influence of the Three-Phase Machine Connection over Inverter Variables 8.4 Space Vector Modulation (SVPWM) 8.5 Other Configurations with CPWM 8.5.1 -- Three-leg Converter - Two-phase machine 8.5.2 -- Four-leg Converter 8.6 Non-Conventional Topologies with CPWM 8.6.1 -- Inverter with Split-Wound Coupled Inductors 8.6.2 -- Z-Source Converter 8.6.3 -- Open-end Winding Motor Drive System 8.7 Summary 8.8 References 9 -- Chapter 9 -- Control Strategies for Power Converters 9.1 Introduction 9.2 Basic Control Principles 9.3 Hysteresis control 9.3.1 Application of the hysteresis control for dc motor drive 9.3.2 Hysteresis control for regulating an ac variable 9.4 Linear control - dc variable 9.4.1 Proportional controller: RL load 9.4.2 Proportional controller: dc motor drive system 9.4.3 Proportional-Integral controller: RL load 9.4.4 Proportional-Integral controller: Dc motor 9.4.5 Proportional-Integral-Derivative controller: dc motor 9.5 Linear control - ac variable 9.6 Cascade control strategies 9.6.1 Rectifier circuit: voltage-current control 9.6.2 Motor drive: speed-current control 9.7 Summary 9.8 References 10 -- Chapter 10 -- Single-phase to Single-phase Back-to-Back Converter 10.1 Introduction 10.2 Full-Bridge Converter 10.2.1 -- Model 10.2.2 -- PWM Strategy 10.2.3 -- Control Approach 10.2.4 -- Power Analysis 10.2.5 -- Dc-link Capacitor Voltage 10.2.6 -- Capacitor Bank Design 10.3 Topology with Component Count Reduction 10.3.1 -- Model 10.3.2 -- PWM Strategy 10.3.3 -- Dc-link Voltage Requirement 10.3.4 -- Half-bridge Converter 10.4 Topologies with increased number of switches (Converters in Parallel) 10.4.1 -- Model 10.4.2 -- PWM Strategy 10.4.3 -- Control Strategy 10.5 Topologies with increased number of switches (Converters in Series) 10.6 Summary 10.7 References 11 -- Chapter 11 -- Three-phase to Three-phase and Other Backto- Back Converters 11.1 Introduction 11.2 Full-Bridge Converter 11.2.1 -- Model 11.2.2 -- PWM Strategy 11.2.3 -- Control Approach 11.3 Topology with Component Count Reduction 11.3.1 -- Model 11.3.2 -- PWM Strategy 11.3.3 -- Dc-link Voltage Requirement 11.3.4 -- Half-bridge Converter 11.4 Topologies with increased number of switches (Converters in Parallel) 11.4.1 -- Model 11.4.2 -- PWM 11.4.3 -- Control Strategy 11.5 Topologies with increased number of switches (Converters in Series) 11.6 Other Back-to-back Converters 11.7 Summary 11.8 References . |
| Record Nr. | UNINA-9910677357403321 |
Santos Jr Euzeli Cipriano dos
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Laboratory manual for pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk and Agasthya Ayachit
| Laboratory manual for pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk and Agasthya Ayachit |
| Autore | Kazimierczuk Marian K. |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (268 p.) |
| Disciplina | 621.381534 |
| Soggetto topico |
Pulse circuits
DC-to-DC converters PWM power converters |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-05375-7
1-119-05275-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Laboratory Manual for Pulse-Width Modulated DC-DC Power Converters; Contents; Preface; For Instructors; For Students; Acknowledgments; List of Symbols; Part I Open-Loop Pulse-Width Modulated DC-DC Converters-Steady-State and Performance Analysis and Simulation of Converter Topologies; 1 Boost DC-DC Converter in CCM-Steady-State Simulation; Objectives; Specifications; Pre-lab; Quick Design; Procedure; A. Simulation of the Boost Converter and its Analysis in Steady State; B. Simulation of the Boost Converter to Determine the Power Losses and Overall Efficiency; Postlab Questions
2 Efficiency and DC Voltage Transfer Function of PWM Boost DC-DC Converter in CCMObjectives; Theory; Specifications; Pre-lab; Quick Design; Procedure; A. Efficiency as a Function of the Input Voltage at Full and Light Load Conditions; B. Efficiency as a Function of the Output Current at Minimum, Nominal, and Maximum Input Voltages; C. DC Voltage Transfer Function as a Function of the Duty Cycle; Post-lab Questions; 3 Boost DC-DC Converter in DCM-Steady-State Simulation; Objectives; Specifications; Pre-lab; Quick Design; Procedure A. Simulation of the Boost Converter and its Analysis in Steady State B. Simulation of the Boost Converter to Determine the Power Losses and Overall Efficiency; Post-lab Questions; 4 Efficiency and DC Voltage Transfer Function of PWM Boost DC-DC Converter in DCM; Objectives; Theory; Specifications; Pre-lab; Quick Design; Procedure; A. Efficiency as a Function of the Input Voltage at Various Load Conditions; B. Efficiency as a Function of the Output Current at Minimum, Nominal, and Maximum Input Voltages; C. DC Voltage Transfer Function as a Function of the Duty Cycle; Post-lab Questions 5 Open-Loop Boost AC-DC Power Factor Corrector-Steady-State Simulation Objectives; Specifications; Pre-lab; Quick Design; Procedure; A. Simulation of the Boost Converter as a Power Factor Corrector; B. Simulation of the Boost Converter as a Peak Rectifier Circuit; Post-lab Questions; 6 Buck DC-DC Converter in CCM-Steady-State Simulation; Objectives; Specifications; Pre-lab; Quick Design; Procedure; A. Simulation of the Buck Converter and its Analysis in Steady State; B. Simulation of the Buck Converter to Determine the Power Losses and Overall Efficiency; Post-lab Questions 7 Efficiency and DC Voltage Transfer Function of PWM Buck DC-DC Converter in CCM Objectives; Theory; Specifications; Pre-lab; Quick Design; Procedure; A. Efficiency of the Buck Converter as a Function of the Input Voltage at Full and Light Load Conditions; B. Efficiency of the Buck Converter as a Function of the Output Current at Minimum, Nominal, and Maximum Input Voltages; C. DC Voltage Transfer Function of the Buck Converter as a Function of the Duty Cycle; Post-lab Questions; 8 Buck DC-DC Converter in DCM-Steady-State Simulation; Objectives; Specifications; Pre-lab; Quick Design; Procedure A. Simulation of the Buck Converter in DCM and its Analysis in Steady State |
| Record Nr. | UNINA-9910461467803321 |
Kazimierczuk Marian K.
