top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Imageries Optiques Non Conventionnelles Pour la Biologie
Imageries Optiques Non Conventionnelles Pour la Biologie
Autore Fournier Corinne
Edizione [1st ed.]
Pubbl/distr/stampa London : , : ISTE Editions Ltd., , 2023
Descrizione fisica 1 online resource (302 pages)
Altri autori (Persone) HaeberléOlivier
Collana Sciences
Soggetto topico Optical images
Holography
ISBN 9781789491326
1789491320
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Nota di contenuto Front Cover Page -- Table des matières -- Introduction -- Chapitre 1 : Microscopie quantitativede phase par analysede front d'onde -- Chapitre 2 : Holographie -- Chapitre 3 : Les problèmes inversespour la reconstruction d'imageen holographie -- Chapitre 4 : Reconstruction d'échantillonsen microscopie holographiquenumérique en ligne -- Chapitre 5 : Microscopie tomographiquediffractive en transmission -- Chapitre 6 : Microscopie interférométrique -- Chapitre 7 : Imagerie endoscopiquemultimodale et multispectraleà champ de vue étendu -- Chapitre 8 : Une introductionà l'imagerie computationnellemonodétecteur -- Glossaire -- Liste des auteurs -- Index -- Back Cover Page.
Record Nr. UNINA-9910915677403321
Fournier Corinne  
London : , : ISTE Editions Ltd., , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical imaging and sensing : materials, devices, and applications
Optical imaging and sensing : materials, devices, and applications
Autore Wu Jiang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (289 pages)
Disciplina 621.367
Altri autori (Persone) XuHao
Soggetto topico Optoelectronics
Optical images
ISBN 9783527835201
3527835202
9783527835188
3527835180
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Optical Imaging and Sensing: Materials, Devices, and Applications -- 1.1 Optoelectronic Material Systems -- 1.1.1 Si Platform -- 1.1.2 Two‐dimensional Materials and Their van der Waals Heterostructures -- 1.1.2.1 Graphene -- 1.1.2.2 Transition Metal Dichalcogenides -- 1.1.2.3 2D Heterostructures -- 1.2 Challenges and Prospect of Nano‐optoelectronic Devices -- 1.2.1 III-V Compounds -- 1.2.2 Perovskites -- 1.2.3 Organic Optoelectronic Materials -- References -- Chapter 2 2D Material‐Based Photodetectors for Imaging -- 2.1 Introduction -- 2.2 Visible‐Light Photodetectors -- 2.3 Infrared Photodetectors -- 2.4 Broadband Photodetectors -- 2.5 Plasmon‐Enhanced Photodetectors -- 2.6 Large‐Scale and Flexible Photodetectors -- 2.7 Summary -- References -- Chapter 3 Surface Plasmonic Resonance‐Enhanced Infrared Photodetectors -- 3.1 Introduction -- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures -- 3.2.1 Plasma Oscillations in Metals -- 3.2.2 Complex Permittivity and the Drude Model -- 3.2.3 Surface Plasmonic Waves at the Semi‐infinite Dielectric and Metal Interface -- 3.2.4 Prism‐Coupled Surface Plasmonic Wave Excitation -- 3.2.5 Surface Grating‐Coupled Surface Plasmonic Wave Excitation -- 3.3 Surface Plasmonic Wave‐Enhanced QDIPs -- 3.3.1 Two‐Dimensional Metallic Hole Array (2DSHA)‐Induced Surface Plasmonic Waves -- 3.3.2 2DSHA Surface Plasmonic Structure‐Enhanced QDIP -- 3.4 Localized Surface Plasmonic Wave‐Enhanced QDIPs -- 3.4.1 Localized Surface Plasmonic Waves -- 3.4.2 Near‐Field Distributions -- 3.4.3 Nanowire Pair -- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement -- 3.5 Plasmonic Perfect Absorber (PPA) -- 3.5.1 Introduction to Plasmonic Perfect Absorber -- 3.5.2 Plasmonic Perfect Absorber‐Enhanced QDIP.
3.5.3 Broadband Plasmonic Perfect Absorber -- 3.5.4 2DSHA Plasmonic Perfect Absorber -- 3.6 Chapter Summary -- References -- Chapter 4 Optical Resistance Switch for Optical Sensing -- 4.1 Introduction -- 4.2 Graphene Optical Switch -- 4.2.1 DC Mode of the Gate Capacitor -- 4.2.2 AC Mode of the Gate Capacitor -- 4.3 Nanomaterial Heterostructures‐Based Switch -- 4.3.1 Situation 1: n2L & -- gg -- n2H -- 4.3.2 Situation 2: n2H & -- gg -- n2L -- 4.3.3 Situation 3: n2H ≃ n2L -- 4.4 Modulation Characteristics -- 4.5 Summary -- References -- Chapter 5 Optical Interferometric Sensing -- 5.1 Introduction -- 5.2 Nonlinear Interferometer -- 5.2.1 Experimental Implementation of Phase Locking -- 5.2.2 Quantum Enhancement of Phase Sensitivity -- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation -- 5.3 Other Types of Nonlinear Interferometers -- 5.3.1 Nonlinear Sagnac Interferometer -- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam‐splitter -- 5.3.3 Experimental Implementation of a Phase‐Sensitive Parametric Amplifier -- 5.3.4 Interference‐Induced Quantum‐Squeezing Enhancement -- 5.4 Nonlinear Interferometric SPR Sensing -- 5.5 Summary and Outlook -- References -- Chapter 6 Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials -- 6.1 Introduction -- 6.2 The Principle of SFS Super‐resolution Imaging Based on Micro/nanomaterials -- 6.3 Super‐resolution Imaging Based on Nanowires and Polymers -- 6.4 Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.1 Label‐free Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.2 Labeled Super‐resolution Imaging Based on Photonic Waveguides -- 6.5 Super‐resolution Imaging Based on Wafers -- 6.5.1 Principle of Super‐resolution Imaging Based on Wafers -- 6.5.2 Label‐free Super‐resolution Imaging Based on Wafers.
6.5.3 Labeled Super‐resolution Imaging Based on Wafers -- 6.6 Super‐resolution Imaging Based on SPPs and Metamaterials -- 6.6.1 SPP‐assisted Illumination Nanoscopy -- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM -- 6.6.1.2 Graphene‐assisted PSIM -- 6.6.2 Localized Plasmon‐assisted Illumination Nanoscopy -- 6.6.3 Metamaterial‐assisted Illumination Nanoscopy -- 6.7 Summary and Outlook -- References -- Chapter 7 Monolithically Integrated Multi‐section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics -- 7.1 Introduction -- 7.2 Monolithically Integrated Multi‐section Semiconductor Laser (MI‐MSSL) Device -- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI‐OFLs) -- 7.2.1.1 Passive Feedback Lasers (PFLs) -- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) -- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI‐MISLs) -- 7.3 Electro‐optic Conversion Characteristics -- 7.3.1 Modulation Response Enhancement -- 7.3.2 Nonlinearity Reduction -- 7.3.3 Chirp Suppression -- 7.4 Photonic Microwave Generation -- 7.4.1 Tunable Single‐Tone Microwave Signal Generation -- 7.4.1.1 Free‐Running State -- 7.4.1.2 Mode‐Beating Self‐Pulsations (MB‐SPs) -- 7.4.1.3 Period‐One (P1) Oscillation -- 7.4.1.4 Sideband Injection Locking -- 7.4.2 Frequency‐Modulated Microwave Signal Generation -- 7.4.3 High‐Performance Microwave Signal Generation Optimizing Technique -- 7.5 Microwave Photonic Filter (MPF) -- 7.6 Laser Arrays -- 7.7 Conclusion -- Funding Information -- Disclosures -- References -- Index -- EULA.
Record Nr. UNINA-9911018928303321
Wu Jiang  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical nanoscopy
Optical nanoscopy
Pubbl/distr/stampa Berlin, Germany : , : Springer
Descrizione fisica 1 online resource
Soggetto topico Microscopy
Nanotechnology
Optical images
Optical Imaging
Microscopie
Images optiques
Nanotechnologie
Soggetto genere / forma Periodical
Fulltext
Internet Resources.
Periodicals.
Soggetto non controllato microscopie
microscopy
optische eigenschappen
optical properties
Biological Techniques
Biologische technieken
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996218161403316
Berlin, Germany : , : Springer
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Optical nanoscopy
Optical nanoscopy
Pubbl/distr/stampa Berlin, Germany : , : Springer
Descrizione fisica 1 online resource
Soggetto topico Microscopy
Nanotechnology
Optical images
Optical Imaging
Microscopie
Images optiques
Nanotechnologie
Soggetto genere / forma Periodical
Fulltext
Internet Resources.
