top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Pubbl/distr/stampa Hackensakc, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (200 p.)
Disciplina 511.3/52
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
FortunaL <1953-> (Luigi)
FrascaMattia
Collana World Scientific series on nonlinear science
Soggetto topico Computational complexity
Nonlinear systems - Mathematical models
Self-organizing maps
System theory - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-281-96803-X
9786611968038
981-281-405-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contributors; List of People Involved in the FIRB Project; Contents; 1. The CNN Paradigm for Complexity; 1.1 Introduction; 1.2 The 3D-CNN Model; 1.3 E3: An Universal Emulator for Complex Systems; 1.4 Emergence of Forms in 3D-CNNs; 1.4.1 Initial conditions; 1.4.2 3D waves in homogeneous and unhomogeneous media; 1.4.3 Chua's circuit; 1.4.4 Lorenz system; 1.4.5 Rössler system; 1.4.6 FitzHugh-Nagumo neuron model; 1.4.7 Hindmarsh-Rose neuron model; 1.4.8 Inferior-Olive neuronmodel; 1.4.9 Izhikevich neuronmodel; 1.4.10 Neuron model exhibiting homoclinic chaos; 1.5 Conclusions
2. Emergent Phenomena in Neuroscience2.1 Introductory Material: Neurons and Models; 2.1.1 Models of excitability; 2.1.2 The Hodgkin-Huxley model; 2.1.3 The FitzHugh-Nagumo model; 2.1.4 Class I and class II excitability; 2.1.5 Other neuronmodels; 2.2 Electronic Implementation of NeuronModels; 2.2.1 Implementation of single cell neuron dynamics; 2.2.2 Implementation of systems with many neurons; 2.3 Local Activity Theory for Systems of IO Neurons; 2.3.1 The theory of local activity for one-port and two-port systems
2.3.2 The local activity and the edge of chaos regions of the inferior olive neuron2.4 Simulation of IO Systems: Emerging Results; 2.4.1 The paradigm of local active wave computation for image processing; 2.4.2 Local active wave computation based paradigm: 3D-shape processing; 2.5 Networks of HR Neurons; 2.5.1 The neural model; 2.5.2 Parameters for dynamical analysis; 2.5.3 Dynamical effects of topology on synchronization; 2.6 Neurons in Presence of Noise; 2.7 Conclusions; 3. Frequency Analysis and Identification in Atomic Force Microscopy; 3.1 Introduction; 3.2 AFM Modeling
3.2.1 Piecewise interaction force3.2.2 Lennard Jones-like interaction force; 3.3 Frequency Analysis via Harmonic Balance; 3.3.1 Piecewise interaction model analysis; 3.3.2 Lennard Jones-like hysteretic model analysis; 3.4 Identification of the Tip-Sample Force Model; 3.4.1 Identification method; 3.4.2 Experimental results; 3.5 Conclusions; References; 4. Control and Parameter Estimation of Systems with Low-Dimensional Chaos - The Role of Peak-to-Peak Dynamics; 4.1 Introduction; 4.2 Peak-to-Peak Dynamics; 4.3 Control System Design; 4.3.1 PPD modeling and control
4.3.2 The impact of noise and sampling frequency4.3.3 PPD reconstruction; 4.4 Parameter Estimation; 4.4.1 Derivation of the "empirical PPP"; 4.4.2 Interpolation of the "empirical PPP"; 4.4.3 Optimization; 4.4.4 Example of application; 4.5 Concluding Remarks; References; 5. Synchronization of Complex Networks; 5.1 Introduction; 5.2 Synchronization of Interacting Oscillators; 5.3 From Local to Long-Range Connections; 5.4 The Master Stability Function; 5.4.1 The case of continuous time systems; 5.4.2 The Master stability function for coupled maps
5.5 Key Elements for the Assessing of Synchronizability
Record Nr. UNINA-9910453334503321
Hackensakc, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Pubbl/distr/stampa Hackensakc, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (200 p.)