|
||
| Chichester, England : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Laboratory manual for pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk and Agasthya Ayachit
| Laboratory manual for pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk and Agasthya Ayachit |
| Autore | Kazimierczuk Marian K. |
| Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (268 pages) : illustrations, tables |
| Disciplina | 621.381534 |
| Soggetto topico |
Pulse circuits
DC-to-DC converters PWM power converters |
| ISBN |
1-119-05375-7
1-119-05275-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910795940003321 |
Kazimierczuk Marian K.
|
||
| Chichester, England : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Laboratory manual for pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk and Agasthya Ayachit
| Laboratory manual for pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk and Agasthya Ayachit |
| Autore | Kazimierczuk Marian K. |
| Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (268 pages) : illustrations, tables |
| Disciplina | 621.381534 |
| Soggetto topico |
Pulse circuits
DC-to-DC converters PWM power converters |
| ISBN |
1-119-05375-7
1-119-05275-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910821192203321 |
Kazimierczuk Marian K.
|
||
| Chichester, England : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk
| Pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk |
| Autore | Kazimierczuk Marian K. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, West Sussex, [England] : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (963 p.) |
| Disciplina | 621.381/044 |
| Soggetto topico |
DC-to-DC converters
Pulse circuits PWM power converters |
| ISBN |
1-119-00959-6
1-119-00957-X 1-119-00956-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Pulse-Width Modulated DC--DC Power Converters; Contents; About the Author; Preface; Nomenclature; 1 Introduction; 1.1 Classification of Power Supplies; 1.2 Basic Functions of Voltage Regulators; 1.3 Power Relationships in DC-DC Converters; 1.4 DC Transfer Functions of DC-DC Converters; 1.5 Static Characteristics of DC Voltage Regulators; 1.6 Dynamic Characteristics of DC Voltage Regulators; 1.7 Linear Voltage Regulators; 1.7.1 Series Voltage Regulator; 1.7.2 Shunt Voltage Regulator; 1.8 Topologies of PWM DC-DC Converters; 1.9 Relationships Among Current, Voltage, Energy, and Power
1.10 Summary References; Review Questions; Problems; 2 Buck PWM DC-DC Converter; 2.1 Introduction; 2.2 DC Analysis of PWM Buck Converter for CCM; 2.2.1 Circuit Description; 2.2.2 Assumptions; 2.2.3 Time Interval: 0 < t DT; 2.2.4 Time Interval: DT < t T; 2.2.5 Device Stresses for CCM; 2.2.6 DC Voltage Transfer Function for CCM; 2.2.7 Boundary Between CCM and DCM; 2.2.8 Capacitors; 2.2.9 Ripple Voltage in Buck Converter for CCM; 2.2.10 Switching Losses with Linear MOSFET Output Capacitance; 2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance 2.2.12 Power Losses and Efficiency of Buck Converter for CCM 2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM; 2.2.14 MOSFET Gate-Drive Power; 2.2.15 Gate Driver; 2.2.16 Design of Buck Converter for CCM; 2.3 DC Analysis of PWM Buck Converter for DCM; 2.3.1 Time Interval: 0 < t DT; 2.3.2 Time Interval: DT < t (D + D1)T; 2.3.3 Time Interval: (D + D1)T < t T; 2.3.4 Device Stresses for DCM; 2.3.5 DC Voltage Transfer Function for DCM; 2.3.6 Maximum Inductance for DCM; 2.3.7 Power Losses and Efficiency of Buck Converter for DCM; 2.3.8 Design of Buck Converter for DCM 2.4 Buck Converter with Input Filter 2.5 Buck Converter with Synchronous Rectifier; 2.6 Buck Converter with Positive Common Rail; 2.7 Quadratic Buck Converter; 2.8 Tapped-Inductor Buck Converters; 2.8.1 Tapped-Inductor Common-Diode Buck Converter; 2.8.2 Tapped-Inductor Common-Transistor Buck Converter; 2.8.3 Watkins-Johnson Converter; 2.9 Multiphase Buck Converter; 2.10 Switched-Inductor Buck Converter; 2.11 Layout; 2.12 Summary; References; Review Questions; Problems; 3 Boost PWM DC-DC Converter; 3.1 Introduction; 3.2 DC Analysis of PWM Boost Converter for CCM; 3.2.1 Circuit Description 3.2.2 Assumptions3.2.3 Time Interval: 0 < t DT; 3.2.4 Time Interval: DT < t T; 3.2.5 DC Voltage Transfer Function for CCM; 3.2.6 Boundary Between CCM and DCM; 3.2.7 Ripple Voltage in Boost Converter for CCM; 3.2.8 Power Losses and Efficiency of Boost Converter for CCM; 3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM; 3.2.10 Design of Boost Converter for CCM; 3.3 DC Analysis of PWM Boost Converter for DCM; 3.3.1 Time Interval: 0 < t DT; 3.3.2 Time Interval: DT < t (D + D1)T; 3.3.3 Time Interval: (D + D1)T < t T; 3.3.4 Device Stresses for DCM 3.3.5 DC Voltage Transfer Function for DCM |
| Record Nr. | UNINA-9910166636003321 |
Kazimierczuk Marian K.