Periodicals.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910130844903321
Berlin, Germany : , : Springer
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Super Resolution Optical Imaging and Microscopy : Methods, Algorithms, and Applications
Super Resolution Optical Imaging and Microscopy : Methods, Algorithms, and Applications
Autore Qu Junle
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (259 pages)
Disciplina 621.367
Altri autori (Persone) YangZhigang
Soggetto topico Fluorescence microscopy
Optical images
ISBN 9783527835539
9783527835522
9783527349869
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Super‐Resolution Microscopy (SRM): Brief Introduction -- 1.1 Optical Microscopy -- 1.1.1 History and Background -- 1.2 Specialized Optical Microscopes -- 1.2.1 Inverted Microscopes -- 1.2.2 Confocal Microscopes -- 1.3 Optical Diffraction Limit -- 1.4 Super‐Resolution Microscopy: Overcoming the Diffraction Limit -- 1.5 Near‐Field Scanning Optical Microscopy -- 1.6 Far‐Field Super‐Resolution Microscopy -- 1.7 Fluorescent Probes for Super‐Resolution Microscopy -- 1.8 Image Analysis Algorithms -- 1.9 Applications -- 1.10 Outline of the Content of Succeeding Chapters -- Acknowledgment -- References -- Chapter 2 Point Spread Function Engineering SRM -- 2.1 Stimulated Emission Depletion Microscopy (STED) -- 2.1.1 Principles of STED -- 2.1.2 Three‐Dimensional STED -- 2.1.3 Multi‐Color and Multi‐Photon STED -- 2.1.4 Strategies to Reduce STED Power -- 2.1.4.1 Time‐Gated STED Technology -- 2.1.4.2 Offline Gated STED Technology -- 2.1.4.3 Phasor‐Plot Analysis of STED‐FLIM
Record Nr. UNINA-9911019178203321
Qu Junle  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Unconventional Optical Imaging for Biology
Unconventional Optical Imaging for Biology
Autore Fournier Corinne
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (292 pages)
Disciplina 570.28
Altri autori (Persone) HaeberleOlivier
Soggetto topico Optical images
Holography
ISBN 9781394283996
1394283997
9781394283972
1394283970
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Introduction -- Chapter 1. Quantitative Phase Microscopy Using Wavefront Analysis -- 1.1. Introduction -- 1.2. Description of the principles used in phase imaging -- 1.3. Quadriwave lateral shearing interferometry for high spatial resolution wavefront analysis -- 1.3.1. Generation of incident field replicas -- 1.3.2. Determination of the incident wavefront -- 1.3.3. Wavefront sensor implementation -- 1.4. Using a wavefront sensor in microscopy -- 1.4.1. Necessary approximations -- 1.4.2. Experimental configuration -- 1.5. Applications to biological imaging -- 1.5.1. High-contrast imaging without labeling -- 1.5.2. Dry mass measurement in living biological cells -- 1.5.3. Rapid imaging for biological phenomena -- 1.5.4. Quantitative phase and fluorescence correlative imaging -- 1.6. Optical retardance imaging -- 1.7. Other applications and new developments -- 1.8. References -- Chapter 2. Holography -- 2.1. Introduction -- 2.2. Principle of holography -- 2.3. Selection of the +1 order -- 2.3.1. Off-axis holography -- 2.3.2. Phase-shifting holography -- 2.4. Holographic reconstruction -- 2.4.1. Fourier transform reconstruction -- 2.4.2. Two Fourier transform reconstruction (angular spectrum) -- 2.4.3. Two Fourier transform reconstruction with zero padding -- 2.4.4. Two Fourier transform reconstruction with the addition of a digital lens -- 2.5. Associated holographic configurations and applications -- 2.5.1. In-line holography -- 2.5.2. Off-axis holography -- 2.5.3. Holographic microscopy and quantitative phase imaging -- 2.6. Conclusion -- 2.7. References -- Chapter 3. Inverse Problems for Image Reconstruction in Holography -- 3.1. Introduction -- 3.1.1. Notations -- 3.2. Direct model -- 3.3. Experimental application -- 3.4. Maximum likelihood approach -- 3.4.1. Formal expression.
3.4.2. Noise statistics and likelihood -- 3.4.3. Backpropagation -- 3.4.4. Iterative methods for maximum likelihood estimation -- 3.4.5. Extrapolation of the field of view -- 3.5. Phase reconstruction: a nonlinear problem -- 3.6. Alternating projection methods -- 3.6.1. From alternating projection to criterion minimization -- 3.6.2. Maximum likelihood approach -- 3.7. Improving over the maximum likelihood -- 3.7.1. Penalized maximum likelihood -- 3.7.2. Bayesian interpretation: maximum a posteriori -- 3.8. Regularization functions and a priori -- 3.8.1. Quadratic regularization -- 3.8.2. Edge-preserving smoothing -- 3.8.3. Sparsity -- 3.8.4. Joint parsimony -- 3.8.5. Total variation -- 3.8.6. Plug and play regularization -- 3.9. Choosing the optimization algorithm for the solution of the inverse problem -- 3.10. Practical examples -- 3.10.1. Unconstrained and differentiable problem -- 3.10.2. Constrained problems -- 3.11. References -- Chapter 4. In-line Digital Holographic Microscopy Sample Reconstruction -- 4.1. Introduction -- 4.2. From classical microscopy to digital holography in the biomedical field -- 4.3. In-line holographic microscopy setups -- 4.3.1. Imaging setup, with or without lens -- 4.3.2. Coherence and illumination setup -- 4.4. Typical IP methodology for in-line hologram reconstruction -- 4.4.1. Test case: in-line holograms of micrometric transparent objects -- 4.4.2. In-line hologram formation model -- 4.4.3. Digital reconstructions -- 4.5. Extended contribution of IP approaches: digital super-resolution and field extension -- 4.5.1. Direct problem -- 4.5.2. Criterion to be minimized -- 4.5.3. Alternating reconstruction algorithm -- 4.6. Going further -- 4.6.1. Model refinement and self-calibration -- 4.6.2. Multivariate data reconstruction -- 4.6.3. Toward 3D reconstruction -- 4.7. References.
Chapter 5. Transmission Tomographic Diffractive Microscopy -- 5.1. Introduction -- 5.2. Holographic microscopy: utility and limitations -- 5.3. Link between diffracted field and index distribution -- 5.3.1. Principle -- 5.3.2. Helmholtz equation in a weakly inhomogeneous medium -- 5.3.3. Born approximation -- 5.3.4. Spectral support in 3D Fourier space -- 5.3.5. Holographic algorithm -- 5.4. From holography to tomography -- 5.4.1. Illumination rotation -- 5.4.2. Sample rotation -- 5.4.3. Sample and illumination rotation -- 5.5. Practical implementations -- 5.5.1. Sample rotation techniques -- 5.5.2. Scanning illumination techniques -- 5.6. Reconstruction under the Born hypothesis -- 5.6.1. Examples of commercial systems -- 5.7. Conclusion -- 5.8. References -- Chapter 6. Interference Microscopy -- 6.1. Introduction -- 6.2. Principle and theory -- 6.2.1. Interference -- 6.2.2. Coherence of light -- 6.3. Algorithms -- 6.3.1. Phase-shifting microscopy -- 6.3.2. Coherence scanning interferometry -- 6.4. Instrumentation -- 6.5. Physical performance and limitations -- 6.5.1. Lateral resolution -- 6.5.2. Axial resolution -- 6.5.3. Spatial sampling -- 6.5.4. Sources of measurement error -- 6.6. Applications -- 6.6.1. Roughness measurement -- 6.6.2. The measurement of static surfaces -- 6.6.3. The measurement of moving surfaces -- 6.7. Recent findings -- 6.7.1. Full-field optical coherence tomography -- 6.7.2. Local spectroscopy -- 6.7.3. Microsphere-assisted microscopic interferometry -- 6.8. Conclusion -- 6.9. Acknowledgments -- 6.10. References -- Chapter 7. Multimodal and Multispectral Endoscopic Imaging with Extended Field of View -- 7.1. Introduction to conventional endoscopy -- 7.1.1. Principle and medical applications of endoscopy -- 7.1.2. Relevance and limitations of conventional endoscopy -- 7.1.3. Chapter objectives and content.
7.2. The functioning of endoscopes -- 7.2.1. Components of an endoscopic system -- 7.2.2. Pinhole camera model -- 7.2.3. Distortion modeling and correction -- 7.2.4. Vignetting modeling and correction -- 7.3. 3D cartography of endoscopic scenes -- 7.3.1. Data registration from two viewpoints -- 7.3.2. 3D cartography approaches -- 7.4. Multimodal and multispectral endoscopic imaging systems -- 7.4.1. Introduction -- 7.4.2. Chemical labeling imaging systems -- 7.4.3. Exogenous markerless imaging systems -- 7.5. Conclusion -- 7.6. References -- Chapter 8. An Introduction to Single-Pixel Imaging -- 8.1. Introduction -- 8.1.1. Mathematical formulation -- 8.1.2. Experimental implementation -- 8.2. Hadamard transform optics: the origins (1970-1980) -- 8.3. Compressed sensing: the revival (2006-2016) -- 8.3.1. Undersampled acquisition -- 8.3.2. Compressed sensing general principle -- 8.3.3. Choice of acquisition patterns -- 8.4. Deep learning reconstruction -- 8.4.1. General principle -- 8.4.2. Model architecture -- 8.4.3. Training -- 8.4.4. Simple link with conventional methods -- 8.4.5. Best linear estimator: Bayesian completion -- 8.4.6. Taking noise into consideration -- 8.5. Conclusion -- 8.6. Acknowledgments -- 8.7. References -- Glossary -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9911019790703321
Fournier Corinne  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui