top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Experimental methods in the physical sciences . Volume 47 Optical radiometry for ocean climate measurements / / edited by Giuseppe Zibordi, Craig J. Donlon, Albert C. Parr
Experimental methods in the physical sciences . Volume 47 Optical radiometry for ocean climate measurements / / edited by Giuseppe Zibordi, Craig J. Donlon, Albert C. Parr
Pubbl/distr/stampa Waltham, Massachusetts : , : Elsevier : , : AP, , 2014
Descrizione fisica 1 online resource (723 p.)
Disciplina 551.5246
Collana Experimental Methods in the Physical Sciences
Soggetto topico Ocean-atmosphere interaction
Optical radiometry
Oceanography - Measurement
ISBN 0-12-416994-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto FrontCover; 2. GLOBAL CLIMATE OBSERVING SYSTEM REQUIREMENTS FOR ECVS AND CDRS; 3. FROM ESSENTIAL CLIMATE VARIABLES TO CLIMATE DATA RECORDS; REFERENCES; 1. BASICS OF RADIOMETRY; REFERENCES; 1. INTRODUCTION; ACRONYMS; 7. APPENDIX. HISTORICAL SENSORS; 1. INTRODUCTION; 8. SUMMARY OF ON-ORBIT CALIBRATION; 4. CALIBRATION MODEL; 1. INTRODUCTION; 4. VALIDATING GEOPHYSICAL RETRIEVALS; 1. INTRODUCTION AND HISTORY; 4. MEASUREMENT METHODS; 1. INTRODUCTION AND BACKGROUND; 4. PERFORMANCE PARAMETERS AND SPECIFICATIONS; 4. EXAMPLES OF FRM SHIP-BORNE TIR RADIOMETER DESIGN AND DEPLOYMENTS; REFERENCES
1. INTRODUCTION4. SIMULATION OF INTERACTION WITH AEROSOL AND CLOUD; REFERENCES; 8. USE OF SIMULATIONS IN UNCERTAINTY ESTIMATION; 1. INTRODUCTION; 4. SHIP-BORNE RADIOMETER FIELD INTERCOMPARISON EXERCISES; REFERENCES; 1. INTRODUCTION; 4. CONCLUSIONS; 1. INTRODUCTION; 4. SUMMARY AND RECOMMENDATIONS
Record Nr. UNINA-9910787921503321
Waltham, Massachusetts : , : Elsevier : , : AP, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental methods in the physical sciences . Volume 47 Optical radiometry for ocean climate measurements / / edited by Giuseppe Zibordi, Craig J. Donlon, Albert C. Parr
Experimental methods in the physical sciences . Volume 47 Optical radiometry for ocean climate measurements / / edited by Giuseppe Zibordi, Craig J. Donlon, Albert C. Parr
Pubbl/distr/stampa Waltham, Massachusetts : , : Elsevier : , : AP, , 2014
Descrizione fisica 1 online resource (723 p.)
Disciplina 551.5246
Collana Experimental Methods in the Physical Sciences
Soggetto topico Ocean-atmosphere interaction
Optical radiometry
Oceanography - Measurement
ISBN 0-12-416994-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto FrontCover; 2. GLOBAL CLIMATE OBSERVING SYSTEM REQUIREMENTS FOR ECVS AND CDRS; 3. FROM ESSENTIAL CLIMATE VARIABLES TO CLIMATE DATA RECORDS; REFERENCES; 1. BASICS OF RADIOMETRY; REFERENCES; 1. INTRODUCTION; ACRONYMS; 7. APPENDIX. HISTORICAL SENSORS; 1. INTRODUCTION; 8. SUMMARY OF ON-ORBIT CALIBRATION; 4. CALIBRATION MODEL; 1. INTRODUCTION; 4. VALIDATING GEOPHYSICAL RETRIEVALS; 1. INTRODUCTION AND HISTORY; 4. MEASUREMENT METHODS; 1. INTRODUCTION AND BACKGROUND; 4. PERFORMANCE PARAMETERS AND SPECIFICATIONS; 4. EXAMPLES OF FRM SHIP-BORNE TIR RADIOMETER DESIGN AND DEPLOYMENTS; REFERENCES
1. INTRODUCTION4. SIMULATION OF INTERACTION WITH AEROSOL AND CLOUD; REFERENCES; 8. USE OF SIMULATIONS IN UNCERTAINTY ESTIMATION; 1. INTRODUCTION; 4. SHIP-BORNE RADIOMETER FIELD INTERCOMPARISON EXERCISES; REFERENCES; 1. INTRODUCTION; 4. CONCLUSIONS; 1. INTRODUCTION; 4. SUMMARY AND RECOMMENDATIONS
Record Nr. UNINA-9910813554003321
Waltham, Massachusetts : , : Elsevier : , : AP, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geophysical data analysis : discrete inverse theory / / William Menke
Geophysical data analysis : discrete inverse theory / / William Menke
Autore Menke William
Pubbl/distr/stampa London, United Kingdom : , : Academic Press, an imprint of Elsevier, , [2018]
Descrizione fisica 1 online resource (539 pages)
Disciplina 551.01519
Soggetto topico Geophysics - Measurement
Oceanography - Measurement