|
||
| Chichester, West Sussex, [England] : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk
| Pulse-width modulated DC-DC power converters / / Marian K. Kazimierczuk |
| Autore | Kazimierczuk Marian K. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, West Sussex, [England] : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (963 p.) |
| Disciplina | 621.381/044 |
| Soggetto topico |
DC-to-DC converters
Pulse circuits PWM power converters |
| ISBN |
1-119-00959-6
1-119-00957-X 1-119-00956-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Pulse-Width Modulated DC--DC Power Converters; Contents; About the Author; Preface; Nomenclature; 1 Introduction; 1.1 Classification of Power Supplies; 1.2 Basic Functions of Voltage Regulators; 1.3 Power Relationships in DC-DC Converters; 1.4 DC Transfer Functions of DC-DC Converters; 1.5 Static Characteristics of DC Voltage Regulators; 1.6 Dynamic Characteristics of DC Voltage Regulators; 1.7 Linear Voltage Regulators; 1.7.1 Series Voltage Regulator; 1.7.2 Shunt Voltage Regulator; 1.8 Topologies of PWM DC-DC Converters; 1.9 Relationships Among Current, Voltage, Energy, and Power
1.10 Summary References; Review Questions; Problems; 2 Buck PWM DC-DC Converter; 2.1 Introduction; 2.2 DC Analysis of PWM Buck Converter for CCM; 2.2.1 Circuit Description; 2.2.2 Assumptions; 2.2.3 Time Interval: 0 < t DT; 2.2.4 Time Interval: DT < t T; 2.2.5 Device Stresses for CCM; 2.2.6 DC Voltage Transfer Function for CCM; 2.2.7 Boundary Between CCM and DCM; 2.2.8 Capacitors; 2.2.9 Ripple Voltage in Buck Converter for CCM; 2.2.10 Switching Losses with Linear MOSFET Output Capacitance; 2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance 2.2.12 Power Losses and Efficiency of Buck Converter for CCM 2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM; 2.2.14 MOSFET Gate-Drive Power; 2.2.15 Gate Driver; 2.2.16 Design of Buck Converter for CCM; 2.3 DC Analysis of PWM Buck Converter for DCM; 2.3.1 Time Interval: 0 < t DT; 2.3.2 Time Interval: DT < t (D + D1)T; 2.3.3 Time Interval: (D + D1)T < t T; 2.3.4 Device Stresses for DCM; 2.3.5 DC Voltage Transfer Function for DCM; 2.3.6 Maximum Inductance for DCM; 2.3.7 Power Losses and Efficiency of Buck Converter for DCM; 2.3.8 Design of Buck Converter for DCM 2.4 Buck Converter with Input Filter 2.5 Buck Converter with Synchronous Rectifier; 2.6 Buck Converter with Positive Common Rail; 2.7 Quadratic Buck Converter; 2.8 Tapped-Inductor Buck Converters; 2.8.1 Tapped-Inductor Common-Diode Buck Converter; 2.8.2 Tapped-Inductor Common-Transistor Buck Converter; 2.8.3 Watkins-Johnson Converter; 2.9 Multiphase Buck Converter; 2.10 Switched-Inductor Buck Converter; 2.11 Layout; 2.12 Summary; References; Review Questions; Problems; 3 Boost PWM DC-DC Converter; 3.1 Introduction; 3.2 DC Analysis of PWM Boost Converter for CCM; 3.2.1 Circuit Description 3.2.2 Assumptions3.2.3 Time Interval: 0 < t DT; 3.2.4 Time Interval: DT < t T; 3.2.5 DC Voltage Transfer Function for CCM; 3.2.6 Boundary Between CCM and DCM; 3.2.7 Ripple Voltage in Boost Converter for CCM; 3.2.8 Power Losses and Efficiency of Boost Converter for CCM; 3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM; 3.2.10 Design of Boost Converter for CCM; 3.3 DC Analysis of PWM Boost Converter for DCM; 3.3.1 Time Interval: 0 < t DT; 3.3.2 Time Interval: DT < t (D + D1)T; 3.3.3 Time Interval: (D + D1)T < t T; 3.3.4 Device Stresses for DCM 3.3.5 DC Voltage Transfer Function for DCM |
| Record Nr. | UNINA-9910827318403321 |
Kazimierczuk Marian K.
|
||
| Chichester, West Sussex, [England] : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pulsewidth modulated DC-to-DC power conversion : circuits, dynamics, control, and DC power distribution systems / / Byungcho Choi
| Pulsewidth modulated DC-to-DC power conversion : circuits, dynamics, control, and DC power distribution systems / / Byungcho Choi |
| Autore | Choi Byungcho |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
| Descrizione fisica | 1 online resource (723 pages) |
| Disciplina | 621.3132 |
| Soggetto topico |
DC-to-DC converters
Pulse-duration modulation PWM power converters |
| ISBN |
1-119-45447-6
1-119-45448-4 1-119-45444-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Chapter 1 PWM Dc‐to‐Dc Power Conversion -- 1.1 PWM Dc‐to‐Dc Power Conversion -- 1.1.1 Dc‐to‐Dc Power Conversion -- 1.1.2 PWM Technique -- 1.2 Standalone Dc‐to‐Dc Power Conversion System -- 1.2.1 Dc Source with Non‐ideal Characteristics -- 1.2.2 Dc‐to‐Dc Converter as Voltage Source -- 1.2.3 Load as Dynamic Current Sink -- 1.3 Features and Issues of PWM Dc‐to‐Dc Converter -- 1.3.1 Dc‐to‐Dc Power Converter Circuits -- 1.3.2 Dynamic Modeling and Analysis -- 1.3.3 Dynamic Performance and Control Design -- 1.4 Dc Power Distribution Systems -- 1.4.1 Structure of Dc Power Distribution Systems -- 1.4.2 Issues in Dc Power Distribution System Analysis and Design -- 1.5 Chapter Highlights -- 1.5.1 Part I: Dc‐to‐Dc Converter Circuits -- 1.5.2 Part II: Modeling and Dynamics of PWM Converters -- 1.5.3 Part III: Control Schemes and Converter Performance -- 1.5.4 Part IV: Dc Power Distribution Systems -- Part I Dc‐to‐Dc Power Converter Circuits -- Chapter 2 Buck Converter -- 2.1 Ideal Step‐Down Dc‐to‐Dc Power Conversion -- 2.2 Buck Converter: Step‐Down Dc‐to‐Dc Converter -- 2.2.1 Evolution to Buck Converter -- 2.2.2 Frequency‐Domain Analysis -- 2.3 Buck Converter in Start‐up Transient -- 2.3.1 Piecewise Linear Analysis -- 2.3.2 Start‐up Response -- 2.4 Buck Converter in Steady State -- 2.4.1 Circuit Analysis Techniques -- 2.4.1.1 Piecewise Linear Analysis -- 2.4.1.2 Small‐Ripple Approximation -- 2.4.1.3 Flux Linkage Balance Condition and Charge Balance Condition -- 2.4.2 Steady‐State Analysis -- 2.4.3 Evaluation of Output Voltage Ripple -- 2.4.3.1 Evaluation with Ideal Capacitor -- 2.4.3.2 Effects of Parasitic Resistance of Capacitor -- 2.5 Buck Converter in Discontinuous Conduction Mode -- 2.5.1 Origin of Discontinuous Conduction Mode Operation -- 2.5.2 Conditions for DCM Operation.
