Dynamical systems VII : integrable systems nonholonomic dynamical systems / V. I. Arnold, S. P. Novikov, eds. ; translated from the Russian by A. G. Reyman, M. A. Semenov-Tian-Shansky |
Edizione | [[Engl. ed.]] |
Pubbl/distr/stampa | Berlin : Springer-Verlag, c1994 |
Descrizione fisica | vii, 341 p. : ill. ; 24 cm |
Disciplina | 516.362 |
Altri autori (Persone) |
Arnold, Vladimir Igorevic
Novikov, Sergei Petrovichauthor Reyman, A. G. Semonov-Tian-Shansky, M. A. |
Collana | Encyclopaedia of mathematical sciences, 0938-0396 ; 16 |
Soggetto topico |
Differentiable dynamical systems
Nonholonomic dynamical systems Celestial mechanics Mechanics, analytic |
ISBN |
3540181768
0387181768 |
Classificazione |
AMS 00A20
AMS 58F05 AMS 58F06 AMS 58F07 AMS 70E AMS 70F AMS 70H 53.1.3 53.1.68 510.34 510.46 510.57 LC QA805D5613 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNISALENTO-991000837879707536 |
Berlin : Springer-Verlag, c1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Dynamics of nonholonomic systems / Ju. I. Neimark, N. A. Fufaev. ; [translated from the Russian by J. R. Barbour] |
Autore | Neimark, Ju. Isaakovich |
Pubbl/distr/stampa | Providence, R. I. : American Mathematical Society, c1972 |
Descrizione fisica | ix, 518 p. : ill. ; 26 cm |
Disciplina | 620.104 |
Altri autori (Persone) | Fufaev, N. Alekseevich |
Collana | Translations of mathematical monographs, 0065-9282 ; 33 |
Soggetto topico | Nonholonomic dynamical systems |
ISBN | 082183617X |
Classificazione |
AMS 93-01
AMS 58-03 AMS 70F25 AMS 70G30 LC QA845.N4413 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNISALENTO-991003696069707536 |
Neimark, Ju. Isaakovich | ||
Providence, R. I. : American Mathematical Society, c1972 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich |
Autore | Baldomá Inmaculada <1971-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2004 |
Descrizione fisica | 1 online resource (102 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Hamiltonian systems Lagrangian points |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0390-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""4.1. Introduction""""4.2. Definitions and main result""; ""4.3. A preliminary change of variables""; ""4.4. The unperturbed case""; ""4.5. Flow box coordinates in a complex domain""; ""4.6. Proof of Theorem 4.2""; ""5. The Extension Theorem""; ""6. Splitting of separatrices""; ""6.1. Introduction""; ""6.2. The splitting function""; ""6.3. Proof of Theorem 1.1 and its corollary""; ""6.4. Proof of Lemma 6.4""; ""6.5. Proof of Corollary 1.1""; ""References"" |
Record Nr. | UNINA-9910480524303321 |
Baldomá Inmaculada <1971-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich |
Autore | Baldomá Inmaculada <1971-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2004 |
Descrizione fisica | 1 online resource (102 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Hamiltonian systems Lagrangian points |
ISBN | 1-4704-0390-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""4.1. Introduction""""4.2. Definitions and main result""; ""4.3. A preliminary change of variables""; ""4.4. The unperturbed case""; ""4.5. Flow box coordinates in a complex domain""; ""4.6. Proof of Theorem 4.2""; ""5. The Extension Theorem""; ""6. Splitting of separatrices""; ""6.1. Introduction""; ""6.2. The splitting function""; ""6.3. Proof of Theorem 1.1 and its corollary""; ""6.4. Proof of Lemma 6.4""; ""6.5. Proof of Corollary 1.1""; ""References"" |
Record Nr. | UNINA-9910788745903321 |
Baldomá Inmaculada <1971-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich |
Autore | Baldomá Inmaculada <1971-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2004 |
Descrizione fisica | 1 online resource (102 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Hamiltonian systems Lagrangian points |
ISBN | 1-4704-0390-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""4.1. Introduction""""4.2. Definitions and main result""; ""4.3. A preliminary change of variables""; ""4.4. The unperturbed case""; ""4.5. Flow box coordinates in a complex domain""; ""4.6. Proof of Theorem 4.2""; ""5. The Extension Theorem""; ""6. Splitting of separatrices""; ""6.1. Introduction""; ""6.2. The splitting function""; ""6.3. Proof of Theorem 1.1 and its corollary""; ""6.4. Proof of Lemma 6.4""; ""6.5. Proof of Corollary 1.1""; ""References"" |
Record Nr. | UNINA-9910807396703321 |
Baldomá Inmaculada <1971-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara |
Autore | Delshams Amadeu |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2006 |
Descrizione fisica | 1 online resource (158 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Mechanics Differential equations - Qualitative theory |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0445-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" ""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" ""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910480091103321 |
Delshams Amadeu | ||
Providence, Rhode Island : , : American Mathematical Society, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara |
Autore | Delshams Amadeu |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2006 |
Descrizione fisica | 1 online resource (158 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Mechanics Differential equations - Qualitative theory |
ISBN | 1-4704-0445-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" ""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" ""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910788741103321 |
Delshams Amadeu | ||
Providence, Rhode Island : , : American Mathematical Society, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara |
Autore | Delshams Amadeu |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2006 |
Descrizione fisica | 1 online resource (158 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Mechanics Differential equations - Qualitative theory |
ISBN | 1-4704-0445-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" ""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" ""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910827755503321 |
Delshams Amadeu | ||
Providence, Rhode Island : , : American Mathematical Society, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki |
Autore | Cushman Richard H. <1942-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2010 |
Descrizione fisica | 1 online resource (421 p.) |
Disciplina | 516.3/6 |
Altri autori (Persone) |
DuistermaatJ. J <1942-> (Johannes Jisse)
ŚniatyckiJędrzej |
Collana | Advanced series in nonlinear dynamics |
Soggetto topico |
Nonholonomic dynamical systems
Geometry, Differential Rigidity (Geometry) Caratheodory measure |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-76167-6
9786612761676 981-4289-49-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space 2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action 3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria 4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits 4.3.3 Runaway relative period orbits |
Record Nr. | UNINA-9910455562003321 |
Cushman Richard H. <1942-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki |
Autore | Cushman Richard H. <1942-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2010 |
Descrizione fisica | 1 online resource (421 p.) |
Disciplina | 516.3/6 |
Altri autori (Persone) |
DuistermaatJ. J <1942-2010.> (Johannes Jisse)
ŚniatyckiJędrzej |
Collana | Advanced series in nonlinear dynamics |
Soggetto topico |
Nonholonomic dynamical systems
Geometry, Differential Rigidity (Geometry) Caratheodory measure |
ISBN |
1-282-76167-6
9786612761676 981-4289-49-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space 2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action 3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria 4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits 4.3.3 Runaway relative period orbits |
Record Nr. | UNINA-9910780893703321 |
Cushman Richard H. <1942-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|