Advances in organic light-emitting devices / / Youngkyoo Kim and Chang-Sik Ha
| Advances in organic light-emitting devices / / Youngkyoo Kim and Chang-Sik Ha |
| Autore | Kim Youngkyoo |
| Pubbl/distr/stampa | [Stafa-Zuerich] : , : Trans Tech Publications, , [2008] |
| Descrizione fisica | 1 online resource (153 p.) |
| Disciplina | 620.11295 |
| Collana | Materials science foundations |
| Soggetto topico |
Organic scintillators
Electroluminescent devices |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-03813-244-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Advances in Organic Light-Emitting Device; Preface; Table of Contents; List of Abbreviations; Table of Contents; 1. History of the OLED; 2. Introduction to OLEDs; 2.1 Classification of OLEDs. 2.2 OLED Using Small Organic Molecules; 2.3 PLED Using Emissive Polymers; 2.4 Hybrid OLED; 2.5 Kinds of Devices According to Function and Structure; 3. The Physics behind OLEDs; 3.1 Basic Mechanism; 3.2 Charge Carrier Injection and Transport; 3.3 Delayed EL Owing to Low Charge Carrier Mobility; 3.4 Generation of Singlet and Triplet Excitons in OLEDs; 3.5 Efficiency of OLEDs
3.6 Exciton Energy Transfer from Donor (Host) to Acceptor (Guest)4. Organic Materials (Small Molecules ) for OLEDs; 4.1 Hole-Injecting Materials; 4.2 Hole-Transporting Materials; 4.3 Light-Emitting Materials (Organic Light-Emitters); 4.4 Hole-Blocking Materials. 4.5 Electron-Transporting Materials; 4.6 Electron-Injecting Materials. 4.7 Electrodes; 5. Polymeric Materials for PLEDs; 5.1 Polymers for Buffer Layer; 5.2 Light-Emitting Polymers; 5.3 Hole-Blocking/Electron-Transporting/Electron-Injecting Polymers. 5.4 Electrode Materials; 6. Materials for Hybrid OLEDs 6.1 Materials for All-Organic HOLEDs6.2 Materials for Organic-Inorganic HOLEDs; 7. Reliability and Lifetime; 7.1 Moisture Effect; 7.2 Oxygen Effect; 7.3 Impurity Effect; 7.4 Progressive Electrical Short; 7.5 Solvent and Polymer Side-Chain Effects in PLEDs; 7.6 Intrinsic Material Stability and Luminance Decay Mechanism; 8. OLED Displays; 8.1 Passive Matrix-Organic Light-emitting Display (PM-OLED); 8.2 Active-Matrix - Organic Light-Emitting Display (AM-OLED); 8.3 Full-Color OLED Displays; 9. Ongoing Challenges; 9.1 Flexible OLED; 9.2 Organic Light-Emitting Transistors 9.3 OLED for Lighting Applications10. OLED Market Trends and Outlook; 10.1 OLED Market Trends; 10.2 Outlook |
| Record Nr. | UNINA-9910465410403321 |
Kim Youngkyoo
|
||
| [Stafa-Zuerich] : , : Trans Tech Publications, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in organic light-emitting devices / / Youngkyoo Kim and Chang-Sik Ha
| Advances in organic light-emitting devices / / Youngkyoo Kim and Chang-Sik Ha |
| Autore | Kim Youngkyoo |
| Pubbl/distr/stampa | [Stafa-Zuerich] : , : Trans Tech Publications, , [2008] |
| Descrizione fisica | 1 online resource (153 p.) |
| Disciplina | 620.11295 |
| Collana | Materials science foundations |
| Soggetto topico |
Organic scintillators
Electroluminescent devices |
| ISBN | 3-03813-244-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Advances in Organic Light-Emitting Device; Preface; Table of Contents; List of Abbreviations; Table of Contents; 1. History of the OLED; 2. Introduction to OLEDs; 2.1 Classification of OLEDs. 2.2 OLED Using Small Organic Molecules; 2.3 PLED Using Emissive Polymers; 2.4 Hybrid OLED; 2.5 Kinds of Devices According to Function and Structure; 3. The Physics behind OLEDs; 3.1 Basic Mechanism; 3.2 Charge Carrier Injection and Transport; 3.3 Delayed EL Owing to Low Charge Carrier Mobility; 3.4 Generation of Singlet and Triplet Excitons in OLEDs; 3.5 Efficiency of OLEDs
3.6 Exciton Energy Transfer from Donor (Host) to Acceptor (Guest)4. Organic Materials (Small Molecules ) for OLEDs; 4.1 Hole-Injecting Materials; 4.2 Hole-Transporting Materials; 4.3 Light-Emitting Materials (Organic Light-Emitters); 4.4 Hole-Blocking Materials. 4.5 Electron-Transporting Materials; 4.6 Electron-Injecting Materials. 4.7 Electrodes; 5. Polymeric Materials for PLEDs; 5.1 Polymers for Buffer Layer; 5.2 Light-Emitting Polymers; 5.3 Hole-Blocking/Electron-Transporting/Electron-Injecting Polymers. 5.4 Electrode Materials; 6. Materials for Hybrid OLEDs 6.1 Materials for All-Organic HOLEDs6.2 Materials for Organic-Inorganic HOLEDs; 7. Reliability and Lifetime; 7.1 Moisture Effect; 7.2 Oxygen Effect; 7.3 Impurity Effect; 7.4 Progressive Electrical Short; 7.5 Solvent and Polymer Side-Chain Effects in PLEDs; 7.6 Intrinsic Material Stability and Luminance Decay Mechanism; 8. OLED Displays; 8.1 Passive Matrix-Organic Light-emitting Display (PM-OLED); 8.2 Active-Matrix - Organic Light-Emitting Display (AM-OLED); 8.3 Full-Color OLED Displays; 9. Ongoing Challenges; 9.1 Flexible OLED; 9.2 Organic Light-Emitting Transistors 9.3 OLED for Lighting Applications10. OLED Market Trends and Outlook; 10.1 OLED Market Trends; 10.2 Outlook |
| Record Nr. | UNINA-9910786506103321 |
Kim Youngkyoo
|
||
| [Stafa-Zuerich] : , : Trans Tech Publications, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in organic light-emitting devices / / Youngkyoo Kim and Chang-Sik Ha
| Advances in organic light-emitting devices / / Youngkyoo Kim and Chang-Sik Ha |
| Autore | Kim Youngkyoo |
| Pubbl/distr/stampa | [Stafa-Zuerich] : , : Trans Tech Publications, , [2008] |
| Descrizione fisica | 1 online resource (153 p.) |
| Disciplina | 620.11295 |
| Collana | Materials science foundations |
| Soggetto topico |
Organic scintillators
Electroluminescent devices |
| ISBN | 3-03813-244-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Advances in Organic Light-Emitting Device; Preface; Table of Contents; List of Abbreviations; Table of Contents; 1. History of the OLED; 2. Introduction to OLEDs; 2.1 Classification of OLEDs. 2.2 OLED Using Small Organic Molecules; 2.3 PLED Using Emissive Polymers; 2.4 Hybrid OLED; 2.5 Kinds of Devices According to Function and Structure; 3. The Physics behind OLEDs; 3.1 Basic Mechanism; 3.2 Charge Carrier Injection and Transport; 3.3 Delayed EL Owing to Low Charge Carrier Mobility; 3.4 Generation of Singlet and Triplet Excitons in OLEDs; 3.5 Efficiency of OLEDs
3.6 Exciton Energy Transfer from Donor (Host) to Acceptor (Guest)4. Organic Materials (Small Molecules ) for OLEDs; 4.1 Hole-Injecting Materials; 4.2 Hole-Transporting Materials; 4.3 Light-Emitting Materials (Organic Light-Emitters); 4.4 Hole-Blocking Materials. 4.5 Electron-Transporting Materials; 4.6 Electron-Injecting Materials. 4.7 Electrodes; 5. Polymeric Materials for PLEDs; 5.1 Polymers for Buffer Layer; 5.2 Light-Emitting Polymers; 5.3 Hole-Blocking/Electron-Transporting/Electron-Injecting Polymers. 5.4 Electrode Materials; 6. Materials for Hybrid OLEDs 6.1 Materials for All-Organic HOLEDs6.2 Materials for Organic-Inorganic HOLEDs; 7. Reliability and Lifetime; 7.1 Moisture Effect; 7.2 Oxygen Effect; 7.3 Impurity Effect; 7.4 Progressive Electrical Short; 7.5 Solvent and Polymer Side-Chain Effects in PLEDs; 7.6 Intrinsic Material Stability and Luminance Decay Mechanism; 8. OLED Displays; 8.1 Passive Matrix-Organic Light-emitting Display (PM-OLED); 8.2 Active-Matrix - Organic Light-Emitting Display (AM-OLED); 8.3 Full-Color OLED Displays; 9. Ongoing Challenges; 9.1 Flexible OLED; 9.2 Organic Light-Emitting Transistors 9.3 OLED for Lighting Applications10. OLED Market Trends and Outlook; 10.1 OLED Market Trends; 10.2 Outlook |
| Record Nr. | UNINA-9910808642403321 |
Kim Youngkyoo
|
||
| [Stafa-Zuerich] : , : Trans Tech Publications, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Plastic scintillators : chemistry and applications / / Matthieu Hamel, editor
| Plastic scintillators : chemistry and applications / / Matthieu Hamel, editor |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (647 pages) |
| Disciplina | 539.775 |
| Collana | Topics in applied physics |
| Soggetto topico | Organic scintillators |
| ISBN | 3-030-73488-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- References -- Preface -- Contents -- Contributors -- Part I Materials -- 1 Introduction-Overview on Plastic and Inorganic Scintillators -- 1.1 History of Scintillators -- 1.2 Plastic Scintillator Chemists -- 1.3 The Scintillation Process in Plastics and Inorganic Materials/Crystals -- 1.4 Typical Preparation Process and Size Possibilities -- 1.5 Main Parameters and Tools for Modification or Improvement -- 1.5.1 Light Yield -- 1.5.2 Decay Time -- 1.5.3 Emission Wavelength -- 1.5.4 Behavior Against External Environment -- 1.5.5 Effective Atomic Number and Density -- 1.6 Summary -- References -- 2 Neutron/Gamma Pulse Shape Discrimination in Plastics Scintillators: From Development to Commercialization -- 2.1 Physical Basis for Neutron/Gamma Discrimination in Organic Scintillators -- 2.2 Plastic Scintillators with Efficient Fast Neutron/Gamma Discrimination -- 2.2.1 PPO-Based PSD Plastics -- 2.2.2 PSD Plastics Utilizing Alternative Dyes and Dye Mixtures -- 2.3 PSD Plastics for Combined Detection of Fast and Thermal Neutrons -- 2.3.1 10B-loaded PSD Plastic Scintillators -- 2.3.2 6Li-loaded PSD Plastic Scintillators -- 2.4 Commercialization and Further Directions of Studies -- References -- 3 The Detection of Slow Neutrons -- 3.1 Slow Neutrons: Essential Features -- 3.1.1 The Definition of Slow Neutrons -- 3.1.2 The Origins of Slow Neutrons -- 3.2 Nuclear Reactions of Interest in Slow Neutron Detection -- 3.2.1 Natural Abundance, Reaction Cross Section, Q-Value, and Typology of Reaction Products -- 3.2.2 Main Nuclear Reactions of Interest -- 3.2.3 Size of the Scintillator: Slow Neutron Mean Free Path and the Interaction of Reaction Products -- 3.3 Detection of Reaction Products and n/γ Discrimination -- 3.3.1 Background Radiation -- 3.3.2 Pulse Height Discrimination -- 3.3.3 Pulse Shape Discrimination -- 3.3.4 Compensated Detectors.
3.3.5 Multiplicity-Gated Detection -- 3.3.6 Capture-Gated Detection -- 3.4 Figures of Merit for Slow Neutron Detectors -- 3.4.1 Figures of Merit About the Response to Neutrons -- 3.4.2 Figures of Merit About the Response to Gamma Rays -- 3.4.3 Figures of Merit About the Response to Neutron Against the Response to Gamma Rays -- 3.5 Incorporation of Neutron Converters into Plastic Scintillator-Based Detectors -- 3.5.1 Homogeneous Incorporation -- 3.5.2 Heterogeneous Incorporation -- 3.6 Applications of Plastic Scintillators to the Detection of Slow Neutrons -- 3.6.1 Homeland Security -- 3.6.2 Neutron Flux Monitoring and Source Characterization -- 3.6.3 Reactor Antineutrino Experiments, Surveillance, and Monitoring -- References -- 4 Chemical Approach on Organometallic Loading in Plastic Scintillators and Its Applications -- 4.1 Introduction/Context -- 4.1.1 Plastic Scintillation -- 4.1.2 Frame of This Chapter -- 4.1.3 Properties Optimization -- 4.1.4 Chemical Design and Material Science, What the Loading Implies -- 4.1.5 Organization of This Chapter: Application Driven -- 4.2 Scintillation Process Enhancement -- 4.2.1 Triplet Harvesting -- 4.2.2 Iridium Complexes -- 4.2.3 Europium Complexes -- 4.3 Photon Detection -- 4.3.1 Theory -- 4.3.2 X-ray Detection -- 4.3.3 Gamma Detection -- 4.4 Neutron Detection -- 4.4.1 Thermal Neutron -- 4.4.2 Lithium Loading -- 4.4.3 Boron Loading -- 4.4.4 Cadmium and Gadolinium Loading -- 4.5 Conclusion -- 4.6 Table by Elements -- References -- 5 Polysiloxane-Based Scintillators -- 5.1 Foreword -- 5.1.1 Silicon-Based Polymer Properties: Chemistry -- 5.1.2 The Synthesis of Silicones -- 5.2 Optical Properties of Phenyl-Containing Polysiloxanes -- 5.3 Design of Polysiloxane-Based Scintillators -- 5.3.1 Energy Transfer in Organic Polymers -- 5.3.2 Polymeric Scintillators -- 5.3.3 Polysiloxane-Based Scintillators. 5.4 Polysiloxane Scintillators for Neutron Detection -- 5.4.1 Neutron Detection in Organic Scintillators -- 5.4.2 B and Li Loaded Polysiloxanes for Detection of Thermal Neutrons -- 5.4.3 Design of Polysiloxane Scintillators for n/γ Discrimination -- 5.5 Summary -- References -- 6 Composite Scintillators -- 6.1 Introduction to Organic-Inorganic Composites -- 6.1.1 Overview on Fabrication Methods of Nanocomposites -- 6.1.2 Optical Properties Related to the Nanocomposite Structure -- 6.2 Plastic Scintillators Incorporating Non-emitting Inorganic Nanoparticles -- 6.2.1 Sol-gel-Derived Organic-Inorganic Composite Scintillators -- 6.2.2 Nanocomposite Scintillators Fabricated via Two-Step Synthesis -- 6.3 Nanocomposite Scintillators Comprising Luminescent Nanoparticles -- 6.3.1 Nanocomposite Scintillators Comprising Inorganic Phosphor Nanoparticles -- 6.3.2 Nanocomposite Scintillators Comprising Semiconductor Nanocrystals -- 6.4 Summary and Future Prospects -- References -- 7 Molecular Design Considerations for Different Classes of Organic Scintillators -- 7.1 Design Considerations for Crystalline, Plastic, and Liquid Scintillators -- 7.1.1 Background on Scintillation Mechanisms -- 7.1.2 Process (1): Direct Excitation into π-Electronic States -- 7.1.3 Process (2): Overview of Direct Ionization and Recombination of π-states -- 7.1.4 Physical and Mechanical Properties of Different Classes of Organic Scintillators -- 7.2 Future Opportunities -- References -- 8 Organic Glass Scintillators -- 8.1 Introduction to Organic Glass Scintillators -- 8.2 Glassy State of Matter -- 8.3 Differentiating Characteristics of Organic Molecular Glasses -- 8.4 Design Strategies for Stable Organic Molecular Glasses -- 8.4.1 Nonplanar Structures -- 8.4.2 Increasing Molecular Size -- 8.4.3 Multiple Conformations -- 8.4.4 Physical Mixtures. 8.5 Fluorescent Molecular Glasses as Organic Glass Scintillators (OGSs) -- 8.6 Organic Glass Scintillators: Case Studies -- 8.7 Organic Glass Thermal and Mechanical Properties -- 8.7.1 Mechanical Strength: Intermolecular Interactions -- 8.7.2 Mechanical Strength: Organic Glass/Polymer Blending -- 8.8 Properties of OGS/Polymer Blends -- 8.8.1 Effect of Small-Molecule Additives on Tg -- 8.8.2 Scintillation Properties of OGS/Polymer Blends -- 8.9 Organic Glass Scintillator Fabrication Methods -- 8.10 Long-Term Stability and Environmental Aging of Organic Glass Scintillators -- 8.10.1 Surface Versus Bulk Diffusion -- 8.10.2 Accelerated Aging of Organic Glasses and Mitigation Methods -- 8.11 Compatibility of OGS with Multi-functional Additives -- 8.11.1 Boron-Loaded OGS for Fast Neutron/Gamma PSD and Thermal Neutron Capture -- 8.11.2 Metal-Loaded OGS for Fast Neutron/Gamma PSD and Gamma-Ray Spectroscopy -- 8.12 Summary and Future Outlook -- References -- Part II Applications -- 9 Optical Improvements of Plastic Scintillators by Nanophotonics -- 9.1 Introduction -- 9.2 Enhancement of Light Extraction Efficiency of Plastic Scintillators by Photonic Crystals -- 9.2.1 Introduction of Photonic Crystals -- 9.2.2 Enhancement Mechanism of Light Extraction Efficiency by Photonic Crystals -- 9.2.3 Control of Directional Emission by Photonic Crystals -- 9.2.4 Consideration for the Structural Design of Photonic Crystals -- 9.3 Control of Directional Emission of Plastic Scintillators by Plasmonic Lattice Resonances -- 9.4 Patterning Techniques for Plastic Scintillators -- 9.4.1 Self-assembly Lithography -- 9.4.2 Nanoimprint Lithography (NIL) -- 9.4.3 X-Ray Interference Lithography (XIL) -- 9.5 Improved Scintillation Performance of Detectors by Photonic Crystals -- 9.6 Summary and Remark -- References. 10 Analog and Digital Signal Processing for Nuclear Instrumentation -- 10.1 Introduction -- 10.2 The Light to Electric Signal Conversion -- 10.2.1 Design of PMTs -- 10.2.2 Solid-State Semiconductor Photodetectors -- 10.3 The Signal Acquisition Frontend -- 10.3.1 Charge to Voltage Conversion -- 10.3.2 Gain and Pulse Shaping Stage -- 10.3.3 Voltage Limiters -- 10.3.4 Impedance Matching and Other Effects -- 10.4 The Digitization Stage -- 10.4.1 Signal Digitization Basics -- 10.4.2 Digitizer Architectures -- 10.5 Signal Processing and Feature Extraction -- 10.5.1 Low-Level Digital Stream Processing -- 10.5.2 Digital Pulse Processing -- 10.6 Data and Information Processing -- 10.6.1 Count Rate Analysis -- 10.6.2 Discrimination of the Nature of the Interactions -- 10.6.3 Spectral Unmixing and Radionuclide Identification -- 10.7 Conclusion -- References -- 11 Radioactive Noble Gas Detection and Measurement with Plastic Scintillators -- 11.1 Radioactive Noble Gas Isotopes -- 11.1.1 Kr-85 -- 11.1.2 Xe-131m -- 11.1.3 Xe-133 -- 11.1.4 Xe-133m -- 11.1.5 Xe-135 -- 11.1.6 Ar-37 -- 11.1.7 Rn-222 and Progenies -- 11.1.8 Rn-220 and Progenies -- 11.2 Application of Plastic Scintillators to the Detection of Noble Gas -- 11.2.1 Xenon Detection Systems for the CTBT Network -- 11.2.2 Kr-85 Monitors Using Plastic Scintillators -- 11.2.3 Radon and Thoron Detection and Measurement with Plastic Scintillators -- 11.3 RNG-Related Properties of Plastic Scintillators -- 11.3.1 Noble Gas Absorption in Plastic Materials -- 11.3.2 Application of Pulse Shape Discrimination to 222Rn Measurements -- 11.3.3 Description of the Alpha-Particle Peak Shapes in 222Rn Measurements with Plastic Scintillators -- 11.4 Concluding Remarks -- References -- 12 Recent Advances and Clinical Applications of Plastic Scintillators in the Field of Radiation Therapy -- 12.1 Introduction. 12.2 Basic Dosimetry Properties of Plastic Scintillators. |
| Record Nr. | UNISA-996466731503316 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||