2.5.3 Steady‐State Operation in DCM -- 2.6 Closed‐Loop Control of Buck Converter -- 2.6.1 Closed‐Loop Feedback Controller -- 2.6.1.1 Pulsewidth Modulation -- 2.6.1.2 Voltage Feedback Circuit -- 2.6.2 Transient Responses of Closed‐Loop Controlled Buck Converter -- 2.6.2.1 Step Input Response -- 2.6.2.2 Step Load Response -- 2.6.2.3 Operational Mode Change Response -- 2.7 Chapter Summary -- Problems -- Chapter 3 Dc‐to‐Dc Power Converter Circuits -- 3.1 Boost Converter -- 3.1.1 Evolution to Boost Converter -- 3.1.2 Steady‐State Analysis in CCM -- 3.1.2.1 Steady‐State Operation in CCM -- 3.1.2.2 Estimation of Output Voltage Ripple -- 3.1.3 Steady‐State Analysis in DCM -- 3.1.4 Effects of Parasitic Resistance on Voltage Gain -- 3.2 Buck/Boost Converter -- 3.2.1 Evolution to Buck/Boost Converter -- 3.2.2 Steady‐State Analysis in CCM -- 3.2.2.1 Steady‐State Operation in CCM -- 3.2.2.2 Estimation of Output Voltage Ripple -- 3.2.3 Steady‐State Analysis in DCM -- 3.3 Three Basic Converters -- 3.3.1 Structure and Operation of Three Basic Converters -- 3.3.2 Voltage Gain of Three Basic Converters -- 3.4 Flyback Converter: Transformer‐Isolated Buck/Boost Converter -- 3.4.1 Evolution to Flyback Converter -- 3.4.2 Steady‐State Analysis in CCM -- 3.4.3 Steady‐State Analysis in DCM -- 3.5 Bridge‐Type Buck‐Derived Isolated Dc‐to‐Dc Converters -- 3.5.1 Switch Network and Multi‐Winding Transformer -- 3.5.1.1 Switch Network Structure -- 3.5.1.2 Circuit Models for Multi‐winding Transformers -- 3.5.2 Full‐Bridge Converter -- 3.5.2.1 Operation with Ideal Transformer -- 3.5.2.2 Effects of Magnetizing Inductance -- 3.5.3 Half‐Bridge Converter -- 3.5.4 Push-Pull Converter -- 3.6 Forward Converters -- 3.6.1 Basic Operational Principles -- 3.6.1.1 Reset Problem and Reset Circuit -- 3.6.1.2 Switch Network with Zener Diode Reset. 3.6.1.3 Switch Network with Tertiary Winding Reset -- 3.6.2 Tertiary‐Winding Reset Forward Converter -- 3.6.3 Two‐Switch Forward Converter -- 3.7 Chapter Summary -- Reference -- Problems -- Part II Modeling and Dynamics of PWM Converters -- Chapter 4 Modeling PWM Dc‐to‐Dc Converters -- 4.1 Overview of PWM Converter Modeling -- 4.1.1 Power Stage Modeling -- 4.1.2 PWM Block Modeling -- 4.1.3 Voltage Feedback Circuit and Small‐Signal Model of PWM Converter -- 4.2 Averaging Power Stage Dynamics -- 4.2.1 State‐Space Averaging Method -- 4.2.1.1 Switched State‐Space Model and Switching Function -- 4.2.1.2 Continuous Duty Ratio and Averaged State‐Space Model -- 4.2.2 Circuit Averaging Technique -- 4.2.2.1 Averaging Switch Drive Signal -- 4.2.2.2 Procedure of Circuit Averaging -- 4.2.2.3 PWM Switch -- 4.2.2.4 Averaging PWM Switch -- 4.2.2.5 Average Models for Three Basic PWM Converters -- 4.2.3 Circuit Averaging and State‐Space Averaging -- 4.3 Linearizing Averaged Power Stage Dynamics -- 4.3.1 Linearization of Nonlinear Function and Small‐Signal Model -- 4.3.1.1 Single‐Variable Nonlinear Functions -- 4.3.1.2 Multiple‐Variable Nonlinear Functions -- 4.3.2 Small‐Signal Model of PWM Switch - The PWM Switch Model -- 4.3.3 Small‐Signal Model of Converter Power Stage -- 4.4 Frequency Response of Converter Power Stage -- 4.4.1 Sinusoidal Response of Power Stage -- 4.4.2 Frequency Response and s‐domain Small‐Signal Model -- 4.5 Generalization of Power Stage Modeling -- 4.5.1 Power Stage Modeling with Parasitic Resistances -- 4.5.1.1 Buck Converter with Ideal Voltage Source -- 4.5.1.2 Buck Converter with Input Filter -- 4.5.1.3 Linearization of Averaged PWM Switch Equation -- 4.5.1.4 Predictions of Refined Small‐Signal Model -- 4.5.2 Modeling PWM Converters in DCM Operation -- 4.5.2.1 Averaged Equations for PWM Switch in DCM. 4.5.2.2 Linearization of Averaged Equation and Small‐Signal Circuit Model -- 4.5.3 Modeling Isolated PWM Converters -- 4.5.3.1 Modeling Forward Converter and Bridge‐Type Converters -- 4.5.3.2 Modeling Flyback Converter -- 4.6 Small‐Signal Gain of PWM Block -- 4.7 Universal Small‐Signal Model for PWM Dc‐to‐Dc Converters -- 4.7.1 Voltage Feedback Circuit -- 4.7.1.1 Output Voltage Control -- 4.7.1.2 Voltage Feedback Compensation -- 4.7.2 Universal Small‐Signal Model for PWM Converters -- 4.8 Chapter Summary -- References -- Problems -- Chapter 5 Power Stage Transfer Functions -- 5.1 Bode Plot for Transfer Functions -- 5.1.1 Basic Definitions -- 5.1.1.1 Transfer Function -- 5.1.1.2 Frequency Response -- 5.1.1.3 Polar Plot and Bode Plot Representations -- 5.1.2 Bode Plots for Multiplication Factors -- 5.1.2.1 Constant -- 5.1.2.2 Single and Double Integration Functions -- 5.1.2.3 Single and Double Differentiation Functions -- 5.1.2.4 Single Pole and Single Zero Functions -- 5.1.2.5 Double Pole and Double Zero Functions -- 5.1.2.6 RHP Pole and RHP Zero Functions -- 5.1.3 Bode Plot Construction for Transfer Functions -- 5.1.3.1 Examples of Bode Plot Construction -- 5.1.3.2 Non‐minimum Phase System -- 5.1.4 Identification of Transfer Function from Bode Plot -- 5.2 Power Stage Transfer Functions of Three Basic Converters in CCM Operation -- 5.2.1 Power Stage Transfer Functions of Buck Converter -- 5.2.1.1 Input‐to‐Output Transfer Function -- 5.2.1.2 Duty Ratio‐to‐Output Transfer Function -- 5.2.1.3 Load Current‐to‐Output Transfer Function -- 5.2.2 Power Stage Transfer Functions of Boost Converter -- 5.2.2.1 Input‐to‐Output Transfer Function -- 5.2.2.2 Duty Ratio‐to‐Output Transfer Function and RHP Zero -- 5.2.2.3 Load Current‐to‐Output Transfer Function -- 5.2.2.4 Functional Origin of RHP Zero -- 5.2.3 Power Stage Transfer Functions of Buck/Boost Converter. 5.3 Power Stage Transfer Functions in DCM Operation -- 5.3.1 Evaluation of DCM Transfer Functions -- 5.3.2 Analysis of DCM Duty Ratio‐to‐Output Transfer Function -- 5.4 Power Stage Transfer Functions of Isolated Converters -- 5.4.1 Tertiary‐Winding Reset Forward Converter -- 5.4.2 Flyback Converter -- 5.5 Empirical Methods for Small‐Signal Analysis -- 5.6 Chapter Summary -- Reference -- Problems -- Chapter 6 Dynamic Performance of PWM Dc‐to‐Dc Converters -- 6.1 Stability -- 6.2 Frequency‐Domain Performance Criteria -- 6.2.1 Loop Gain -- 6.2.2 Audio‐susceptibility -- 6.2.3 Output Impedance -- 6.3 Time‐Domain Performance Metrics -- 6.3.1 Step Load Response -- 6.3.2 Step Input Response -- 6.4 Stability of Dc‐to‐Dc Converters -- 6.4.1 Stability of Linear Time‐Invariant Systems -- 6.4.1.1 Definition of BIBO Stability -- 6.4.1.2 Unit Impulse Function and Impulse Response -- 6.4.1.3 Impulse Response and BIBO Stability -- 6.4.1.4 Pole Locations and BIBO Stability -- 6.4.2 Small‐Signal Stability of Dc‐to‐Dc Converters -- 6.5 Nyquist Criterion -- 6.5.1 Theoretical Foundation of Nyquist Criterion -- 6.5.1.1 Contour Mapping from s‐plane to F(s)‐plane -- 6.5.1.2 Cauchy's Theorem -- 6.5.2 Proof of Cauchy's Theorem -- 6.5.2.1 Proof of Fact I and Fact II -- 6.5.2.2 Cauchy's Theorem to Evaluate RHP Roots in 1+T(s)& -- equals -- 0 -- 6.5.3 Nyquist Stability Criterion -- 6.5.4 Application of Nyquist Stability Criterion to Dc‐to‐Dc Converters -- 6.6 Relative Stability: Gain Margin and Phase Margin -- 6.7 Chapter Summary -- Problems -- Part III Control Schemes and Converter Performance -- Chapter 7 Feedback Compensation and Closed‐Loop Performance - Voltage Mode Control -- 7.1 Asymptotic Analysis Method -- 7.1.1 Concept of Asymptotic Analysis Method -- 7.1.2 Examples of Asymptotic Analysis Method -- 7.1.2.1 Procedures for Asymptotic Analysis. 7.2 Analysis of Frequency‐Domain Performance in CCM. |
| Record Nr. | UNINA-9910555250703321 |
Choi Byungcho
|
||
| Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pulsewidth modulated DC-to-DC power conversion : circuits, dynamics, control, and DC power distribution systems / / Byungcho Choi
| Pulsewidth modulated DC-to-DC power conversion : circuits, dynamics, control, and DC power distribution systems / / Byungcho Choi |
| Autore | Choi Byungcho |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
| Descrizione fisica | 1 online resource (723 pages) |
| Disciplina | 621.3132 |
| Soggetto topico |
DC-to-DC converters
Pulse-duration modulation PWM power converters |
| ISBN |
1-119-45447-6
1-119-45448-4 1-119-45444-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Chapter 1 PWM Dc‐to‐Dc Power Conversion -- 1.1 PWM Dc‐to‐Dc Power Conversion -- 1.1.1 Dc‐to‐Dc Power Conversion -- 1.1.2 PWM Technique -- 1.2 Standalone Dc‐to‐Dc Power Conversion System -- 1.2.1 Dc Source with Non‐ideal Characteristics -- 1.2.2 Dc‐to‐Dc Converter as Voltage Source -- 1.2.3 Load as Dynamic Current Sink -- 1.3 Features and Issues of PWM Dc‐to‐Dc Converter -- 1.3.1 Dc‐to‐Dc Power Converter Circuits -- 1.3.2 Dynamic Modeling and Analysis -- 1.3.3 Dynamic Performance and Control Design -- 1.4 Dc Power Distribution Systems -- 1.4.1 Structure of Dc Power Distribution Systems -- 1.4.2 Issues in Dc Power Distribution System Analysis and Design -- 1.5 Chapter Highlights -- 1.5.1 Part I: Dc‐to‐Dc Converter Circuits -- 1.5.2 Part II: Modeling and Dynamics of PWM Converters -- 1.5.3 Part III: Control Schemes and Converter Performance -- 1.5.4 Part IV: Dc Power Distribution Systems -- Part I Dc‐to‐Dc Power Converter Circuits -- Chapter 2 Buck Converter -- 2.1 Ideal Step‐Down Dc‐to‐Dc Power Conversion -- 2.2 Buck Converter: Step‐Down Dc‐to‐Dc Converter -- 2.2.1 Evolution to Buck Converter -- 2.2.2 Frequency‐Domain Analysis -- 2.3 Buck Converter in Start‐up Transient -- 2.3.1 Piecewise Linear Analysis -- 2.3.2 Start‐up Response -- 2.4 Buck Converter in Steady State -- 2.4.1 Circuit Analysis Techniques -- 2.4.1.1 Piecewise Linear Analysis -- 2.4.1.2 Small‐Ripple Approximation -- 2.4.1.3 Flux Linkage Balance Condition and Charge Balance Condition -- 2.4.2 Steady‐State Analysis -- 2.4.3 Evaluation of Output Voltage Ripple -- 2.4.3.1 Evaluation with Ideal Capacitor -- 2.4.3.2 Effects of Parasitic Resistance of Capacitor -- 2.5 Buck Converter in Discontinuous Conduction Mode -- 2.5.1 Origin of Discontinuous Conduction Mode Operation -- 2.5.2 Conditions for DCM Operation.
2.5.3 Steady‐State Operation in DCM -- 2.6 Closed‐Loop Control of Buck Converter -- 2.6.1 Closed‐Loop Feedback Controller -- 2.6.1.1 Pulsewidth Modulation -- 2.6.1.2 Voltage Feedback Circuit -- 2.6.2 Transient Responses of Closed‐Loop Controlled Buck Converter -- 2.6.2.1 Step Input Response -- 2.6.2.2 Step Load Response -- 2.6.2.3 Operational Mode Change Response -- 2.7 Chapter Summary -- Problems -- Chapter 3 Dc‐to‐Dc Power Converter Circuits -- 3.1 Boost Converter -- 3.1.1 Evolution to Boost Converter -- 3.1.2 Steady‐State Analysis in CCM -- 3.1.2.1 Steady‐State Operation in CCM -- 3.1.2.2 Estimation of Output Voltage Ripple -- 3.1.3 Steady‐State Analysis in DCM -- 3.1.4 Effects of Parasitic Resistance on Voltage Gain -- 3.2 Buck/Boost Converter -- 3.2.1 Evolution to Buck/Boost Converter -- 3.2.2 Steady‐State Analysis in CCM -- 3.2.2.1 Steady‐State Operation in CCM -- 3.2.2.2 Estimation of Output Voltage Ripple -- 3.2.3 Steady‐State Analysis in DCM -- 3.3 Three Basic Converters -- 3.3.1 Structure and Operation of Three Basic Converters -- 3.3.2 Voltage Gain of Three Basic Converters -- 3.4 Flyback Converter: Transformer‐Isolated Buck/Boost Converter -- 3.4.1 Evolution to Flyback Converter -- 3.4.2 Steady‐State Analysis in CCM -- 3.4.3 Steady‐State Analysis in DCM -- 3.5 Bridge‐Type Buck‐Derived Isolated Dc‐to‐Dc Converters -- 3.5.1 Switch Network and Multi‐Winding Transformer -- 3.5.1.1 Switch Network Structure -- 3.5.1.2 Circuit Models for Multi‐winding Transformers -- 3.5.2 Full‐Bridge Converter -- 3.5.2.1 Operation with Ideal Transformer -- 3.5.2.2 Effects of Magnetizing Inductance -- 3.5.3 Half‐Bridge Converter -- 3.5.4 Push-Pull Converter -- 3.6 Forward Converters -- 3.6.1 Basic Operational Principles -- 3.6.1.1 Reset Problem and Reset Circuit -- 3.6.1.2 Switch Network with Zener Diode Reset. 3.6.1.3 Switch Network with Tertiary Winding Reset -- 3.6.2 Tertiary‐Winding Reset Forward Converter -- 3.6.3 Two‐Switch Forward Converter -- 3.7 Chapter Summary -- Reference -- Problems -- Part II Modeling and Dynamics of PWM Converters -- Chapter 4 Modeling PWM Dc‐to‐Dc Converters -- 4.1 Overview of PWM Converter Modeling -- 4.1.1 Power Stage Modeling -- 4.1.2 PWM Block Modeling -- 4.1.3 Voltage Feedback Circuit and Small‐Signal Model of PWM Converter -- 4.2 Averaging Power Stage Dynamics -- 4.2.1 State‐Space Averaging Method -- 4.2.1.1 Switched State‐Space Model and Switching Function -- 4.2.1.2 Continuous Duty Ratio and Averaged State‐Space Model -- 4.2.2 Circuit Averaging Technique -- 4.2.2.1 Averaging Switch Drive Signal -- 4.2.2.2 Procedure of Circuit Averaging -- 4.2.2.3 PWM Switch -- 4.2.2.4 Averaging PWM Switch -- 4.2.2.5 Average Models for Three Basic PWM Converters -- 4.2.3 Circuit Averaging and State‐Space Averaging -- 4.3 Linearizing Averaged Power Stage Dynamics -- 4.3.1 Linearization of Nonlinear Function and Small‐Signal Model -- 4.3.1.1 Single‐Variable Nonlinear Functions -- 4.3.1.2 Multiple‐Variable Nonlinear Functions -- 4.3.2 Small‐Signal Model of PWM Switch - The PWM Switch Model -- 4.3.3 Small‐Signal Model of Converter Power Stage -- 4.4 Frequency Response of Converter Power Stage -- 4.4.1 Sinusoidal Response of Power Stage -- 4.4.2 Frequency Response and s‐domain Small‐Signal Model -- 4.5 Generalization of Power Stage Modeling -- 4.5.1 Power Stage Modeling with Parasitic Resistances -- 4.5.1.1 Buck Converter with Ideal Voltage Source -- 4.5.1.2 Buck Converter with Input Filter -- 4.5.1.3 Linearization of Averaged PWM Switch Equation -- 4.5.1.4 Predictions of Refined Small‐Signal Model -- 4.5.2 Modeling PWM Converters in DCM Operation -- 4.5.2.1 Averaged Equations for PWM Switch in DCM. 4.5.2.2 Linearization of Averaged Equation and Small‐Signal Circuit Model -- 4.5.3 Modeling Isolated PWM Converters -- 4.5.3.1 Modeling Forward Converter and Bridge‐Type Converters -- 4.5.3.2 Modeling Flyback Converter -- 4.6 Small‐Signal Gain of PWM Block -- 4.7 Universal Small‐Signal Model for PWM Dc‐to‐Dc Converters -- 4.7.1 Voltage Feedback Circuit -- 4.7.1.1 Output Voltage Control -- 4.7.1.2 Voltage Feedback Compensation -- 4.7.2 Universal Small‐Signal Model for PWM Converters -- 4.8 Chapter Summary -- References -- Problems -- Chapter 5 Power Stage Transfer Functions -- 5.1 Bode Plot for Transfer Functions -- 5.1.1 Basic Definitions -- 5.1.1.1 Transfer Function -- 5.1.1.2 Frequency Response -- 5.1.1.3 Polar Plot and Bode Plot Representations -- 5.1.2 Bode Plots for Multiplication Factors -- 5.1.2.1 Constant -- 5.1.2.2 Single and Double Integration Functions -- 5.1.2.3 Single and Double Differentiation Functions -- 5.1.2.4 Single Pole and Single Zero Functions -- 5.1.2.5 Double Pole and Double Zero Functions -- 5.1.2.6 RHP Pole and RHP Zero Functions -- 5.1.3 Bode Plot Construction for Transfer Functions -- 5.1.3.1 Examples of Bode Plot Construction -- 5.1.3.2 Non‐minimum Phase System -- 5.1.4 Identification of Transfer Function from Bode Plot -- 5.2 Power Stage Transfer Functions of Three Basic Converters in CCM Operation -- 5.2.1 Power Stage Transfer Functions of Buck Converter -- 5.2.1.1 Input‐to‐Output Transfer Function -- 5.2.1.2 Duty Ratio‐to‐Output Transfer Function -- 5.2.1.3 Load Current‐to‐Output Transfer Function -- 5.2.2 Power Stage Transfer Functions of Boost Converter -- 5.2.2.1 Input‐to‐Output Transfer Function -- 5.2.2.2 Duty Ratio‐to‐Output Transfer Function and RHP Zero -- 5.2.2.3 Load Current‐to‐Output Transfer Function -- 5.2.2.4 Functional Origin of RHP Zero -- 5.2.3 Power Stage Transfer Functions of Buck/Boost Converter. 5.3 Power Stage Transfer Functions in DCM Operation -- 5.3.1 Evaluation of DCM Transfer Functions -- 5.3.2 Analysis of DCM Duty Ratio‐to‐Output Transfer Function -- 5.4 Power Stage Transfer Functions of Isolated Converters -- 5.4.1 Tertiary‐Winding Reset Forward Converter -- 5.4.2 Flyback Converter -- 5.5 Empirical Methods for Small‐Signal Analysis -- 5.6 Chapter Summary -- Reference -- Problems -- Chapter 6 Dynamic Performance of PWM Dc‐to‐Dc Converters -- 6.1 Stability -- 6.2 Frequency‐Domain Performance Criteria -- 6.2.1 Loop Gain -- 6.2.2 Audio‐susceptibility -- 6.2.3 Output Impedance -- 6.3 Time‐Domain Performance Metrics -- 6.3.1 Step Load Response -- 6.3.2 Step Input Response -- 6.4 Stability of Dc‐to‐Dc Converters -- 6.4.1 Stability of Linear Time‐Invariant Systems -- 6.4.1.1 Definition of BIBO Stability -- 6.4.1.2 Unit Impulse Function and Impulse Response -- 6.4.1.3 Impulse Response and BIBO Stability -- 6.4.1.4 Pole Locations and BIBO Stability -- 6.4.2 Small‐Signal Stability of Dc‐to‐Dc Converters -- 6.5 Nyquist Criterion -- 6.5.1 Theoretical Foundation of Nyquist Criterion -- 6.5.1.1 Contour Mapping from s‐plane to F(s)‐plane -- 6.5.1.2 Cauchy's Theorem -- 6.5.2 Proof of Cauchy's Theorem -- 6.5.2.1 Proof of Fact I and Fact II -- 6.5.2.2 Cauchy's Theorem to Evaluate RHP Roots in 1+T(s)& -- equals -- 0 -- 6.5.3 Nyquist Stability Criterion -- 6.5.4 Application of Nyquist Stability Criterion to Dc‐to‐Dc Converters -- 6.6 Relative Stability: Gain Margin and Phase Margin -- 6.7 Chapter Summary -- Problems -- Part III Control Schemes and Converter Performance -- Chapter 7 Feedback Compensation and Closed‐Loop Performance - Voltage Mode Control -- 7.1 Asymptotic Analysis Method -- 7.1.1 Concept of Asymptotic Analysis Method -- 7.1.2 Examples of Asymptotic Analysis Method -- 7.1.2.1 Procedures for Asymptotic Analysis. 7.2 Analysis of Frequency‐Domain Performance in CCM. |
| Record Nr. | UNINA-9910830521303321 |
Choi Byungcho
|
||
| Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Soft-switching PWM full-bridge converters : topologies, control, and design / / Xinbo Ruan
| Soft-switching PWM full-bridge converters : topologies, control, and design / / Xinbo Ruan |
| Autore | Ruan Xinbo |
| Pubbl/distr/stampa | Singapore : , : Wiley : , : Science Press, , 2014 |
| Descrizione fisica | 1 online resource (234 p.) |
| Disciplina | 621.3815/37 |
| Soggetto topico |
PWM power converters
Switching power supplies |
| ISBN |
1-118-70223-9
1-118-70221-2 1-118-70222-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright; Contents; About the Author; Preface; Acknowledgment; List of Abbreviations; Chapter 1 Topologies and Operating Principles of Basic Full-Bridge Converters; 1.1 Introduction; 1.1.1 Development Trends of Power Electronics Technology; 1.1.2 Classification and Requirements of Power Electronics Converters; 1.1.3 Classification and Characterization of dc-dc Converters; 1.2 Isolated Buck-Derived Converters; 1.2.1 Forward Converter; 1.2.2 Push-Pull Converter; 1.2.3 Half-Bridge Converter; 1.2.4 Full-Bridge Converter; 1.2.5 Comparison of Isolated Buck-Derived Converters
1.3 Output Rectifier Circuits1.3.1 Half-Wave Rectifier Circuit; 1.3.2 Full-Wave Rectifier Circuit; 1.3.3 Full-Bridge Rectifier Circuit; 1.3.4 Current-Doubler Rectifier Circuit; 1.4 Basic Operating Principle of Full-Bridge Converters; 1.4.1 Topologies of Full-Bridge Converters; 1.4.2 Pulse-Width Modulation Strategies for Full-Bridge Converters; 1.4.3 Basic Operating Principle of a Full-Bridge Converter with a Full-Wave Rectifier Circuit and a Full-Bridge Rectifier Circuit; 1.4.4 Basic Operating Principle of a Full-Bridge Converter with a Current-Doubler Rectifier Circuit; 1.5 Summary ReferencesChapter 2 Theoretical Basis of Soft Switching for PWM Full-Bridge Converters; 2.1 PWM Strategies for Full-Bridge Converters; 2.1.1 Basic PWM Strategy; 2.1.2 Definition of On-Time of Power Switches; 2.1.3 A Family of PWM Strategies; 2.2 Two Types of PWM Strategy; 2.2.1 The Two Diagonal Power Switches Turn Off Simultaneously; 2.2.2 The Two Diagonal Power Switches Turn Off in a Staggered Manner; 2.3 Classification of Soft-Switching PWM Full-Bridge Converters; 2.4 Summary; Reference; Chapter 3 Zero-Voltage-Switching PWM Full-Bridge Converters 3.1 Topologies and Modulation Strategies of ZVS PWM Full-Bridge Converters3.1.1 Modulation of the Lagging Leg; 3.1.2 Modulation of the Leading Leg; 3.1.3 Modulation Strategies of the ZVS PWM Full-Bridge Converters; 3.2 Operating Principle of ZVS PWM Full-Bridge Converter; 3.3 ZVS Achievement of Leading and Lagging Legs; 3.3.1 Condition for Achieving ZVS; 3.3.2 Condition for Achieving ZVS for the Leading Leg; 3.3.3 Condition for Achieving ZVS for the Lagging Leg; 3.4 Secondary Duty Cycle Loss; 3.5 Commutation of the Rectifier Diodes; 3.5.1 Full-Bridge Rectifier; 3.5.2 Full-Wave Rectifier 3.6 Simplified Design Procedure and Example3.6.1 Turn Ratio of Transformer; 3.6.2 Resonant Inductor; 3.6.3 Output Filter Inductor and Capacitor; 3.6.4 Power Devices; 3.6.5 Load Range of ZVS; 3.7 Experimental Verification; 3.8 Summary; References; Chapter 4 Zero-Voltage-Switching PWM Full-Bridge Converters with Auxiliary-Current-Source Networks; 4.1 Current-Enhancement Principle; 4.2 Auxiliary-Current-Source Network; 4.3 Operating Principle of a ZVS PWM Full-Bridge Converter with Auxiliary-Current-Source Network; 4.4 Conditions for Achieving ZVS in the Lagging Leg; 4.5 Parameter Design 4.5.1 Parameter Selection for the Auxiliary-Current-Source Network |
| Record Nr. | UNINA-9910139148703321 |
Ruan Xinbo
|
||
| Singapore : , : Wiley : , : Science Press, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||