Coupled-oscillator based active-array antennas / / Ronald J. Pogorzelski Jet Propulsion labortary, California Institute of Technology, Apostolos Georgiadis, Centre Tecnoláogic de Telecomunicacions de Catalunya, Castelldefels, Barcelona, Spain
| Coupled-oscillator based active-array antennas / / Ronald J. Pogorzelski Jet Propulsion labortary, California Institute of Technology, Apostolos Georgiadis, Centre Tecnoláogic de Telecomunicacions de Catalunya, Castelldefels, Barcelona, Spain |
| Autore | Pogorzelski Ronald J. |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, John Wiley & Sons Inc. Publication, , [2012] |
| Descrizione fisica | 1 online resource (382 p.) |
| Disciplina | 621.382/4 |
| Altri autori (Persone) | GeorgiadisApostolos |
| Collana | JPL deep-space communications and navigation series |
| Soggetto topico |
Antenna arrays
Electric networks, Active Nonlinear oscillators Coupled mode theory |
| ISBN |
1-283-54293-5
9786613855381 1-118-30996-0 1-118-30997-9 1-118-31001-2 |
| Classificazione | TEC008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
-- Foreword xi -- Preface xiii -- Acknowledgments xvii -- Authors xix -- PART I: THEORY AND ANALYSIS 1 -- Chapter 1 Introduction - Oscillators and Synchronization 3 -- 1.1 Early Work in Mathematical Biology and Electronic Circuits 3 -- 1.2 van der Pol's Model 5 -- 1.3 Injection Locking (Adier's Formalism) and Its Spectra (Locked and Unlocked) 7 -- 1.4 Mutual Injection Locking of Two Oscillators 21 -- 1.5 Conclusion 26 -- Chapter 2 Coupled-Oscillator Arrays-Basic Analytical Description and Operating Principles 27 -- 2.1 Fundamental Equations 28 -- 2.2 Discrete Model Solution (Linearization and Laplace Transformation) 31 -- 2.3 Steady-State Solution 37 -- 2.4 Stability of the Phase Solution in the Full Nonlinear Formulation 41 -- 2.5 External Injection Locking 46 -- 2.6 Generalization to Planar Arrays 50 -- 2.7 Coupling Networks 54 -- 2.8 Conclusion 66 -- Chapter 3 The Continuum Model for Linear Arrays 67 -- 3.1 The Linear Array without External Injection 68 -- 3.2 The Linear Array with External Injection 81 -- 3.3 Beam-Steering via End Detuning 93 -- 3.4 Beam-Steering via End Injection 95 -- 3.5 Conclusion 102 -- Chapter 4 The Continuum Model for Planar Arrays 103 -- 4.1 Cartesian Coupling in the Continuum Model without External Injection 103 -- 4.2 Cartesian Coupling in the Continuum Model with External Injection 109 -- 4.3 Non-Cartesian Coupling Topologies 118 -- 4.4 Conclusion 137 -- Chapter 5 Causality and Coupling Delay 139 -- 5.1 Coupling Delay 139 -- 5.2 The Discrete Model with Coupling Delay 141 -- 5.3 The Continuum Model with Coupling Delay 146 -- 5.4 Beam Steering in the Continuum Model with Coupling Delay 159 -- 5.5 Conclusion 173 -- PART II: EXPERIMENTAL WORK AND APPLICATIONS 175 -- Chapter 6 Experimental Validation of the Theory 177 -- 6.1 Linear-Array Experiments 177 -- 6.2 Planar-Array Experiments 188 -- 6.3 Receive-Array Experiments 201 -- 6.4 Phase Noise 210 -- 6.5 The Unlocked State 213 -- 6.6 Conclusion 215 -- PART III: NONLINEAR BEHAVIOR 217 -- Chapter 7 Perturbation Models for Stability, Phase Noise, and Modulation 219.
7.1 Preliminaries of Dynamical Systems 220 -- 7.2 Bifurcations of Nonlinear Dynamical Systems 226 -- 7.3 The Averaging Method and Multiple Time Scales 230 -- 7.4 Averaging Theory in Coupled Oscillator Systems 231 -- 7.5 Obtaining the Parameters of the van der Pol Oscillator Model 235 -- 7.6 An Alternative Perturbation Model for Coupled-Oscillator Systems 238 -- 7.7 Matrix Equations for the Steady State and Stability Analysis 242 -- 7.8 A Comparison between the Two Perturbation Models for Coupled Oscillator Systems 246 -- 7.9 Externally Injection-Locked COAs 247 -- 7.10 Phase Noise 250 -- 7.11 Modulation 256 -- 7.12 Coupled Phase-Locked Loops 258 -- 7.13 Conclusion 261 -- Chapter 8 Numerical Methods for Simulating Coupled-Oscillator Arrays 263 -- 8.1 Introduction to Numerical Methods 264 -- 8.2 Obtaining Periodic Steady-State Solutions of Autonomous Circuits in Harmonic-Balance Simulators 270 -- 8.3 Numerical Analysis of a Voltage-Controlled Oscillator 272 -- 8.4 Numerical Analysis of a Five-Element Linear Coupled-Oscillator Array 278 -- 8.5 Numerical Analysis of an Externally Injection-Locked Five-Element Linear Coupled-Oscillator Array 286 -- 8.6 Harmonic Radiation for Extended Scanning Range 288 -- 8.7 Numerical Analysis of a Self-Oscillating Mixer 291 -- 8.8 Conclusion 296 -- Chapter 9 Beamforming in Coupled-Oscillator Arrays 297 -- 9.1 Preliminary Concepts of Convex Optimization 297 -- 9.2 Beamforming in COAs 301 -- 9.3 Stability Optimization of the Coupled-Oscillator Steady-State Solution 308 -- 9.4 Multi-Beam Pattern Generation Using Coupled-Oscillator Arrays 311 -- 9.5 Control of the Amplitude Dynamics 315 -- 9.6 Adaptive Coupled-Oscillator Array Beamformer 317 -- 9.7 Conclusion 320 -- Chapter 10 Overall Conclusions and Possible Future Directions 321 -- REFERENCES 325 -- ACRONYMS AND ABBREVIATIONS 341 -- INDEX 345. |
| Record Nr. | UNINA-9910138869403321 |
Pogorzelski Ronald J.
|
||
| Hoboken, New Jersey : , : Wiley, John Wiley & Sons Inc. Publication, , [2012] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Coupled-oscillator based active-array antennas / / Ronald J. Pogorzelski Jet Propulsion labortary, California Institute of Technology, Apostolos Georgiadis, Centre Tecnoláogic de Telecomunicacions de Catalunya, Castelldefels, Barcelona, Spain
| Coupled-oscillator based active-array antennas / / Ronald J. Pogorzelski Jet Propulsion labortary, California Institute of Technology, Apostolos Georgiadis, Centre Tecnoláogic de Telecomunicacions de Catalunya, Castelldefels, Barcelona, Spain |
| Autore | Pogorzelski Ronald J. |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, John Wiley & Sons Inc. Publication, , [2012] |
| Descrizione fisica | 1 online resource (382 p.) |
| Disciplina | 621.382/4 |
| Altri autori (Persone) | GeorgiadisApostolos |
| Collana | JPL deep-space communications and navigation series |
| Soggetto topico |
Antenna arrays
Electric networks, Active Nonlinear oscillators Coupled mode theory |
| ISBN |
1-283-54293-5
9786613855381 1-118-30996-0 1-118-30997-9 1-118-31001-2 |
| Classificazione | TEC008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
-- Foreword xi -- Preface xiii -- Acknowledgments xvii -- Authors xix -- PART I: THEORY AND ANALYSIS 1 -- Chapter 1 Introduction - Oscillators and Synchronization 3 -- 1.1 Early Work in Mathematical Biology and Electronic Circuits 3 -- 1.2 van der Pol's Model 5 -- 1.3 Injection Locking (Adier's Formalism) and Its Spectra (Locked and Unlocked) 7 -- 1.4 Mutual Injection Locking of Two Oscillators 21 -- 1.5 Conclusion 26 -- Chapter 2 Coupled-Oscillator Arrays-Basic Analytical Description and Operating Principles 27 -- 2.1 Fundamental Equations 28 -- 2.2 Discrete Model Solution (Linearization and Laplace Transformation) 31 -- 2.3 Steady-State Solution 37 -- 2.4 Stability of the Phase Solution in the Full Nonlinear Formulation 41 -- 2.5 External Injection Locking 46 -- 2.6 Generalization to Planar Arrays 50 -- 2.7 Coupling Networks 54 -- 2.8 Conclusion 66 -- Chapter 3 The Continuum Model for Linear Arrays 67 -- 3.1 The Linear Array without External Injection 68 -- 3.2 The Linear Array with External Injection 81 -- 3.3 Beam-Steering via End Detuning 93 -- 3.4 Beam-Steering via End Injection 95 -- 3.5 Conclusion 102 -- Chapter 4 The Continuum Model for Planar Arrays 103 -- 4.1 Cartesian Coupling in the Continuum Model without External Injection 103 -- 4.2 Cartesian Coupling in the Continuum Model with External Injection 109 -- 4.3 Non-Cartesian Coupling Topologies 118 -- 4.4 Conclusion 137 -- Chapter 5 Causality and Coupling Delay 139 -- 5.1 Coupling Delay 139 -- 5.2 The Discrete Model with Coupling Delay 141 -- 5.3 The Continuum Model with Coupling Delay 146 -- 5.4 Beam Steering in the Continuum Model with Coupling Delay 159 -- 5.5 Conclusion 173 -- PART II: EXPERIMENTAL WORK AND APPLICATIONS 175 -- Chapter 6 Experimental Validation of the Theory 177 -- 6.1 Linear-Array Experiments 177 -- 6.2 Planar-Array Experiments 188 -- 6.3 Receive-Array Experiments 201 -- 6.4 Phase Noise 210 -- 6.5 The Unlocked State 213 -- 6.6 Conclusion 215 -- PART III: NONLINEAR BEHAVIOR 217 -- Chapter 7 Perturbation Models for Stability, Phase Noise, and Modulation 219.
7.1 Preliminaries of Dynamical Systems 220 -- 7.2 Bifurcations of Nonlinear Dynamical Systems 226 -- 7.3 The Averaging Method and Multiple Time Scales 230 -- 7.4 Averaging Theory in Coupled Oscillator Systems 231 -- 7.5 Obtaining the Parameters of the van der Pol Oscillator Model 235 -- 7.6 An Alternative Perturbation Model for Coupled-Oscillator Systems 238 -- 7.7 Matrix Equations for the Steady State and Stability Analysis 242 -- 7.8 A Comparison between the Two Perturbation Models for Coupled Oscillator Systems 246 -- 7.9 Externally Injection-Locked COAs 247 -- 7.10 Phase Noise 250 -- 7.11 Modulation 256 -- 7.12 Coupled Phase-Locked Loops 258 -- 7.13 Conclusion 261 -- Chapter 8 Numerical Methods for Simulating Coupled-Oscillator Arrays 263 -- 8.1 Introduction to Numerical Methods 264 -- 8.2 Obtaining Periodic Steady-State Solutions of Autonomous Circuits in Harmonic-Balance Simulators 270 -- 8.3 Numerical Analysis of a Voltage-Controlled Oscillator 272 -- 8.4 Numerical Analysis of a Five-Element Linear Coupled-Oscillator Array 278 -- 8.5 Numerical Analysis of an Externally Injection-Locked Five-Element Linear Coupled-Oscillator Array 286 -- 8.6 Harmonic Radiation for Extended Scanning Range 288 -- 8.7 Numerical Analysis of a Self-Oscillating Mixer 291 -- 8.8 Conclusion 296 -- Chapter 9 Beamforming in Coupled-Oscillator Arrays 297 -- 9.1 Preliminary Concepts of Convex Optimization 297 -- 9.2 Beamforming in COAs 301 -- 9.3 Stability Optimization of the Coupled-Oscillator Steady-State Solution 308 -- 9.4 Multi-Beam Pattern Generation Using Coupled-Oscillator Arrays 311 -- 9.5 Control of the Amplitude Dynamics 315 -- 9.6 Adaptive Coupled-Oscillator Array Beamformer 317 -- 9.7 Conclusion 320 -- Chapter 10 Overall Conclusions and Possible Future Directions 321 -- REFERENCES 325 -- ACRONYMS AND ABBREVIATIONS 341 -- INDEX 345. |
| Record Nr. | UNINA-9910807179403321 |
Pogorzelski Ronald J.
|
||
| Hoboken, New Jersey : , : Wiley, John Wiley & Sons Inc. Publication, , [2012] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
On coexistence patterns : hierarchies of intricate partially symmetric solutions to Stuart-Landau oscillators with nonlinear global coupling / / Sindre W. Haugland
| On coexistence patterns : hierarchies of intricate partially symmetric solutions to Stuart-Landau oscillators with nonlinear global coupling / / Sindre W. Haugland |
| Autore | Haugland Sindre W. |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
| Descrizione fisica | 1 online resource (340 pages) |
| Disciplina | 003.857 |
| Collana | Springer theses |
| Soggetto topico |
Nonlinear oscillations
Nonlinear oscillators Symmetry (Physics) |
| ISBN |
9783031214981
9783031214974 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Outline -- General Background -- From Two-Cluster State to Chimera -- Coexistence Patterns of Four Oscillators -- A Hierarchy of Solutions for N = 2n -- Conclusion and Outlook. |
| Record Nr. | UNINA-9910674344803321 |
Haugland Sindre W.
|
||
| Cham, Switzerland : , : Springer, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Smooth and nonsmooth high dimensional chaos and the melnikov-type methods [[electronic resource] /] / Jan Awrejcewicz, Mariusz M. Holicke
| Smooth and nonsmooth high dimensional chaos and the melnikov-type methods [[electronic resource] /] / Jan Awrejcewicz, Mariusz M. Holicke |
| Autore | Awrejcewicz J (Jan) |
| Pubbl/distr/stampa | New Jersey, : World Scientific, c2007 |
| Descrizione fisica | 1 online resource (318 p.) |
| Disciplina | 003/.857 |
| Altri autori (Persone) | HolickeMariusz M |
| Collana | World Scientific series on nonlinear science. Series A |
| Soggetto topico |
Chaotic behavior in systems
Differentiable dynamical systems Nonlinear oscillators |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-91872-5
9786611918729 981-270-910-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1. A Role of the Melnikov-Type Methods in Applied Sciences; 1.1 Introduction; 1.2 Application of the Melnikov-type methods; 2. Classical Melnikov Approach; 2.1 Introduction; 2.2 Geometric interpretation; 2.3 Melnikov's function; 3. Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; 3.1 Mathematical Model; 3.2 Homoclinic Chaos Criterion; 3.3 Numerical Simulations; 4. Smooth and Nonsmooth Dynamics of a Quasi- Autonomous Oscillator with Coulomb and Viscous Frictions; 4.1 Stick-Slip Oscillator with Periodic Excitation
4.2 Analysis of the Wandering Trajectories4.3 Comparison of Analytical and Numerical Results; 5. Application of the Melnikov-Gruendler Method to Mechanical Systems; 5.1 Mechanical Systems with Finite Number of Degrees-of- Freedom; 5.2 2-DOFs Mechanical Systems; 5.3 Reduction of the Melnikov-Gruendler Method for 1-DOF Systems; 6. A Self-Excited Spherical Pendulum; 6.1 Analytical Prediction of Chaos; 6.2 Numerical Results; 7. A Double Self-excited Duffing-type Oscillator; 7.1 Analytical Prediction of Chaos; 7.2 Numerical Simulations; 7.3 Additional Numerical Example 8. A Triple Self-Excited Du ng-type Oscillator8.1 Physical and Mathematical Models; 8.2 Analytical Prediction of Homoclinic Intersections; Bibliography; Index |
| Record Nr. | UNINA-9910451213803321 |
Awrejcewicz J (Jan)
|
||
| New Jersey, : World Scientific, c2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Smooth and nonsmooth high dimensional chaos and the melnikov-type methods [[electronic resource] /] / Jan Awrejcewicz, Mariusz M. Holicke
| Smooth and nonsmooth high dimensional chaos and the melnikov-type methods [[electronic resource] /] / Jan Awrejcewicz, Mariusz M. Holicke |
| Autore | Awrejcewicz J (Jan) |
| Pubbl/distr/stampa | New Jersey, : World Scientific, c2007 |
| Descrizione fisica | 1 online resource (318 p.) |
| Disciplina | 003/.857 |
| Altri autori (Persone) | HolickeMariusz M |
| Collana | World Scientific series on nonlinear science. Series A |
| Soggetto topico |
Chaotic behavior in systems
Differentiable dynamical systems Nonlinear oscillators |
| ISBN |
1-281-91872-5
9786611918729 981-270-910-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1. A Role of the Melnikov-Type Methods in Applied Sciences; 1.1 Introduction; 1.2 Application of the Melnikov-type methods; 2. Classical Melnikov Approach; 2.1 Introduction; 2.2 Geometric interpretation; 2.3 Melnikov's function; 3. Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; 3.1 Mathematical Model; 3.2 Homoclinic Chaos Criterion; 3.3 Numerical Simulations; 4. Smooth and Nonsmooth Dynamics of a Quasi- Autonomous Oscillator with Coulomb and Viscous Frictions; 4.1 Stick-Slip Oscillator with Periodic Excitation
4.2 Analysis of the Wandering Trajectories4.3 Comparison of Analytical and Numerical Results; 5. Application of the Melnikov-Gruendler Method to Mechanical Systems; 5.1 Mechanical Systems with Finite Number of Degrees-of- Freedom; 5.2 2-DOFs Mechanical Systems; 5.3 Reduction of the Melnikov-Gruendler Method for 1-DOF Systems; 6. A Self-Excited Spherical Pendulum; 6.1 Analytical Prediction of Chaos; 6.2 Numerical Results; 7. A Double Self-excited Duffing-type Oscillator; 7.1 Analytical Prediction of Chaos; 7.2 Numerical Simulations; 7.3 Additional Numerical Example 8. A Triple Self-Excited Du ng-type Oscillator8.1 Physical and Mathematical Models; 8.2 Analytical Prediction of Homoclinic Intersections; Bibliography; Index |
| Record Nr. | UNINA-9910784729503321 |
Awrejcewicz J (Jan)
|
||
| New Jersey, : World Scientific, c2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||