Disciplina 511.3/52
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
FortunaL <1953-> (Luigi)
FrascaMattia
Collana World Scientific series on nonlinear science
Soggetto topico Computational complexity
Nonlinear systems - Mathematical models
Self-organizing maps
System theory - Mathematical models
ISBN 1-281-96803-X
9786611968038
981-281-405-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contributors; List of People Involved in the FIRB Project; Contents; 1. The CNN Paradigm for Complexity; 1.1 Introduction; 1.2 The 3D-CNN Model; 1.3 E3: An Universal Emulator for Complex Systems; 1.4 Emergence of Forms in 3D-CNNs; 1.4.1 Initial conditions; 1.4.2 3D waves in homogeneous and unhomogeneous media; 1.4.3 Chua's circuit; 1.4.4 Lorenz system; 1.4.5 Rössler system; 1.4.6 FitzHugh-Nagumo neuron model; 1.4.7 Hindmarsh-Rose neuron model; 1.4.8 Inferior-Olive neuronmodel; 1.4.9 Izhikevich neuronmodel; 1.4.10 Neuron model exhibiting homoclinic chaos; 1.5 Conclusions
2. Emergent Phenomena in Neuroscience2.1 Introductory Material: Neurons and Models; 2.1.1 Models of excitability; 2.1.2 The Hodgkin-Huxley model; 2.1.3 The FitzHugh-Nagumo model; 2.1.4 Class I and class II excitability; 2.1.5 Other neuronmodels; 2.2 Electronic Implementation of NeuronModels; 2.2.1 Implementation of single cell neuron dynamics; 2.2.2 Implementation of systems with many neurons; 2.3 Local Activity Theory for Systems of IO Neurons; 2.3.1 The theory of local activity for one-port and two-port systems
2.3.2 The local activity and the edge of chaos regions of the inferior olive neuron2.4 Simulation of IO Systems: Emerging Results; 2.4.1 The paradigm of local active wave computation for image processing; 2.4.2 Local active wave computation based paradigm: 3D-shape processing; 2.5 Networks of HR Neurons; 2.5.1 The neural model; 2.5.2 Parameters for dynamical analysis; 2.5.3 Dynamical effects of topology on synchronization; 2.6 Neurons in Presence of Noise; 2.7 Conclusions; 3. Frequency Analysis and Identification in Atomic Force Microscopy; 3.1 Introduction; 3.2 AFM Modeling
3.2.1 Piecewise interaction force3.2.2 Lennard Jones-like interaction force; 3.3 Frequency Analysis via Harmonic Balance; 3.3.1 Piecewise interaction model analysis; 3.3.2 Lennard Jones-like hysteretic model analysis; 3.4 Identification of the Tip-Sample Force Model; 3.4.1 Identification method; 3.4.2 Experimental results; 3.5 Conclusions; References; 4. Control and Parameter Estimation of Systems with Low-Dimensional Chaos - The Role of Peak-to-Peak Dynamics; 4.1 Introduction; 4.2 Peak-to-Peak Dynamics; 4.3 Control System Design; 4.3.1 PPD modeling and control
4.3.2 The impact of noise and sampling frequency4.3.3 PPD reconstruction; 4.4 Parameter Estimation; 4.4.1 Derivation of the "empirical PPP"; 4.4.2 Interpolation of the "empirical PPP"; 4.4.3 Optimization; 4.4.4 Example of application; 4.5 Concluding Remarks; References; 5. Synchronization of Complex Networks; 5.1 Introduction; 5.2 Synchronization of Interacting Oscillators; 5.3 From Local to Long-Range Connections; 5.4 The Master Stability Function; 5.4.1 The case of continuous time systems; 5.4.2 The Master stability function for coupled maps
5.5 Key Elements for the Assessing of Synchronizability
Record Nr. UNINA-9910782591603321
Hackensakc, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Pubbl/distr/stampa Hackensakc, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (200 p.)