Inverse problems (Differential equations) - Numerical solutions
ISBN 0-12-813556-5
0-12-813555-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Describing inverse problems -- Some comments on probability theory -- Solution of the linear, Gaussian inverse problem, viewpoint 1 : the length method -- Solution of the linear, Gaussian inverse problem, viewpoint 2 : generalized inverses -- Solution of the linear, Gaussian inverse problem, viewpoint 3 : maximum likelihood methods -- Nonuniqueness and localized averages -- Applications of vector spaces -- Linear inverse problems and non-Gaussian statistics -- Nonlinear inverse problems -- Factor analysis -- Continuous inverse theory and tomography -- Sample inverse problems -- Applications of inverse theory to solid earth geophysics.
Record Nr. UNINA-9910583476103321
Menke William  
London, United Kingdom : , : Academic Press, an imprint of Elsevier, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geophysical data analysis [[electronic resource] ] : discrete inverse theory / / William Menke
Geophysical data analysis [[electronic resource] ] : discrete inverse theory / / William Menke
Autore Menke William
Edizione [Matlab ed., 3rd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier/AP, 2012
Descrizione fisica 1 online resource (331 p.)
Disciplina 551
Soggetto topico Geophysics - Measurement
Inverse problems (Differential equations) - Numerical solutions
Oceanography - Measurement
Soggetto genere / forma Electronic books.
ISBN 1-283-73512-1
0-12-397784-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Geophysical Data Analysis: Discrete Inverse Theory; Copyright; Dedication; Preface; Reference; Companion Web Site; Contents; Introduction; I.1. Forward and Inverse Theories; I.2. MatLab as a Tool for Learning Inverse Theory; I.3. A Very Quick MatLab Tutorial; I.4. Review of Vectors and Matrices and Their Representation in MatLab; I.5. Useful MatLab Operations; I.5.1. Loops; I.5.2. Loading Data from a File; I.5.3. Plotting Data; I.5.4. Creating Character Strings Containing the Values of Variables; I.5.4 References; Chapter 1: Describing Inverse Problems
1.1. Formulating Inverse Problems1.1.1. Implicit Linear Form; 1.1.2. Explicit Form; 1.1.3. Explicit Linear Form; 1.2. The Linear Inverse Problem; 1.3. Examples of Formulating Inverse Problems; 1.3.1. Example 1: Fitting a Straight Line; 1.3.2. Example 2: Fitting a Parabola; 1.3.3. Example 3: Acoustic Tomography; 1.3.4. Example 4: X-ray Imaging; 1.3.5. Example 5: Spectral Curve Fitting; 1.3.6. Example 6: Factor Analysis; 1.4. Solutions to Inverse Problems; 1.4.1. Estimates of Model Parameters; 1.4.2. Bounding Values; 1.4.3. Probability Density Functions
1.4.4. Sets of Realizations of Model Parameters1.4.5. Weighted Averages of Model Parameters; 1.5. Problems; 1.5 References; Chapter 2: Some Comments on Probability Theory; 2.1. Noise and Random Variables; 2.2. Correlated Data; 2.3. Functions of Random Variables; 2.4. Gaussian Probability Density Functions; 2.5. Testing the Assumption of Gaussian Statistics; 2.6. Conditional Probability Density Functions; 2.7. Confidence Intervals; 2.8. Computing Realizations of Random Variables; 2.9. Problems; 2.9 References; Chapter 3: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1
3.1. The Lengths of Estimates3.2. Measures of Length; 3.3. Least Squares for a Straight Line; 3.4. The Least Squares Solution of the Linear Inverse Problem; 3.5. Some Examples; 3.5.1. The Straight Line Problem; 3.5.2. Fitting a Parabola; 3.5.3. Fitting a Plane Surface; 3.6. The Existence of the Least Squares Solution; 3.6.1. Underdetermined Problems; 3.6.2. Even-Determined Problems; 3.6.3. Overdetermined Problems; 3.7. The Purely Underdetermined Problem; 3.8. Mixed-Determined Problems; 3.9. Weighted Measures of Length as a Type of A Priori Information; 3.9.1. Weighted Least Squares
3.9.2. Weighted Minimum Length3.9.3. Weighted Damped Least Squares; 3.10. Other Types of A Priori Information; 3.10.1. Example: Constrained Fitting of a Straight Line; 3.11. The Variance of the Model Parameter Estimates; 3.12. Variance and Prediction Error of the Least Squares Solution; 3.13. Problems; 3.13References; Chapter 4: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2; 4.1. Solutions Versus Operators; 4.2. The Data Resolution Matrix; 4.3. The Model Resolution Matrix; 4.4. The Unit Covariance Matrix; 4.5. Resolution and Covariance of Some Generalized Inverses
4.5.1. Least Squares
Record Nr. UNINA-9910452072303321
Menke William  
Amsterdam ; ; Boston, : Elsevier/AP, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geophysical data analysis [[electronic resource] ] : discrete inverse theory / / William Menke
Geophysical data analysis [[electronic resource] ] : discrete inverse theory / / William Menke
Autore Menke William
Edizione [Matlab ed., 3rd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier/AP, 2012
Descrizione fisica 1 online resource (331 p.)
Disciplina 551
Soggetto topico Geophysics - Measurement
Inverse problems (Differential equations) - Numerical solutions
Oceanography - Measurement
ISBN 1-283-73512-1
0-12-397784-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Geophysical Data Analysis: Discrete Inverse Theory; Copyright; Dedication; Preface; Reference; Companion Web Site; Contents; Introduction; I.1. Forward and Inverse Theories; I.2. MatLab as a Tool for Learning Inverse Theory; I.3. A Very Quick MatLab Tutorial; I.4. Review of Vectors and Matrices and Their Representation in MatLab; I.5. Useful MatLab Operations; I.5.1. Loops; I.5.2. Loading Data from a File; I.5.3. Plotting Data; I.5.4. Creating Character Strings Containing the Values of Variables; I.5.4 References; Chapter 1: Describing Inverse Problems
1.1. Formulating Inverse Problems1.1.1. Implicit Linear Form; 1.1.2. Explicit Form; 1.1.3. Explicit Linear Form; 1.2. The Linear Inverse Problem; 1.3. Examples of Formulating Inverse Problems; 1.3.1. Example 1: Fitting a Straight Line; 1.3.2. Example 2: Fitting a Parabola; 1.3.3. Example 3: Acoustic Tomography; 1.3.4. Example 4: X-ray Imaging; 1.3.5. Example 5: Spectral Curve Fitting; 1.3.6. Example 6: Factor Analysis; 1.4. Solutions to Inverse Problems; 1.4.1. Estimates of Model Parameters; 1.4.2. Bounding Values; 1.4.3. Probability Density Functions
1.4.4. Sets of Realizations of Model Parameters1.4.5. Weighted Averages of Model Parameters; 1.5. Problems; 1.5 References; Chapter 2: Some Comments on Probability Theory; 2.1. Noise and Random Variables; 2.2. Correlated Data; 2.3. Functions of Random Variables; 2.4. Gaussian Probability Density Functions; 2.5. Testing the Assumption of Gaussian Statistics; 2.6. Conditional Probability Density Functions; 2.7. Confidence Intervals; 2.8. Computing Realizations of Random Variables; 2.9. Problems; 2.9 References; Chapter 3: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1
3.1. The Lengths of Estimates3.2. Measures of Length; 3.3. Least Squares for a Straight Line; 3.4. The Least Squares Solution of the Linear Inverse Problem; 3.5. Some Examples; 3.5.1. The Straight Line Problem; 3.5.2. Fitting a Parabola; 3.5.3. Fitting a Plane Surface; 3.6. The Existence of the Least Squares Solution; 3.6.1. Underdetermined Problems; 3.6.2. Even-Determined Problems; 3.6.3. Overdetermined Problems; 3.7. The Purely Underdetermined Problem; 3.8. Mixed-Determined Problems; 3.9. Weighted Measures of Length as a Type of A Priori Information; 3.9.1. Weighted Least Squares
3.9.2. Weighted Minimum Length3.9.3. Weighted Damped Least Squares; 3.10. Other Types of A Priori Information; 3.10.1. Example: Constrained Fitting of a Straight Line; 3.11. The Variance of the Model Parameter Estimates; 3.12. Variance and Prediction Error of the Least Squares Solution; 3.13. Problems; 3.13References; Chapter 4: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2; 4.1. Solutions Versus Operators; 4.2. The Data Resolution Matrix; 4.3. The Model Resolution Matrix; 4.4. The Unit Covariance Matrix; 4.5. Resolution and Covariance of Some Generalized Inverses
4.5.1. Least Squares
Record Nr. UNINA-9910779175303321
Menke William  
Amsterdam ; ; Boston, : Elsevier/AP, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geophysical data analysis : discrete inverse theory / / William Menke
Geophysical data analysis : discrete inverse theory / / William Menke
Autore Menke William
Edizione [Matlab ed., 3rd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier/AP, 2012
Descrizione fisica 1 online resource (331 p.)
Disciplina 551
Soggetto topico Geophysics - Measurement
Inverse problems (Differential equations) - Numerical solutions
Oceanography - Measurement
ISBN 1-283-73512-1
0-12-397784-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Geophysical Data Analysis: Discrete Inverse Theory; Copyright; Dedication; Preface; Reference; Companion Web Site; Contents; Introduction; I.1. Forward and Inverse Theories; I.2. MatLab as a Tool for Learning Inverse Theory; I.3. A Very Quick MatLab Tutorial; I.4. Review of Vectors and Matrices and Their Representation in MatLab; I.5. Useful MatLab Operations; I.5.1. Loops; I.5.2. Loading Data from a File; I.5.3. Plotting Data; I.5.4. Creating Character Strings Containing the Values of Variables; I.5.4 References; Chapter 1: Describing Inverse Problems
1.1. Formulating Inverse Problems1.1.1. Implicit Linear Form; 1.1.2. Explicit Form; 1.1.3. Explicit Linear Form; 1.2. The Linear Inverse Problem; 1.3. Examples of Formulating Inverse Problems; 1.3.1. Example 1: Fitting a Straight Line; 1.3.2. Example 2: Fitting a Parabola; 1.3.3. Example 3: Acoustic Tomography; 1.3.4. Example 4: X-ray Imaging; 1.3.5. Example 5: Spectral Curve Fitting; 1.3.6. Example 6: Factor Analysis; 1.4. Solutions to Inverse Problems; 1.4.1. Estimates of Model Parameters; 1.4.2. Bounding Values; 1.4.3. Probability Density Functions
1.4.4. Sets of Realizations of Model Parameters1.4.5. Weighted Averages of Model Parameters; 1.5. Problems; 1.5 References; Chapter 2: Some Comments on Probability Theory; 2.1. Noise and Random Variables; 2.2. Correlated Data; 2.3. Functions of Random Variables; 2.4. Gaussian Probability Density Functions; 2.5. Testing the Assumption of Gaussian Statistics; 2.6. Conditional Probability Density Functions; 2.7. Confidence Intervals; 2.8. Computing Realizations of Random Variables; 2.9. Problems; 2.9 References; Chapter 3: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1
3.1. The Lengths of Estimates3.2. Measures of Length; 3.3. Least Squares for a Straight Line; 3.4. The Least Squares Solution of the Linear Inverse Problem; 3.5. Some Examples; 3.5.1. The Straight Line Problem; 3.5.2. Fitting a Parabola; 3.5.3. Fitting a Plane Surface; 3.6. The Existence of the Least Squares Solution; 3.6.1. Underdetermined Problems; 3.6.2. Even-Determined Problems; 3.6.3. Overdetermined Problems; 3.7. The Purely Underdetermined Problem; 3.8. Mixed-Determined Problems; 3.9. Weighted Measures of Length as a Type of A Priori Information; 3.9.1. Weighted Least Squares
3.9.2. Weighted Minimum Length3.9.3. Weighted Damped Least Squares; 3.10. Other Types of A Priori Information; 3.10.1. Example: Constrained Fitting of a Straight Line; 3.11. The Variance of the Model Parameter Estimates; 3.12. Variance and Prediction Error of the Least Squares Solution; 3.13. Problems; 3.13References; Chapter 4: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2; 4.1. Solutions Versus Operators; 4.2. The Data Resolution Matrix; 4.3. The Model Resolution Matrix; 4.4. The Unit Covariance Matrix; 4.5. Resolution and Covariance of Some Generalized Inverses
4.5.1. Least Squares
Record Nr. UNINA-9910807477903321
Menke William  
Amsterdam ; ; Boston, : Elsevier/AP, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geophysical data analysis : discrete inverse theory / William Menke
Geophysical data analysis : discrete inverse theory / William Menke
Autore Menke, William
Edizione [3rd ed.]
Pubbl/distr/stampa Amsterdarm : Elsevier, 2012
Descrizione fisica xiii, 293 p. : ill. ; 24 cm
Disciplina 551
Soggetto topico Geophysics - Measurement
Inverse problems (Differential equations) - Numerical solutions
Oceanography - Measurement
ISBN 9780123971609
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002944549707536
Menke, William  
Amsterdarm : Elsevier, 2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Instrumentation and metrology in oceanography [[electronic resource] /] / Marc Le Menn
Instrumentation and metrology in oceanography [[electronic resource] /] / Marc Le Menn
Autore Le Menn Marc
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (405 p.)
Disciplina 551.46
551.46028/4
551.460284
Collana Instrumentation and measurement series
Soggetto topico Oceanographic instruments
Oceanography - Measurement
Soggetto genere / forma Electronic books.
ISBN 1-118-56195-3
1-118-57813-9
1-118-57821-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Instrumentation and Metrology in Oceanography; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. What We Measure and What We Process; 1.1. The quantities we want to know; 1.1.1. Velocity and density; 1.1.2. Pressure and depth; 1.1.3. Speed and movement; 1.1.4. Time and space; 1.2. Linking of essential quantities in oceanography; 1.2.1. Temperature; 1.2.2. Pressure; 1.2.3. Conductivity and salinity; 1.2.4. Velocity; 1.2.5. Time; 1.3. Calculation of density; 1.3.1. Density and EOS-80; 1.3.2. Laboratory densitometers; 1.3.3. Density and absolute salinity
1.4. Bibliography1.4.1. Quantities that we want to know; 1.4.2. Linking of essential quantities in oceanography; Chapter 2. Measurement Systems in Practice; 2.1. Determining temperature; 2.1.1. Principal instruments; 2.1.2. Sensor technologies; 2.1.3. Thermal transfers; 2.1.4. Response time of temperature sensors; 2.1.5. Viscous heating of temperature sensors; 2.2. Determining conductivity; 2.2.1. Principle instruments used; 2.2.2. Sensors' technologies; 2.2.3. Response time of conductivity sensors
2.2.4. Aligning the response times of temperature and conductivity sensors and correcting thermal inertia2.2.5. Biofouling and protection of instruments; 2.3. Determining pressure; 2.3.1. Piezoresistive pressure sensors; 2.3.2. Piezoelectric pressure sensors; 2.3.3. Errors in pressure sensor measurements; 2.4. Determining velocity; 2.4.1. Principles of measurement; 2.4.2. Instruments used at sea; 2.5. Determining current; 2.5.1. Rotor current meters; 2.5.2. Doppler effect current meters; 2.5.3. Electromagnetic current meters; 2.5.4. Doppler effect profilers
2.5.5. Directional referencing of current measurements2.5.6. Calibration of Doppler effect current meters; 2.6. Determining time or measuring frequency; 2.6.1. The connection of clocks; 2.6.2. Time bases of instruments; 2.7. Determining position and movement; 2.7.1. The Argos system; 2.7.2. The global positioning system; 2.8. Determining the height of water; 2.8.1. Tide gauges; 2.8.2. Tide gauges with pressure sensors; 2.8.3. Keying and uniting of tide gauges; 2.9. Determining waves and swell characteristics; 2.9.1. Factors relating to the origins and modeling of swell
2.9.2. Instruments used to measure the state of the sea2.10. Determining the turbidity or sea water's optical properties; 2.10.1. Theoretical notions of the optical properties of sea water; 2.10.2. Measurement of apparent optical properties; 2.10.3. Transmissiometers and measurements of absorption; 2.10.4. Nephelometers and turbidity sensors; 2.10.5. Fluorimeters; 2.11. Determining various physicochemical properties; 2.11.1. Notions of the chemical parameters of sea water; 2.11.2. In situ measurement of dissolved oxygen; 2.11.3. In situ measurement of dissolved carbon
2.11.4. In situ measurement of some other components
Record Nr. UNINA-9910133863203321
Le Menn Marc  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Instrumentation and metrology in oceanography [[electronic resource] /] / Marc Le Menn
Instrumentation and metrology in oceanography [[electronic resource] /] / Marc Le Menn
Autore Le Menn Marc
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (405 p.)
Disciplina 551.46
551.46028/4
551.460284
Collana Instrumentation and measurement series
Soggetto topico Oceanographic instruments
Oceanography - Measurement
ISBN 1-118-56195-3
1-118-57813-9
1-118-57821-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Instrumentation and Metrology in Oceanography; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. What We Measure and What We Process; 1.1. The quantities we want to know; 1.1.1. Velocity and density; 1.1.2. Pressure and depth; 1.1.3. Speed and movement; 1.1.4. Time and space; 1.2. Linking of essential quantities in oceanography; 1.2.1. Temperature; 1.2.2. Pressure; 1.2.3. Conductivity and salinity; 1.2.4. Velocity; 1.2.5. Time; 1.3. Calculation of density; 1.3.1. Density and EOS-80; 1.3.2. Laboratory densitometers; 1.3.3. Density and absolute salinity
1.4. Bibliography1.4.1. Quantities that we want to know; 1.4.2. Linking of essential quantities in oceanography; Chapter 2. Measurement Systems in Practice; 2.1. Determining temperature; 2.1.1. Principal instruments; 2.1.2. Sensor technologies; 2.1.3. Thermal transfers; 2.1.4. Response time of temperature sensors; 2.1.5. Viscous heating of temperature sensors; 2.2. Determining conductivity; 2.2.1. Principle instruments used; 2.2.2. Sensors' technologies; 2.2.3. Response time of conductivity sensors
2.2.4. Aligning the response times of temperature and conductivity sensors and correcting thermal inertia2.2.5. Biofouling and protection of instruments; 2.3. Determining pressure; 2.3.1. Piezoresistive pressure sensors; 2.3.2. Piezoelectric pressure sensors; 2.3.3. Errors in pressure sensor measurements; 2.4. Determining velocity; 2.4.1. Principles of measurement; 2.4.2. Instruments used at sea; 2.5. Determining current; 2.5.1. Rotor current meters; 2.5.2. Doppler effect current meters; 2.5.3. Electromagnetic current meters; 2.5.4. Doppler effect profilers
2.5.5. Directional referencing of current measurements2.5.6. Calibration of Doppler effect current meters; 2.6. Determining time or measuring frequency; 2.6.1. The connection of clocks; 2.6.2. Time bases of instruments; 2.7. Determining position and movement; 2.7.1. The Argos system; 2.7.2. The global positioning system; 2.8. Determining the height of water; 2.8.1. Tide gauges; 2.8.2. Tide gauges with pressure sensors; 2.8.3. Keying and uniting of tide gauges; 2.9. Determining waves and swell characteristics; 2.9.1. Factors relating to the origins and modeling of swell
2.9.2. Instruments used to measure the state of the sea2.10. Determining the turbidity or sea water's optical properties; 2.10.1. Theoretical notions of the optical properties of sea water; 2.10.2. Measurement of apparent optical properties; 2.10.3. Transmissiometers and measurements of absorption; 2.10.4. Nephelometers and turbidity sensors; 2.10.5. Fluorimeters; 2.11. Determining various physicochemical properties; 2.11.1. Notions of the chemical parameters of sea water; 2.11.2. In situ measurement of dissolved oxygen; 2.11.3. In situ measurement of dissolved carbon
2.11.4. In situ measurement of some other components
Record Nr. UNISA-996217162103316
Le Menn Marc  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Instrumentation and metrology in oceanography [[electronic resource] /] / Marc Le Menn
Instrumentation and metrology in oceanography [[electronic resource] /] / Marc Le Menn
Autore Le Menn Marc
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (405 p.)
