Basic college mathematics with early integers. / / Marvin L. Bittinger, Judith A. Penna
| Basic college mathematics with early integers. / / Marvin L. Bittinger, Judith A. Penna |
| Autore | Bittinger Marvin L. |
| Edizione | [Third, Global edition.] |
| Pubbl/distr/stampa | Harlow, England : , : Pearson Education, Limited, , [2015] |
| Descrizione fisica | 1 online resource (744 pages) : illustrations, tables |
| Disciplina | 510 |
| Soggetto topico |
Numbers, Natural
Algebra |
| ISBN | 1-292-07988-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910154767103321 |
Bittinger Marvin L.
|
||
| Harlow, England : , : Pearson Education, Limited, , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hardy-Ramanujan journal
| Hardy-Ramanujan journal |
| Pubbl/distr/stampa | Bangalore, : Hardy-Ramanujan Society |
| Soggetto topico |
Number theory
Numbers, Natural Transcendental numbers |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910142688903321 |
| Bangalore, : Hardy-Ramanujan Society | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Kroneckers traum : ein metamathematischer essay / / François Borsotto
| Kroneckers traum : ein metamathematischer essay / / François Borsotto |
| Autore | Borsotto François |
| Pubbl/distr/stampa | Göttingen : , : Cuvillier Verlag, , [2019] |
| Descrizione fisica | 1 online resource (70 pages) |
| Disciplina | 512.7 |
| Soggetto topico |
Number theory
Numbers, Natural |
| ISBN | 3-7369-6072-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNINA-9910793978903321 |
Borsotto François
|
||
| Göttingen : , : Cuvillier Verlag, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Kroneckers traum : ein metamathematischer essay / / François Borsotto
| Kroneckers traum : ein metamathematischer essay / / François Borsotto |
| Autore | Borsotto François |
| Pubbl/distr/stampa | Göttingen : , : Cuvillier Verlag, , [2019] |
| Descrizione fisica | 1 online resource (70 pages) |
| Disciplina | 512.7 |
| Soggetto topico |
Number theory
Numbers, Natural |
| ISBN | 3-7369-6072-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNINA-9910806975203321 |
Borsotto François
|
||
| Göttingen : , : Cuvillier Verlag, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.]
| Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.] |
| Autore | Chinesta Francisco |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (255 p.) |
| Disciplina |
624.1/7015118
624.17015118 |
| Altri autori (Persone) | ChinestaFrancisco |
| Collana | ISTE |
| Soggetto topico |
Materials - Mechanical properties - Mathematical models
Numerical analysis Numbers, Natural |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-61690-1
1-299-31421-X 1-118-61668-5 |
| Classificazione | MAT003000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant 2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv 3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports 3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity 4.2. Indicators and estimators of error: adaptivity |
| Record Nr. | UNINA-9910139056503321 |
Chinesta Francisco
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.]
| Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.] |
| Autore | Chinesta Francisco |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (255 p.) |
| Disciplina |
624.1/7015118
624.17015118 |
| Altri autori (Persone) | ChinestaFrancisco |
| Collana | ISTE |
| Soggetto topico |
Materials - Mechanical properties - Mathematical models
Numerical analysis Numbers, Natural |
| ISBN |
1-118-61690-1
1-299-31421-X 1-118-61668-5 |
| Classificazione | MAT003000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant 2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv 3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports 3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity 4.2. Indicators and estimators of error: adaptivity |
| Record Nr. | UNINA-9910830394703321 |
Chinesta Francisco
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Natural element method for the simulation of structures and processes / / Francisco Chinesta ... [et al.]
| Natural element method for the simulation of structures and processes / / Francisco Chinesta ... [et al.] |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (255 p.) |
| Disciplina | 624.1/7015118 |
| Altri autori (Persone) | ChinestaFrancisco |
| Collana | ISTE |
| Soggetto topico |
Materials - Mechanical properties - Mathematical models
Numerical analysis Numbers, Natural |
| ISBN |
1-118-61690-1
1-299-31421-X 1-118-61668-5 |
| Classificazione | MAT003000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant 2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv 3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports 3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity 4.2. Indicators and estimators of error: adaptivity |
| Record Nr. | UNINA-9911019414403321 |
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Tabula numerorum quadratorum decies millium, unà cum ipsorum lateribus ab unitate incipientibus & ordine naturali usque ad 10000 progredientibus [[electronic resource] ] : A table of ten thousand square numbers, namely, of all the square numbers between 0 and 100 millions; and of their sides or roots, which are all the whole numbers between 0 and ten thousand
| Tabula numerorum quadratorum decies millium, unà cum ipsorum lateribus ab unitate incipientibus & ordine naturali usque ad 10000 progredientibus [[electronic resource] ] : A table of ten thousand square numbers, namely, of all the square numbers between 0 and 100 millions; and of their sides or roots, which are all the whole numbers between 0 and ten thousand |
| Autore | Pell John <1611-1685.> |
| Pubbl/distr/stampa | London, : Printed by Thomas Ratcliffe, and Nath. Thompson, and are to be sold by Moses Pitt at the White Hart in Little Britain, 1672 |
| Descrizione fisica | 32 p. : tables |
| Soggetto topico |
Arithmetic - Early works to 1900
Square Root Numbers, Natural |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996395323503316 |
Pell John <1611-1685.>
|
||
| London, : Printed by Thomas Ratcliffe, and Nath. Thompson, and are to be sold by Moses Pitt at the White Hart in Little Britain, 1672 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Tabula numerorum quadratorum decies millium, unà cum ipsorum lateribus ab unitate incipientibus & ordine naturali usque ad 10000 progredientibus.= [[electronic resource] ] : A table of ten thousand square numbers, namely, of all the square numbers between 0 and 100 millions; and of their sides or roots, which are all the whole numbers between 0 and ten thousand
| Tabula numerorum quadratorum decies millium, unà cum ipsorum lateribus ab unitate incipientibus & ordine naturali usque ad 10000 progredientibus.= [[electronic resource] ] : A table of ten thousand square numbers, namely, of all the square numbers between 0 and 100 millions; and of their sides or roots, which are all the whole numbers between 0 and ten thousand |
| Autore | Pell John <1611-1685.> |
| Pubbl/distr/stampa | London, : printed by Thomas Ratcliffe, and Nath. Thompson, and are to be sold by Moses Pitt at the White Hart in Little Britain, 1672 |
| Descrizione fisica | 32 p. : tables |
| Soggetto topico |
Arithmetic
Square root Numbers, Natural |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996383999103316 |
Pell John <1611-1685.>
|
||
| London, : printed by Thomas Ratcliffe, and Nath. Thompson, and are to be sold by Moses Pitt at the White Hart in Little Britain, 1672 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Uniform distribution of sequences of integers in residue classes / / Władysław Narkiewicz
| Uniform distribution of sequences of integers in residue classes / / Władysław Narkiewicz |
| Autore | Narkiewicz Władysław |
| Edizione | [1st ed. 1984.] |
| Pubbl/distr/stampa | Berlin : , : Springer-Verlag, , [1984] |
| Descrizione fisica | 1 online resource (X, 130 p.) |
| Disciplina | 515.24 |
| Collana | Lecture notes in mathematics |
| Soggetto topico |
Sequences (Mathematics)
Numbers, Natural Uniform distribution (Probability theory) |
| ISBN | 3-540-39063-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | General results -- Polynomial sequences -- Linear recurrent sequences -- Additive functions -- Multiplicative functions -- Polynomial-like functions. |
| Record Nr. | UNISA-996466574303316 |
Narkiewicz Władysław
|
||
| Berlin : , : Springer-Verlag, , [1984] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||