Disciplina 511.3/52
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
FortunaL <1953-> (Luigi)
FrascaMattia
Collana World Scientific series on nonlinear science
Soggetto topico Computational complexity
Nonlinear systems - Mathematical models
Self-organizing maps
System theory - Mathematical models
ISBN 1-281-96803-X
9786611968038
981-281-405-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contributors; List of People Involved in the FIRB Project; Contents; 1. The CNN Paradigm for Complexity; 1.1 Introduction; 1.2 The 3D-CNN Model; 1.3 E3: An Universal Emulator for Complex Systems; 1.4 Emergence of Forms in 3D-CNNs; 1.4.1 Initial conditions; 1.4.2 3D waves in homogeneous and unhomogeneous media; 1.4.3 Chua's circuit; 1.4.4 Lorenz system; 1.4.5 Rössler system; 1.4.6 FitzHugh-Nagumo neuron model; 1.4.7 Hindmarsh-Rose neuron model; 1.4.8 Inferior-Olive neuronmodel; 1.4.9 Izhikevich neuronmodel; 1.4.10 Neuron model exhibiting homoclinic chaos; 1.5 Conclusions
2. Emergent Phenomena in Neuroscience2.1 Introductory Material: Neurons and Models; 2.1.1 Models of excitability; 2.1.2 The Hodgkin-Huxley model; 2.1.3 The FitzHugh-Nagumo model; 2.1.4 Class I and class II excitability; 2.1.5 Other neuronmodels; 2.2 Electronic Implementation of NeuronModels; 2.2.1 Implementation of single cell neuron dynamics; 2.2.2 Implementation of systems with many neurons; 2.3 Local Activity Theory for Systems of IO Neurons; 2.3.1 The theory of local activity for one-port and two-port systems
2.3.2 The local activity and the edge of chaos regions of the inferior olive neuron2.4 Simulation of IO Systems: Emerging Results; 2.4.1 The paradigm of local active wave computation for image processing; 2.4.2 Local active wave computation based paradigm: 3D-shape processing; 2.5 Networks of HR Neurons; 2.5.1 The neural model; 2.5.2 Parameters for dynamical analysis; 2.5.3 Dynamical effects of topology on synchronization; 2.6 Neurons in Presence of Noise; 2.7 Conclusions; 3. Frequency Analysis and Identification in Atomic Force Microscopy; 3.1 Introduction; 3.2 AFM Modeling
3.2.1 Piecewise interaction force3.2.2 Lennard Jones-like interaction force; 3.3 Frequency Analysis via Harmonic Balance; 3.3.1 Piecewise interaction model analysis; 3.3.2 Lennard Jones-like hysteretic model analysis; 3.4 Identification of the Tip-Sample Force Model; 3.4.1 Identification method; 3.4.2 Experimental results; 3.5 Conclusions; References; 4. Control and Parameter Estimation of Systems with Low-Dimensional Chaos - The Role of Peak-to-Peak Dynamics; 4.1 Introduction; 4.2 Peak-to-Peak Dynamics; 4.3 Control System Design; 4.3.1 PPD modeling and control
4.3.2 The impact of noise and sampling frequency4.3.3 PPD reconstruction; 4.4 Parameter Estimation; 4.4.1 Derivation of the "empirical PPP"; 4.4.2 Interpolation of the "empirical PPP"; 4.4.3 Optimization; 4.4.4 Example of application; 4.5 Concluding Remarks; References; 5. Synchronization of Complex Networks; 5.1 Introduction; 5.2 Synchronization of Interacting Oscillators; 5.3 From Local to Long-Range Connections; 5.4 The Master Stability Function; 5.4.1 The case of continuous time systems; 5.4.2 The Master stability function for coupled maps
5.5 Key Elements for the Assessing of Synchronizability
Record Nr. UNINA-9910825960903321
Hackensakc, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis and design of nonlinear systems in the frequency domain / / Yunpeng Zhu
Analysis and design of nonlinear systems in the frequency domain / / Yunpeng Zhu
Autore Zhu Yunpeng
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (xxi, 164 pages) : illustrations
Disciplina 003.75
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Nonlinear systems - Mathematical models
Volterra equations
Sistemes no lineals
Models matemàtics
Equacions de Volterra
Soggetto genere / forma Llibres electrònics