Disciplina 551.46
551.46028/4
551.460284
Collana Instrumentation and measurement series
Soggetto topico Oceanographic instruments
Oceanography - Measurement
ISBN 1-118-56195-3
1-118-57813-9
1-118-57821-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Instrumentation and Metrology in Oceanography; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. What We Measure and What We Process; 1.1. The quantities we want to know; 1.1.1. Velocity and density; 1.1.2. Pressure and depth; 1.1.3. Speed and movement; 1.1.4. Time and space; 1.2. Linking of essential quantities in oceanography; 1.2.1. Temperature; 1.2.2. Pressure; 1.2.3. Conductivity and salinity; 1.2.4. Velocity; 1.2.5. Time; 1.3. Calculation of density; 1.3.1. Density and EOS-80; 1.3.2. Laboratory densitometers; 1.3.3. Density and absolute salinity
1.4. Bibliography1.4.1. Quantities that we want to know; 1.4.2. Linking of essential quantities in oceanography; Chapter 2. Measurement Systems in Practice; 2.1. Determining temperature; 2.1.1. Principal instruments; 2.1.2. Sensor technologies; 2.1.3. Thermal transfers; 2.1.4. Response time of temperature sensors; 2.1.5. Viscous heating of temperature sensors; 2.2. Determining conductivity; 2.2.1. Principle instruments used; 2.2.2. Sensors' technologies; 2.2.3. Response time of conductivity sensors
2.2.4. Aligning the response times of temperature and conductivity sensors and correcting thermal inertia2.2.5. Biofouling and protection of instruments; 2.3. Determining pressure; 2.3.1. Piezoresistive pressure sensors; 2.3.2. Piezoelectric pressure sensors; 2.3.3. Errors in pressure sensor measurements; 2.4. Determining velocity; 2.4.1. Principles of measurement; 2.4.2. Instruments used at sea; 2.5. Determining current; 2.5.1. Rotor current meters; 2.5.2. Doppler effect current meters; 2.5.3. Electromagnetic current meters; 2.5.4. Doppler effect profilers
2.5.5. Directional referencing of current measurements2.5.6. Calibration of Doppler effect current meters; 2.6. Determining time or measuring frequency; 2.6.1. The connection of clocks; 2.6.2. Time bases of instruments; 2.7. Determining position and movement; 2.7.1. The Argos system; 2.7.2. The global positioning system; 2.8. Determining the height of water; 2.8.1. Tide gauges; 2.8.2. Tide gauges with pressure sensors; 2.8.3. Keying and uniting of tide gauges; 2.9. Determining waves and swell characteristics; 2.9.1. Factors relating to the origins and modeling of swell
2.9.2. Instruments used to measure the state of the sea2.10. Determining the turbidity or sea water's optical properties; 2.10.1. Theoretical notions of the optical properties of sea water; 2.10.2. Measurement of apparent optical properties; 2.10.3. Transmissiometers and measurements of absorption; 2.10.4. Nephelometers and turbidity sensors; 2.10.5. Fluorimeters; 2.11. Determining various physicochemical properties; 2.11.1. Notions of the chemical parameters of sea water; 2.11.2. In situ measurement of dissolved oxygen; 2.11.3. In situ measurement of dissolved carbon
2.11.4. In situ measurement of some other components
Record Nr. UNINA-9910830629703321
Le Menn Marc  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui