Amplifiers and oscillators : optimization by simulation / / François de Dieuleveult |
Autore | Dieuleveult François de |
Pubbl/distr/stampa | London, UK : , : ISTE Press |
Descrizione fisica | 1 online resource (420 pages) |
Disciplina | 621.381535 |
Soggetto topico |
Transistor amplifiers
Oscillators, Transistor |
ISBN | 0-08-102341-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583364603321 |
Dieuleveult François de | ||
London, UK : , : ISTE Press | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
RF and microwave transistor oscillator design [[electronic resource] /] / Andrei Grebennikov |
Autore | Grebennikov Andrei <1956-> |
Pubbl/distr/stampa | Chichester ; ; Hoboken, N.J., : John Wiley, c2007 |
Descrizione fisica | 1 online resource (457 p.) |
Disciplina |
621.38133
621.38412 |
Soggetto topico |
Microwave transistors
Radio frequency oscillators Oscillators, Transistor |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-85601-7
9786610856015 0-470-51209-1 1-60119-522-2 0-470-51208-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION
2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load 3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator 3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15] 4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator 5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL |
Record Nr. | UNINA-9910143583803321 |
Grebennikov Andrei <1956-> | ||
Chichester ; ; Hoboken, N.J., : John Wiley, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
RF and microwave transistor oscillator design [[electronic resource] /] / Andrei Grebennikov |
Autore | Grebennikov Andrei <1956-> |
Pubbl/distr/stampa | Chichester ; ; Hoboken, N.J., : John Wiley, c2007 |
Descrizione fisica | 1 online resource (457 p.) |
Disciplina |
621.38133
621.38412 |
Soggetto topico |
Microwave transistors
Radio frequency oscillators Oscillators, Transistor |
ISBN |
1-280-85601-7
9786610856015 0-470-51209-1 1-60119-522-2 0-470-51208-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION
2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load 3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator 3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15] 4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator 5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL |
Record Nr. | UNINA-9910830356403321 |
Grebennikov Andrei <1956-> | ||
Chichester ; ; Hoboken, N.J., : John Wiley, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
RF and microwave transistor oscillator design / / Andrei Grebennikov |
Autore | Grebennikov Andrei <1956-> |
Pubbl/distr/stampa | Chichester ; ; Hoboken, N.J., : John Wiley, c2007 |
Descrizione fisica | 1 online resource (457 p.) |
Disciplina | 621.38133 |
Soggetto topico |
Microwave transistors
Radio frequency oscillators Oscillators, Transistor |
ISBN |
1-280-85601-7
9786610856015 0-470-51209-1 1-60119-522-2 0-470-51208-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION
2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load 3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator 3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15] 4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator 5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL |
Record Nr. | UNINA-9910877083203321 |
Grebennikov Andrei <1956-> | ||
Chichester ; ; Hoboken, N.J., : John Wiley, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|