ISBN 3-030-70833-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Supervisor's Foreword -- Preface -- Acknowledgements -- Contents -- Contributors -- Abbreviations -- 1 Introduction -- 1.1 Background -- 1.1.1 Modelling of Nonlinear Systems -- 1.1.2 Frequency Domain Analysis and Design of Nonlinear Systems -- 1.1.3 LS Methods in Nonlinear System Analyses -- 1.1.4 Convergence Issues with the Frequency Analysis of Nonlinear Systems -- 1.2 Aim, Objectives and Contributions -- 1.3 Thesis Layout -- References -- 2 Nonlinear Systems and the Frequency Domain Representations -- 2.1 Introduction -- 2.2 Polynomial Models of Nonlinear Systems -- 2.2.1 The NDE Model of Nonlinear Systems -- 2.2.2 The Polynomial NARX Model of Nonlinear Systems -- 2.2.3 The NARX-M-for-D of Nonlinear Systems -- 2.3 The Frequency Domain Representations of Nonlinear Systems -- 2.3.1 The Volterra Series Representation -- 2.3.2 The Generalised Frequency Response Functions (GFRFs) of Nonlinear Systems -- 2.3.3 The Nonlinear Output Frequency Response Functions (NOFRFs) of Nonlinear Systems -- 2.3.4 The Output Frequency Response Function (OFRF) of Nonlinear Systems -- 2.4 Conclusions -- References -- 3 Generalized Associated Linear Equations (GALEs) with Applications to Nonlinear System Analyses -- 3.1 Introduction -- 3.2 The Associated Linear Equations (ALEs) of Nonlinear Systems -- 3.2.1 The ALEs of Duffing Equations -- 3.2.2 The ALEs of the NARX Model -- 3.3 The Generalized Associated Linear Equations (GALEs) -- 3.3.1 The Concept of the GALEs -- 3.3.2 Determination of the GALEs -- 3.4 System Analyses Using the GALEs -- 3.4.1 Evaluation of the Output Response of Nonlinear Systems -- 3.4.2 Evaluation of the NOFRFs of Nonlinear Systems -- 3.4.3 Evaluation of the OFRF of Nonlinear Systems -- 3.5 Application of the GALEs to Nonlinear System Modelling, Fault Diagnosis, and Design.
3.5.1 Application to the Identification of the NDE Model of a Nonlinear System -- 3.5.2 Application to the NOFRFs Based Fault Diagnosis -- 3.5.3 Application to the OFRFs Based Design of Nonlinear Energy Harvester Systems -- 3.6 Conclusions -- References -- 4 The Convergence of the Volterra Series Representation of Nonlinear Systems -- 4.1 Introduction -- 4.2 The NARX Model in the Frequency Domain: Nonlinear Output Characteristic Spectra (NOCS) Model -- 4.3 The Generalized Output Bound Characteristic Function (GOBCF) Based Convergence Analysis -- 4.3.1 A Sufficient Condition of the Convergence -- 4.3.2 The Determination of the GOBCF -- 4.3.3 Convergence Analysis of the Volterra Series Representation of Nonlinear Systems -- 4.3.4 The Procedure for the New Convergence Analysis -- 4.4 Case Studies -- 4.4.1 Case 1-Unplugged Van der Pol Equation -- 4.4.2 Case 2-Duffing Oscillator with Cubic Damping -- 4.5 Conclusions -- References -- 5 The Effects of Both Linear and Nonlinear Characteristic Parameters on the Output Response of Nonlinear Systems -- 5.1 Introduction -- 5.2 The OFRF Based Design of NARX-M-for-D -- 5.2.1 The OFRF of the NARX-M-for-D -- 5.2.2 The Determination of the OFRF of NARX-M-for-D -- 5.2.3 The OFRF Based Design of Nonlinear Systems -- 5.3 The Associated Output Frequency Response Function (AOFRF) -- 5.3.1 Explicit Relationships Between the GFRFs and the Parameters of the NARX Model -- 5.3.2 Two Special Cases -- 5.3.3 The Concept of the Associated Output Frequency Response Function (AOFRF) -- 5.3.4 The AOFRF in Terms of the System Linear and Nonlinear Characteristic Parameters -- 5.3.5 The AOFRF Based Representation of the Output Frequency Response of Nonlinear Systems -- 5.4 Case Studies -- 5.4.1 Case Study 1-The OFRF Based Design of the Vibration Isolation System.
5.4.2 Case Study 2-The AOFRF Based Representation of the Output Spectrum of a Duffing Nonlinear System -- 5.5 Conclusions -- References -- 6 Nonlinear Damping Based Semi-active Building Isolation System -- 6.1 Introduction -- 6.2 Semi-active Damping System for the Sosokan Building -- 6.2.1 The Sosokan Building and Its Model Representation -- 6.2.2 Semi-active Damping System for the Sosokan Building -- 6.3 Nonlinear Damping Based Semi-active Building Vibration Isolation -- 6.4 Simulation Studies -- 6.4.1 Objectives of Nonlinear Damping Design -- 6.4.2 Effects of Nonlinear Damping Coefficient -- 6.4.3 Effects of Ground Excitation Magnitude -- 6.4.4 Isolation Performance on Higher Floors -- 6.4.5 Isolation Performance in Terms of the Roof Drift -- 6.4.6 Isolation Performance in Terms of Harmonics and a Comparison with the Performance Under LQG Control -- 6.5 Experimental Validation -- 6.6 Conclusions -- References -- 7 Conclusions -- 7.1 Main Contributions of the Present Research -- 7.2 Future Works -- Appendix A Sampling Frequency Independence -- Appendix B Proof of Lemma 5.1.
Record Nr. UNINA-9910484062803321
Zhu Yunpeng  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Autore Ghannouchi Fadhel M. <1958->
Edizione [1st edition]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (272 p.)
Disciplina 621.384131
Soggetto topico Wireless communication systems - Mathematical models
Broadband communication systems - Mathematical models
Signal theory (Telecommunication) - Mathematics
Telecommunication - Transmitters and transmission - Mathematics
Nonlinear systems - Mathematical models
Electric distortion - Mathematical models
ISBN 1-119-00444-6
1-119-00442-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; About the Authors; Preface; Acknowledgments; Chapter 1 Characterization of Wireless Transmitter Distortions; 1.1 Introduction; 1.1.1 RF Power Amplifier Nonlinearity; 1.1.2 Inter-Modulation Distortion and Spectrum Regrowth; 1.2 Impact of Distortions on Transmitter Performances; 1.3 Output Power versus Input Power Characteristic; 1.4 AM/AM and AM/PM Characteristics; 1.5 1 dB Compression Point; 1.6 Third and Fifth Order Intercept Points; 1.7 Carrier to Inter-Modulation Distortion Ratio; 1.8 Adjacent Channel Leakage Ratio; 1.9 Error Vector Magnitude
ReferencesChapter 2 Dynamic Nonlinear Systems; 2.1 Classification of Nonlinear Systems; 2.1.1 Memoryless Systems; 2.1.2 Systems with Memory; 2.2 Memory in Microwave Power Amplification Systems; 2.2.1 Nonlinear Systems without Memory; 2.2.2 Weakly Nonlinear and Quasi-Memoryless Systems; 2.2.3 Nonlinear System with Memory; 2.3 Baseband and Low-Pass Equivalent Signals; 2.4 Origins and Types of Memory Effects in Power Amplification Systems; 2.4.1 Origins of Memory Effects; 2.4.2 Electrical Memory Effects; 2.4.3 Thermal Memory Effects; 2.5 Volterra Series Models; References
Chapter 3 Model Performance Evaluation3.1 Introduction; 3.2 Behavioral Modeling versus Digital Predistortion; 3.3 Time Domain Metrics; 3.3.1 Normalized Mean Square Error; 3.3.2 Memory Effects Modeling Ratio; 3.4 Frequency Domain Metrics; 3.4.1 Frequency Domain Normalized Mean Square Error; 3.4.2 Adjacent Channel Error Power Ratio; 3.4.3 Weighted Error Spectrum Power Ratio; 3.4.4 Normalized Absolute Mean Spectrum Error; 3.5 Static Nonlinearity Cancelation Techniques; 3.5.1 Static Nonlinearity Pre-Compensation Technique; 3.5.2 Static Nonlinearity Post-Compensation Technique
3.5.3 Memory Effect Intensity3.6 Discussion and Conclusion; References; Chapter 4 Quasi-Memoryless Behavioral Models; 4.1 Introduction; 4.2 Modeling and Simulation of Memoryless/Quasi-Memoryless Nonlinear Systems; 4.3 Bandpass to Baseband Equivalent Transformation; 4.4 Look-Up Table Models; 4.4.1 Uniformly Indexed Loop-Up Tables; 4.4.2 Non-Uniformly Indexed Look-Up Tables; 4.5 Generic Nonlinear Amplifier Behavioral Model; 4.6 Empirical Analytical Based Models; 4.6.1 Polar Saleh Model; 4.6.2 Cartesian Saleh Model; 4.6.3 Frequency-Dependent Saleh Model; 4.6.4 Ghorbani Model
4.6.5 Berman and Mahle Phase Model4.6.6 Thomas-Weidner-Durrani Amplitude Model; 4.6.7 Limiter Model; 4.6.8 ARCTAN Model; 4.6.9 Rapp Model; 4.6.10 White Model; 4.7 Power Series Models; 4.7.1 Polynomial Model; 4.7.2 Bessel Function Based Model; 4.7.3 Chebyshev Series Based Model; 4.7.4 Gegenbauer Polynomials Based Model; 4.7.5 Zernike Polynomials Based Model; References; Chapter 5 Memory Polynomial Based Models; 5.1 Introduction; 5.2 Generic Memory Polynomial Model Formulation; 5.3 Memory Polynomial Model; 5.4 Variants of the Memory Polynomial Model; 5.4.1 Orthogonal Memory Polynomial Model
5.4.2 Sparse-Delay Memory Polynomial Model
Record Nr. UNINA-9910140643403321
Ghannouchi Fadhel M. <1958->  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Autore Ghannouchi Fadhel M. <1958->
Edizione [1st edition]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (272 p.)
Disciplina 621.384131
Soggetto topico Wireless communication systems - Mathematical models
Broadband communication systems - Mathematical models
Signal theory (Telecommunication) - Mathematics
Telecommunication - Transmitters and transmission - Mathematics
Nonlinear systems - Mathematical models
Electric distortion - Mathematical models
ISBN 1-119-00444-6
1-119-00442-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; About the Authors; Preface; Acknowledgments; Chapter 1 Characterization of Wireless Transmitter Distortions; 1.1 Introduction; 1.1.1 RF Power Amplifier Nonlinearity; 1.1.2 Inter-Modulation Distortion and Spectrum Regrowth; 1.2 Impact of Distortions on Transmitter Performances; 1.3 Output Power versus Input Power Characteristic; 1.4 AM/AM and AM/PM Characteristics; 1.5 1 dB Compression Point; 1.6 Third and Fifth Order Intercept Points; 1.7 Carrier to Inter-Modulation Distortion Ratio; 1.8 Adjacent Channel Leakage Ratio; 1.9 Error Vector Magnitude
ReferencesChapter 2 Dynamic Nonlinear Systems; 2.1 Classification of Nonlinear Systems; 2.1.1 Memoryless Systems; 2.1.2 Systems with Memory; 2.2 Memory in Microwave Power Amplification Systems; 2.2.1 Nonlinear Systems without Memory; 2.2.2 Weakly Nonlinear and Quasi-Memoryless Systems; 2.2.3 Nonlinear System with Memory; 2.3 Baseband and Low-Pass Equivalent Signals; 2.4 Origins and Types of Memory Effects in Power Amplification Systems; 2.4.1 Origins of Memory Effects; 2.4.2 Electrical Memory Effects; 2.4.3 Thermal Memory Effects; 2.5 Volterra Series Models; References
Chapter 3 Model Performance Evaluation3.1 Introduction; 3.2 Behavioral Modeling versus Digital Predistortion; 3.3 Time Domain Metrics; 3.3.1 Normalized Mean Square Error; 3.3.2 Memory Effects Modeling Ratio; 3.4 Frequency Domain Metrics; 3.4.1 Frequency Domain Normalized Mean Square Error; 3.4.2 Adjacent Channel Error Power Ratio; 3.4.3 Weighted Error Spectrum Power Ratio; 3.4.4 Normalized Absolute Mean Spectrum Error; 3.5 Static Nonlinearity Cancelation Techniques; 3.5.1 Static Nonlinearity Pre-Compensation Technique; 3.5.2 Static Nonlinearity Post-Compensation Technique
3.5.3 Memory Effect Intensity3.6 Discussion and Conclusion; References; Chapter 4 Quasi-Memoryless Behavioral Models; 4.1 Introduction; 4.2 Modeling and Simulation of Memoryless/Quasi-Memoryless Nonlinear Systems; 4.3 Bandpass to Baseband Equivalent Transformation; 4.4 Look-Up Table Models; 4.4.1 Uniformly Indexed Loop-Up Tables; 4.4.2 Non-Uniformly Indexed Look-Up Tables; 4.5 Generic Nonlinear Amplifier Behavioral Model; 4.6 Empirical Analytical Based Models; 4.6.1 Polar Saleh Model; 4.6.2 Cartesian Saleh Model; 4.6.3 Frequency-Dependent Saleh Model; 4.6.4 Ghorbani Model
4.6.5 Berman and Mahle Phase Model4.6.6 Thomas-Weidner-Durrani Amplitude Model; 4.6.7 Limiter Model; 4.6.8 ARCTAN Model; 4.6.9 Rapp Model; 4.6.10 White Model; 4.7 Power Series Models; 4.7.1 Polynomial Model; 4.7.2 Bessel Function Based Model; 4.7.3 Chebyshev Series Based Model; 4.7.4 Gegenbauer Polynomials Based Model; 4.7.5 Zernike Polynomials Based Model; References; Chapter 5 Memory Polynomial Based Models; 5.1 Introduction; 5.2 Generic Memory Polynomial Model Formulation; 5.3 Memory Polynomial Model; 5.4 Variants of the Memory Polynomial Model; 5.4.1 Orthogonal Memory Polynomial Model
5.4.2 Sparse-Delay Memory Polynomial Model
Record Nr. UNINA-9910821592603321
Ghannouchi Fadhel M. <1958->  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational methods for modelling of nonlinear systems / A. Torokhti, P. Howlett
Computational methods for modelling of nonlinear systems / A. Torokhti, P. Howlett
Autore Torokhti, Anatoli
Pubbl/distr/stampa Amsterdam : Elsevier, 2007
Descrizione fisica xi, 397 p. : ill. (some col.) ; 24 cm
Disciplina 515.72480113
Altri autori (Persone) Howlett, Philip G.
Collana Mathematics in science and engineering, 0076-5392 ; 212
Soggetto topico Nonlinear systems - Mathematical models
ISBN 9780444530448
0444530444
Classificazione AMS 47N70
LC QA427.T67
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Computational methods for modeling of nonlinear systems
Record Nr. UNISALENTO-991003903939707536
Torokhti, Anatoli  
Amsterdam : Elsevier, 2007
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Pubbl/distr/stampa Singapore, : World Scientific, c2010
Descrizione fisica 1 online resource (200 p.)
Disciplina 515.83
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
Collana World Scientific Series on Nonlinear Science: Series A
Soggetto topico Fractional calculus
Nonlinear systems - Mathematical models
Control theory - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-282-76371-7
9786612763717
981-4304-20-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgments; Contents; List of Figures; List of Tables; 1. Fractional Order Systems; 2. Fractional Order PID Controller and their Stability Regions Definition; 3. Fractional Order Chaotic Systems; 4. Field Programmable Gate Array Implementation; 5. Microprocessor Implementation and Applications; 6. Field Programmable Analog Array Implementation; 7. Switched Capacitor Integrated Circuit Design; 8. Fractional Order Model of IPMC; Bibliography; Index
Record Nr. UNINA-9910456148203321
Singapore, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Pubbl/distr/stampa Singapore, : World Scientific, c2010
Descrizione fisica 1 online resource (200 p.)
Disciplina 515.83
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
Collana World Scientific Series on Nonlinear Science: Series A
Soggetto topico Fractional calculus
Nonlinear systems - Mathematical models
Control theory - Mathematical models
ISBN 1-282-76371-7
9786612763717
981-4304-20-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgments; Contents; List of Figures; List of Tables; 1. Fractional Order Systems; 2. Fractional Order PID Controller and their Stability Regions Definition; 3. Fractional Order Chaotic Systems; 4. Field Programmable Gate Array Implementation; 5. Microprocessor Implementation and Applications; 6. Field Programmable Analog Array Implementation; 7. Switched Capacitor Integrated Circuit Design; 8. Fractional Order Model of IPMC; Bibliography; Index
Record Nr. UNINA-9910780886903321
Singapore, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Pubbl/distr/stampa Singapore, : World Scientific, c2010
Descrizione fisica 1 online resource (200 p.)
Disciplina 515.83
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
Collana World Scientific Series on Nonlinear Science: Series A
Soggetto topico Fractional calculus
Nonlinear systems - Mathematical models
Control theory - Mathematical models
ISBN 1-282-76371-7
9786612763717
981-4304-20-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgments; Contents; List of Figures; List of Tables; 1. Fractional Order Systems; 2. Fractional Order PID Controller and their Stability Regions Definition; 3. Fractional Order Chaotic Systems; 4. Field Programmable Gate Array Implementation; 5. Microprocessor Implementation and Applications; 6. Field Programmable Analog Array Implementation; 7. Switched Capacitor Integrated Circuit Design; 8. Fractional Order Model of IPMC; Bibliography; Index
Record Nr. UNINA-9910822799303321
Singapore, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui