Advanced optical communication systems and networks / / Milorad Cvijetic, Ivan B. Djordjevic |
Autore | Cvijetic Milorad |
Pubbl/distr/stampa | Boston : , : Artech House, , [2013] |
Descrizione fisica | 1 online resource (823 p.) |
Disciplina | 621.3827 |
Altri autori (Persone) | DjordjevicIvan |
Collana | Artech House applied photonics series |
Soggetto topico | Optical communications - Technological innovations |
Soggetto genere / forma | Electronic books. |
ISBN | 1-60807-556-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to optical communications -- Optical components and modules -- Signal propagation in optical fibers -- Noise sources and channel impairment -- Advanced modulation schemes -- Advanced detection schemes -- Advanced coding schemes -- Advanced optical networking -- Optical channel capacity and energy efficiency -- Engineering tool box. |
Record Nr. | UNINA-9910465343103321 |
Cvijetic Milorad | ||
Boston : , : Artech House, , [2013] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced optical communication systems and networks / / Milorad Cvijetic, Ivan B. Djordjevic |
Autore | Cvijetic Milorad |
Pubbl/distr/stampa | Boston : , : Artech House, , [2013] |
Descrizione fisica | 1 online resource (823 p.) |
Disciplina | 621.3827 |
Altri autori (Persone) | DjordjevicIvan |
Collana | Artech House applied photonics series |
Soggetto topico | Optical communications - Technological innovations |
ISBN | 1-60807-556-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to optical communications -- Optical components and modules -- Signal propagation in optical fibers -- Noise sources and channel impairment -- Advanced modulation schemes -- Advanced detection schemes -- Advanced coding schemes -- Advanced optical networking -- Optical channel capacity and energy efficiency -- Engineering tool box. |
Record Nr. | UNINA-9910792281203321 |
Cvijetic Milorad | ||
Boston : , : Artech House, , [2013] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced optical communication systems and networks / / Milorad Cvijetic, Ivan B. Djordjevic |
Autore | Cvijetic Milorad |
Pubbl/distr/stampa | Boston : , : Artech House, , [2013] |
Descrizione fisica | 1 online resource (823 p.) |
Disciplina | 621.3827 |
Altri autori (Persone) | DjordjevicIvan |
Collana | Artech House applied photonics series |
Soggetto topico | Optical communications - Technological innovations |
ISBN | 1-60807-556-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to optical communications -- Optical components and modules -- Signal propagation in optical fibers -- Noise sources and channel impairment -- Advanced modulation schemes -- Advanced detection schemes -- Advanced coding schemes -- Advanced optical networking -- Optical channel capacity and energy efficiency -- Engineering tool box. |
Record Nr. | UNINA-9910821122203321 |
Cvijetic Milorad | ||
Boston : , : Artech House, , [2013] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Optical and wireless convergence for 5G networks / / edited by Abdelgader M Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira |
Autore | Abdalla Abdelgader M |
Pubbl/distr/stampa | Hoboken, New Jersey, USA : , : John Wiley & Sons, Inc., , 2020 |
Descrizione fisica | 1 online resource (353 pages) |
Disciplina | 621.38456 |
Collana | THEi Wiley ebooks. |
Soggetto topico |
Mobile communication systems
Optical communications - Technological innovations |
ISBN |
1-119-49160-6
1-119-49159-2 1-119-49161-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
About the Editors ii Contributors v Preface xxvii Acknowledgments i Introduction iii 1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1 1.1 Introduction 2 1.2 Cellular Network Interface and Solution 3 1.2.1 MBH/MFH Architecture 3 1.2.2 Integrated MBH/MFH Transport Network 5 1.3 5G Enabling Technologies 5 1.3.1 Ultra-Densication 6 1.3.2 C-RAN and RAN Virtualization 6 1.3.3 Advanced radio coordination 8 1.3.4 Millimeter-Wave Small Cells 9 1.3.5 Massive MIMO 10 1.3.6 New Multicarrier Modulations for 5G 10 1.4 Fiber-Wireless Network Convergence 11 1.5 Radio-over-Fiber Transmission Scheme 12 1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12 1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14 1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14 1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15 1.7 Wireless based MFH/MBH 18 1.7.1 FSO Communication Systems 18 1.7.2 Hybrid RF/FSO Technology 21 1.7.3 Relay-Assisted FSO Transmission 22 1.8 Experimental Channel measurement and characterization 23 1.9 Results and Discussions 24 1.10 Conclusion 24 Acknowledgments 24 Bibliography 25 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31 2.1 Passive Optical Network 32 2.1.1 GPON and EPON standard 33 2.2 Transparent Wireless Extension of Optical Links 34 2.2.1 Transparent wireless extension of optical links using CRoF 34 2.3 Key Enabling Photonic and Electronic Technologies 36 2.3.1 Coherent Photonic Mixer 36 2.3.2 Single side band Mach-Zehnder modulator 38 2.3.3 High power amplifier in E-band for GPON extension 40 2.3.4 Integrated radio access units 42 2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43 2.4.1 RX Throughput and packet loss 48 2.4.2 Latency 48 2.4.3 Jitter 49 2.5 Conclusions 49 Bibliography 50 3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53 3.1 Introduction 53 3.2 The 5G requirements driving network convergence and virtualisation 54 3.3 Access and metro convergence 57 3.3.1 Long-Reach Passive Optical Network 58 3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59 3.4 Functional convergence and virtualisation of the central offices 62 3.4.1 Infrastructure 63 3.4.2 Management and Control 66 3.4.3 Cross-Layer Components 70 3.5 Conclusions 70 Bibliography 70 4 Multicore Fibres for 5G Fronthaul Evolution 77 4.1 Why 5G communications demand for optical Space-Division Multiplexing 77 4.2 Multicore Fibre Transmission Review 79 4.2.1 Homogeneous MCFs 80 4.2.2 Heterogeneous MCFs 81 4.3 Radio Access Networks using Multicore Fibre Links 82 4.3.1 Basic MCF link between Central O-ce and Base Station 84 4.3.2 MCF-based Radio over Fibre C-RAN 85 4.3.3 MCF-based Digital Radio over Fibre C-RAN 87 4.4 Microwave signal processing enabled by multicore fibres 88 4.4.1 Signal Processing over a Heterogeneous MCF link 90 4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92 4.5 Final Remarks 94 Bibliography 95 5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99 5.1 Introduction 100 5.2 Optical Wireless Systems 102 5.3 Visible Light Communication (VLC) System Fundamentals 104 5.4 VLC Current and Anticipated Future Applications 107 5.4.1 Underwater Wireless Communications 109 5.4.2 Airlines and Aviation 109 5.4.3 Hospitals 110 5.4.4 Vehicular Communication Systems 110 5.4.5 Sensitive Areas 111 5.4.6 Manufacturing and Industrial Applications 111 5.4.7 Retail Stores 112 5.4.8 Consumer Electronics 112 5.4.9 Internet of Things 112 5.4.10 Other Application Areas 113 5.5 Hybrid VLC and RF Networks 113 5.6 Challenges and Open-Ended Issues 114 5.6.1 Flicker and Dimming 115 5.6.2 Data Rate Improvement 115 5.7 Conclusions 116 Acknowledgments 116 Bibliography 117 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123 6.1 Introduction 123 6.2 5G NR-enabled Use Cases 124 6.2.1 eMBB and uRLLC 125 6.2.2 Migration to 5G 126 6.3 5G RAN Radio-enabling Technologies 126 6.3.1 Massive MIMO (M-MIMO) 127 6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130 6.3.3 Dual Connectivity 131 6.3.4 Device-to-Device (D2D) communication 132 6.4 Hardware Impairments 132 6.4.1 Hardware Impairments-Transmitters 133 6.4.2 Hardware Impairments -- Receivers 135 6.4.3 Hardware Impairments -- Transceivers 135 6.5 Technology and Fabrication challenges 136 6.6 Conclusion 137 Bibliography 137 7 Millimeter Wave Antenna Design for 5G Applications 143 7.1 Introduction 144 7.2 Antenna Design and Procedure 146 7.3 Antenna Optimisation and Analysis 147 7.3.1 The inuence of ground plane length (GL) 148 7.3.2 The effect of feeding strip position (Fp) 148 7.3.3 The inuences of the substrate type 149 7.4 MMwave Antenna Design with notched frequency band 150 7.5 MMwave Antenna Design with Loaded Capacitor 153 7.6 Conclusion 156 Acknowledgement 156 Bibliography 156 8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161 8.1 Introduction 161 8.2 Principle of signal encapsulation 163 8.2.1 Downlink system 163 8.2.2 Uplink system 165 8.3 Examples of signal encapsulation 166 8.3.1 Downlink transmission 166 8.3.2 Uplink transmission 170 8.3.3 MmWave link distance 173 8.3.4 Conclusion 175 Bibliography 176 9 5G Optical Sensing Technologies 179 9.1 Introduction 179 9.2 Optical Fibre Communication Network: Intrusion Methods 182 9.3 Physical Protection of Optical Fibre Communication Cables 183 9.3.1 Location-Based Optical Fibre Sensors 185 9.3.2 Point-Based Optical Fibre Sensors 187 9.3.3 Zone-Based Optical Fibre Sensors 189 9.4 Design Consideration and Performance Characteristics 190 9.4.1 Performance Parameters 190 9.4.2 The Needs for Robust Signal Processing Methods 191 9.4.3 System Installation and Technology Suitability 192 9.5 Conclusions 193 Bibliography 193 10 T |
Record Nr. | UNINA-9910554872303321 |
Abdalla Abdelgader M | ||
Hoboken, New Jersey, USA : , : John Wiley & Sons, Inc., , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Optical and wireless convergence for 5G networks / / edited by Abdelgader M Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira |
Autore | Abdalla Abdelgader M |
Pubbl/distr/stampa | Hoboken, New Jersey, USA : , : John Wiley & Sons, Inc., , 2020 |
Descrizione fisica | 1 online resource (353 pages) |
Disciplina | 621.38456 |
Collana | THEi Wiley ebooks. |
Soggetto topico |
Mobile communication systems
Optical communications - Technological innovations |
ISBN |
1-119-49160-6
1-119-49159-2 1-119-49161-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
About the Editors ii Contributors v Preface xxvii Acknowledgments i Introduction iii 1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1 1.1 Introduction 2 1.2 Cellular Network Interface and Solution 3 1.2.1 MBH/MFH Architecture 3 1.2.2 Integrated MBH/MFH Transport Network 5 1.3 5G Enabling Technologies 5 1.3.1 Ultra-Densication 6 1.3.2 C-RAN and RAN Virtualization 6 1.3.3 Advanced radio coordination 8 1.3.4 Millimeter-Wave Small Cells 9 1.3.5 Massive MIMO 10 1.3.6 New Multicarrier Modulations for 5G 10 1.4 Fiber-Wireless Network Convergence 11 1.5 Radio-over-Fiber Transmission Scheme 12 1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12 1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14 1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14 1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15 1.7 Wireless based MFH/MBH 18 1.7.1 FSO Communication Systems 18 1.7.2 Hybrid RF/FSO Technology 21 1.7.3 Relay-Assisted FSO Transmission 22 1.8 Experimental Channel measurement and characterization 23 1.9 Results and Discussions 24 1.10 Conclusion 24 Acknowledgments 24 Bibliography 25 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31 2.1 Passive Optical Network 32 2.1.1 GPON and EPON standard 33 2.2 Transparent Wireless Extension of Optical Links 34 2.2.1 Transparent wireless extension of optical links using CRoF 34 2.3 Key Enabling Photonic and Electronic Technologies 36 2.3.1 Coherent Photonic Mixer 36 2.3.2 Single side band Mach-Zehnder modulator 38 2.3.3 High power amplifier in E-band for GPON extension 40 2.3.4 Integrated radio access units 42 2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43 2.4.1 RX Throughput and packet loss 48 2.4.2 Latency 48 2.4.3 Jitter 49 2.5 Conclusions 49 Bibliography 50 3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53 3.1 Introduction 53 3.2 The 5G requirements driving network convergence and virtualisation 54 3.3 Access and metro convergence 57 3.3.1 Long-Reach Passive Optical Network 58 3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59 3.4 Functional convergence and virtualisation of the central offices 62 3.4.1 Infrastructure 63 3.4.2 Management and Control 66 3.4.3 Cross-Layer Components 70 3.5 Conclusions 70 Bibliography 70 4 Multicore Fibres for 5G Fronthaul Evolution 77 4.1 Why 5G communications demand for optical Space-Division Multiplexing 77 4.2 Multicore Fibre Transmission Review 79 4.2.1 Homogeneous MCFs 80 4.2.2 Heterogeneous MCFs 81 4.3 Radio Access Networks using Multicore Fibre Links 82 4.3.1 Basic MCF link between Central O-ce and Base Station 84 4.3.2 MCF-based Radio over Fibre C-RAN 85 4.3.3 MCF-based Digital Radio over Fibre C-RAN 87 4.4 Microwave signal processing enabled by multicore fibres 88 4.4.1 Signal Processing over a Heterogeneous MCF link 90 4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92 4.5 Final Remarks 94 Bibliography 95 5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99 5.1 Introduction 100 5.2 Optical Wireless Systems 102 5.3 Visible Light Communication (VLC) System Fundamentals 104 5.4 VLC Current and Anticipated Future Applications 107 5.4.1 Underwater Wireless Communications 109 5.4.2 Airlines and Aviation 109 5.4.3 Hospitals 110 5.4.4 Vehicular Communication Systems 110 5.4.5 Sensitive Areas 111 5.4.6 Manufacturing and Industrial Applications 111 5.4.7 Retail Stores 112 5.4.8 Consumer Electronics 112 5.4.9 Internet of Things 112 5.4.10 Other Application Areas 113 5.5 Hybrid VLC and RF Networks 113 5.6 Challenges and Open-Ended Issues 114 5.6.1 Flicker and Dimming 115 5.6.2 Data Rate Improvement 115 5.7 Conclusions 116 Acknowledgments 116 Bibliography 117 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123 6.1 Introduction 123 6.2 5G NR-enabled Use Cases 124 6.2.1 eMBB and uRLLC 125 6.2.2 Migration to 5G 126 6.3 5G RAN Radio-enabling Technologies 126 6.3.1 Massive MIMO (M-MIMO) 127 6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130 6.3.3 Dual Connectivity 131 6.3.4 Device-to-Device (D2D) communication 132 6.4 Hardware Impairments 132 6.4.1 Hardware Impairments-Transmitters 133 6.4.2 Hardware Impairments -- Receivers 135 6.4.3 Hardware Impairments -- Transceivers 135 6.5 Technology and Fabrication challenges 136 6.6 Conclusion 137 Bibliography 137 7 Millimeter Wave Antenna Design for 5G Applications 143 7.1 Introduction 144 7.2 Antenna Design and Procedure 146 7.3 Antenna Optimisation and Analysis 147 7.3.1 The inuence of ground plane length (GL) 148 7.3.2 The effect of feeding strip position (Fp) 148 7.3.3 The inuences of the substrate type 149 7.4 MMwave Antenna Design with notched frequency band 150 7.5 MMwave Antenna Design with Loaded Capacitor 153 7.6 Conclusion 156 Acknowledgement 156 Bibliography 156 8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161 8.1 Introduction 161 8.2 Principle of signal encapsulation 163 8.2.1 Downlink system 163 8.2.2 Uplink system 165 8.3 Examples of signal encapsulation 166 8.3.1 Downlink transmission 166 8.3.2 Uplink transmission 170 8.3.3 MmWave link distance 173 8.3.4 Conclusion 175 Bibliography 176 9 5G Optical Sensing Technologies 179 9.1 Introduction 179 9.2 Optical Fibre Communication Network: Intrusion Methods 182 9.3 Physical Protection of Optical Fibre Communication Cables 183 9.3.1 Location-Based Optical Fibre Sensors 185 9.3.2 Point-Based Optical Fibre Sensors 187 9.3.3 Zone-Based Optical Fibre Sensors 189 9.4 Design Consideration and Performance Characteristics 190 9.4.1 Performance Parameters 190 9.4.2 The Needs for Robust Signal Processing Methods 191 9.4.3 System Installation and Technology Suitability 192 9.5 Conclusions 193 Bibliography 193 10 T |
Record Nr. | UNINA-9910819007803321 |
Abdalla Abdelgader M | ||
Hoboken, New Jersey, USA : , : John Wiley & Sons, Inc., , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Photonic applications for radio systems and networks / / .Fabio Cavaliere, Antonio D'Errico |
Autore | Cavaliere Fabio |
Pubbl/distr/stampa | Boston : , : Artech House, , [2019] |
Descrizione fisica | 1 online resource (239 pages) |
Disciplina | 621.3827 |
Collana | Artech House applied photonics series |
Soggetto topico |
Optical communications - Technological innovations
Photonics Mobile communication systems |
Soggetto genere / forma | Electronic books. |
ISBN | 1-63081-666-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; Photonic Applications forRadio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth
2.3.4 Time Division Duplex 5G Systems2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 4.3.4 Error Vector Magnitude4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network |
Record Nr. | UNINA-9910480675003321 |
Cavaliere Fabio | ||
Boston : , : Artech House, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Photonic applications for radio systems and networks / / .Fabio Cavaliere, Antonio D'Errico |
Autore | Cavaliere Fabio |
Pubbl/distr/stampa | Boston : , : Artech House, , [2019] |
Descrizione fisica | 1 online resource (239 pages) |
Disciplina | 621.3827 |
Collana | Artech House applied photonics series |
Soggetto topico |
Optical communications - Technological innovations
Photonics Mobile communication systems |
ISBN | 1-63081-666-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; Photonic Applications forRadio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth
2.3.4 Time Division Duplex 5G Systems2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 4.3.4 Error Vector Magnitude4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network |
Record Nr. | UNINA-9910795386903321 |
Cavaliere Fabio | ||
Boston : , : Artech House, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Photonic applications for radio systems and networks / / .Fabio Cavaliere, Antonio D'Errico |
Autore | Cavaliere Fabio |
Pubbl/distr/stampa | Boston : , : Artech House, , [2019] |
Descrizione fisica | 1 online resource (239 pages) |
Disciplina | 621.3827 |
Collana | Artech House applied photonics series |
Soggetto topico |
Optical communications - Technological innovations
Photonics Mobile communication systems |
ISBN | 1-63081-666-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; Photonic Applications forRadio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth
2.3.4 Time Division Duplex 5G Systems2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 4.3.4 Error Vector Magnitude4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network |
Record Nr. | UNINA-9910822134603321 |
Cavaliere Fabio | ||
Boston : , : Artech House, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|