Vitamins and hormones . Volume ninety-seven Nociceptin opioid / / series editor, Gerald Litwack |
Edizione | [First edition.] |
Pubbl/distr/stampa | Waltham, Massachusetts : , : Academic Press, , 2015 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina | 612.015756 |
Collana | Vitamins and Hormones |
Soggetto topico |
Neuropeptides
Opioid peptides Nociceptive pain |
Soggetto genere / forma | Electronic books. |
ISBN |
0-12-802593-X
0-12-802443-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Nociceptin Opioid; Copyright; Contents; Contributors; Preface; Chapter 1: Helix-Constrained Nociceptin Peptides Are Potent Agonists and Antagonists of ORL-1 and Nociception; 1. Nociception in Brief; 1.1. Opioid receptor-like receptor-ORL-1; 1.2. Nociceptin; 1.3. Interrogating the activation and address domains of nociceptin(1-17); 2. Prospecting the Importance of the N-Terminal Tetrapeptide of Nociceptin(1-17); 3. Other Modifications to Nociceptin(1-17); 4. The Importance of Structure in Nociceptin Analogues; 4.1. Importance of helicity; 4.2. Other nociceptin derivatives
5. Recent Advances in ORL-1 Active Nociceptin Peptides6. The Development of New Helix-Constrained Nociceptin Analogues; 6.1. Design of helix-constrained nociceptin analogues; 6.2. Helical structure of nociceptin(1-17)-NH2 analogues in water; 6.3. Nuclear magnetic resonance spectra-derived structures; 7. Biological Properties of Helical Nociceptin Mimetics; 7.1. Cellular expression of ORL-1 and ERK phosphorylation; 7.2. Agonist and antagonist activity of nociceptin(1-17)-NH2 and analogues; 7.3. Effects of helical constraint on biological activity in Neuro-2a cells 7.4. Stability and cell toxicity of helix-constrained versus unconstrained peptides7.5. In vivo activity of helix-constrained versus unconstrained nociceptin analogues; 8. Concluding Remarks; References; Chapter 2: Bioinformatics and Evolution of Vertebrate Nociceptin and Opioid Receptors; 1. Introduction; 1.1. The origin of G protein-coupled receptors; 1.2. A brief history of opioid receptors; 1.3. Evidence for opioid receptors in nonmammalian vertebrates; 2. The Vertebrate Opioid Receptor Sequence Database; 2.1. Alignment of protein sequences 2.2. Phylogenetic analysis of vertebrate opioid receptors2.3. Divergence and convergence of opioid receptor types; 3. The Human Genome and the Evolution of Opioid Receptors; 3.1. Duplicated opioid family receptor genes in the human genome; 3.2. Variation in human opioid receptor genes; 4. The Molecular Evolution of Vertebrate Opioid Family Receptors; 5. Future Directions; 6. Conclusions; Acknowledgments; References; Chapter 3: Ancestral Vertebrate Complexity of the Opioid System; 1. Introduction; 2. Opioid Peptide Family; 3. Opioid Receptor Family 4. Discussion: Complexity, Coevolution, and Divergence5. Conclusions; Acknowledgement; References; Chapter 4: Synthesis and Biological Activity of Small Peptides as NOP and Opioid Receptors' Ligands: View on Current Devel...; 1. Introduction; 2. Endogenous Opioid Peptides and Receptors: Nociceptin and NOP Receptor Ligands; 3. Hexapeptides with NOP Receptor Affinity; 4. Solid-Phase Peptide Synthesis; 5. Conclusions; Acknowledgment; References; Chapter 5: Pain Regulation by Nocistatin-Targeting Molecules: G Protein-Coupled-Receptor and Nocistatin-Interacting Protein; 1. Introduction 2. Biological Activity by NST Through G Protein-Coupled Receptor |
Record Nr. | UNINA-9910460751403321 |
Waltham, Massachusetts : , : Academic Press, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Vitamins and hormones . Volume ninety-seven Nociceptin opioid / / series editor, Gerald Litwack |
Edizione | [First edition.] |
Pubbl/distr/stampa | Waltham, Massachusetts : , : Academic Press, , 2015 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina | 612.015756 |
Collana | Vitamins and Hormones |
Soggetto topico |
Neuropeptides
Opioid peptides Nociceptive pain |
ISBN |
0-12-802593-X
0-12-802443-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Nociceptin Opioid; Copyright; Contents; Contributors; Preface; Chapter 1: Helix-Constrained Nociceptin Peptides Are Potent Agonists and Antagonists of ORL-1 and Nociception; 1. Nociception in Brief; 1.1. Opioid receptor-like receptor-ORL-1; 1.2. Nociceptin; 1.3. Interrogating the activation and address domains of nociceptin(1-17); 2. Prospecting the Importance of the N-Terminal Tetrapeptide of Nociceptin(1-17); 3. Other Modifications to Nociceptin(1-17); 4. The Importance of Structure in Nociceptin Analogues; 4.1. Importance of helicity; 4.2. Other nociceptin derivatives
5. Recent Advances in ORL-1 Active Nociceptin Peptides6. The Development of New Helix-Constrained Nociceptin Analogues; 6.1. Design of helix-constrained nociceptin analogues; 6.2. Helical structure of nociceptin(1-17)-NH2 analogues in water; 6.3. Nuclear magnetic resonance spectra-derived structures; 7. Biological Properties of Helical Nociceptin Mimetics; 7.1. Cellular expression of ORL-1 and ERK phosphorylation; 7.2. Agonist and antagonist activity of nociceptin(1-17)-NH2 and analogues; 7.3. Effects of helical constraint on biological activity in Neuro-2a cells 7.4. Stability and cell toxicity of helix-constrained versus unconstrained peptides7.5. In vivo activity of helix-constrained versus unconstrained nociceptin analogues; 8. Concluding Remarks; References; Chapter 2: Bioinformatics and Evolution of Vertebrate Nociceptin and Opioid Receptors; 1. Introduction; 1.1. The origin of G protein-coupled receptors; 1.2. A brief history of opioid receptors; 1.3. Evidence for opioid receptors in nonmammalian vertebrates; 2. The Vertebrate Opioid Receptor Sequence Database; 2.1. Alignment of protein sequences 2.2. Phylogenetic analysis of vertebrate opioid receptors2.3. Divergence and convergence of opioid receptor types; 3. The Human Genome and the Evolution of Opioid Receptors; 3.1. Duplicated opioid family receptor genes in the human genome; 3.2. Variation in human opioid receptor genes; 4. The Molecular Evolution of Vertebrate Opioid Family Receptors; 5. Future Directions; 6. Conclusions; Acknowledgments; References; Chapter 3: Ancestral Vertebrate Complexity of the Opioid System; 1. Introduction; 2. Opioid Peptide Family; 3. Opioid Receptor Family 4. Discussion: Complexity, Coevolution, and Divergence5. Conclusions; Acknowledgement; References; Chapter 4: Synthesis and Biological Activity of Small Peptides as NOP and Opioid Receptors' Ligands: View on Current Devel...; 1. Introduction; 2. Endogenous Opioid Peptides and Receptors: Nociceptin and NOP Receptor Ligands; 3. Hexapeptides with NOP Receptor Affinity; 4. Solid-Phase Peptide Synthesis; 5. Conclusions; Acknowledgment; References; Chapter 5: Pain Regulation by Nocistatin-Targeting Molecules: G Protein-Coupled-Receptor and Nocistatin-Interacting Protein; 1. Introduction 2. Biological Activity by NST Through G Protein-Coupled Receptor |
Record Nr. | UNINA-9910787429703321 |
Waltham, Massachusetts : , : Academic Press, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Vitamins and hormones . Volume ninety-seven Nociceptin opioid / / series editor, Gerald Litwack |
Edizione | [First edition.] |
Pubbl/distr/stampa | Waltham, Massachusetts : , : Academic Press, , 2015 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina | 612.015756 |
Collana | Vitamins and Hormones |
Soggetto topico |
Neuropeptides
Opioid peptides Nociceptive pain |
ISBN |
0-12-802593-X
0-12-802443-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Nociceptin Opioid; Copyright; Contents; Contributors; Preface; Chapter 1: Helix-Constrained Nociceptin Peptides Are Potent Agonists and Antagonists of ORL-1 and Nociception; 1. Nociception in Brief; 1.1. Opioid receptor-like receptor-ORL-1; 1.2. Nociceptin; 1.3. Interrogating the activation and address domains of nociceptin(1-17); 2. Prospecting the Importance of the N-Terminal Tetrapeptide of Nociceptin(1-17); 3. Other Modifications to Nociceptin(1-17); 4. The Importance of Structure in Nociceptin Analogues; 4.1. Importance of helicity; 4.2. Other nociceptin derivatives
5. Recent Advances in ORL-1 Active Nociceptin Peptides6. The Development of New Helix-Constrained Nociceptin Analogues; 6.1. Design of helix-constrained nociceptin analogues; 6.2. Helical structure of nociceptin(1-17)-NH2 analogues in water; 6.3. Nuclear magnetic resonance spectra-derived structures; 7. Biological Properties of Helical Nociceptin Mimetics; 7.1. Cellular expression of ORL-1 and ERK phosphorylation; 7.2. Agonist and antagonist activity of nociceptin(1-17)-NH2 and analogues; 7.3. Effects of helical constraint on biological activity in Neuro-2a cells 7.4. Stability and cell toxicity of helix-constrained versus unconstrained peptides7.5. In vivo activity of helix-constrained versus unconstrained nociceptin analogues; 8. Concluding Remarks; References; Chapter 2: Bioinformatics and Evolution of Vertebrate Nociceptin and Opioid Receptors; 1. Introduction; 1.1. The origin of G protein-coupled receptors; 1.2. A brief history of opioid receptors; 1.3. Evidence for opioid receptors in nonmammalian vertebrates; 2. The Vertebrate Opioid Receptor Sequence Database; 2.1. Alignment of protein sequences 2.2. Phylogenetic analysis of vertebrate opioid receptors2.3. Divergence and convergence of opioid receptor types; 3. The Human Genome and the Evolution of Opioid Receptors; 3.1. Duplicated opioid family receptor genes in the human genome; 3.2. Variation in human opioid receptor genes; 4. The Molecular Evolution of Vertebrate Opioid Family Receptors; 5. Future Directions; 6. Conclusions; Acknowledgments; References; Chapter 3: Ancestral Vertebrate Complexity of the Opioid System; 1. Introduction; 2. Opioid Peptide Family; 3. Opioid Receptor Family 4. Discussion: Complexity, Coevolution, and Divergence5. Conclusions; Acknowledgement; References; Chapter 4: Synthesis and Biological Activity of Small Peptides as NOP and Opioid Receptors' Ligands: View on Current Devel...; 1. Introduction; 2. Endogenous Opioid Peptides and Receptors: Nociceptin and NOP Receptor Ligands; 3. Hexapeptides with NOP Receptor Affinity; 4. Solid-Phase Peptide Synthesis; 5. Conclusions; Acknowledgment; References; Chapter 5: Pain Regulation by Nocistatin-Targeting Molecules: G Protein-Coupled-Receptor and Nocistatin-Interacting Protein; 1. Introduction 2. Biological Activity by NST Through G Protein-Coupled Receptor |
Record Nr. | UNINA-9910821059903321 |
Waltham, Massachusetts : , : Academic Press, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|