top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dynamical systems VII : integrable systems nonholonomic dynamical systems / V. I. Arnold, S. P. Novikov, eds. ; translated from the Russian by A. G. Reyman, M. A. Semenov-Tian-Shansky
Dynamical systems VII : integrable systems nonholonomic dynamical systems / V. I. Arnold, S. P. Novikov, eds. ; translated from the Russian by A. G. Reyman, M. A. Semenov-Tian-Shansky
Edizione [[Engl. ed.]]
Pubbl/distr/stampa Berlin : Springer-Verlag, c1994
Descrizione fisica vii, 341 p. : ill. ; 24 cm
Disciplina 516.362
Altri autori (Persone) Arnold, Vladimir Igorevic
Novikov, Sergei Petrovichauthor
Reyman, A. G.
Semonov-Tian-Shansky, M. A.
Collana Encyclopaedia of mathematical sciences, 0938-0396 ; 16
Soggetto topico Differentiable dynamical systems
Nonholonomic dynamical systems
Celestial mechanics
Mechanics, analytic
ISBN 3540181768
0387181768
Classificazione AMS 00A20
AMS 58F05
AMS 58F06
AMS 58F07
AMS 70E
AMS 70F
AMS 70H
53.1.3
53.1.68
510.34
510.46
510.57
LC QA805D5613
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNISALENTO-991000837879707536
Berlin : Springer-Verlag, c1994
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Dynamics of nonholonomic systems / Ju. I. Neimark, N. A. Fufaev. ; [translated from the Russian by J. R. Barbour]
Dynamics of nonholonomic systems / Ju. I. Neimark, N. A. Fufaev. ; [translated from the Russian by J. R. Barbour]
Autore Neimark, Ju. Isaakovich
Pubbl/distr/stampa Providence, R. I. : American Mathematical Society, c1972
Descrizione fisica ix, 518 p. : ill. ; 26 cm
Disciplina 620.104
Altri autori (Persone) Fufaev, N. Alekseevich
Collana Translations of mathematical monographs, 0065-9282 ; 33
Soggetto topico Nonholonomic dynamical systems
ISBN 082183617X
Classificazione AMS 93-01
AMS 58-03
AMS 70F25
AMS 70G30
LC QA845.N4413
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNISALENTO-991003696069707536
Neimark, Ju. Isaakovich  
Providence, R. I. : American Mathematical Society, c1972
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich
Autore Baldomá Inmaculada <1971->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2004
Descrizione fisica 1 online resource (102 p.)
Disciplina 510 s
515/.39
Collana Memoirs of the American Mathematical Society
Soggetto topico Nonholonomic dynamical systems
Hamiltonian systems
Lagrangian points
Soggetto genere / forma Electronic books.
ISBN 1-4704-0390-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""4.1. Introduction""""4.2. Definitions and main result""; ""4.3. A preliminary change of variables""; ""4.4. The unperturbed case""; ""4.5. Flow box coordinates in a complex domain""; ""4.6. Proof of Theorem 4.2""; ""5. The Extension Theorem""; ""6. Splitting of separatrices""; ""6.1. Introduction""; ""6.2. The splitting function""; ""6.3. Proof of Theorem 1.1 and its corollary""; ""6.4. Proof of Lemma 6.4""; ""6.5. Proof of Corollary 1.1""; ""References""
Record Nr. UNINA-9910480524303321
Baldomá Inmaculada <1971->  
Providence, Rhode Island : , : American Mathematical Society, , 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich
Autore Baldomá Inmaculada <1971->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2004
Descrizione fisica 1 online resource (102 p.)
Disciplina 510 s
515/.39
Collana Memoirs of the American Mathematical Society
Soggetto topico Nonholonomic dynamical systems
Hamiltonian systems
Lagrangian points
ISBN 1-4704-0390-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""4.1. Introduction""""4.2. Definitions and main result""; ""4.3. A preliminary change of variables""; ""4.4. The unperturbed case""; ""4.5. Flow box coordinates in a complex domain""; ""4.6. Proof of Theorem 4.2""; ""5. The Extension Theorem""; ""6. Splitting of separatrices""; ""6.1. Introduction""; ""6.2. The splitting function""; ""6.3. Proof of Theorem 1.1 and its corollary""; ""6.4. Proof of Lemma 6.4""; ""6.5. Proof of Corollary 1.1""; ""References""
Record Nr. UNINA-9910788745903321
Baldomá Inmaculada <1971->  
Providence, Rhode Island : , : American Mathematical Society, , 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich
Exponentially small splitting of invariant manifolds of parabolic points / / Inmaculada Baldomá, Ernest Fontich
Autore Baldomá Inmaculada <1971->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2004
Descrizione fisica 1 online resource (102 p.)
Disciplina 510 s
515/.39
Collana Memoirs of the American Mathematical Society
Soggetto topico Nonholonomic dynamical systems
Hamiltonian systems
Lagrangian points
ISBN 1-4704-0390-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""4.1. Introduction""""4.2. Definitions and main result""; ""4.3. A preliminary change of variables""; ""4.4. The unperturbed case""; ""4.5. Flow box coordinates in a complex domain""; ""4.6. Proof of Theorem 4.2""; ""5. The Extension Theorem""; ""6. Splitting of separatrices""; ""6.1. Introduction""; ""6.2. The splitting function""; ""6.3. Proof of Theorem 1.1 and its corollary""; ""6.4. Proof of Lemma 6.4""; ""6.5. Proof of Corollary 1.1""; ""References""
Record Nr. UNINA-9910807396703321
Baldomá Inmaculada <1971->  
Providence, Rhode Island : , : American Mathematical Society, , 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara
Autore Delshams Amadeu
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2006
Descrizione fisica 1 online resource (158 p.)
Disciplina 510 s
515/.39
Collana Memoirs of the American Mathematical Society
Soggetto topico Nonholonomic dynamical systems
Mechanics
Differential equations - Qualitative theory
Soggetto genere / forma Electronic books.
ISBN 1-4704-0445-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections""
""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations""
""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography""
Record Nr. UNINA-9910480091103321
Delshams Amadeu  
Providence, Rhode Island : , : American Mathematical Society, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara
Autore Delshams Amadeu
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2006
Descrizione fisica 1 online resource (158 p.)
Disciplina 510 s
515/.39
Collana Memoirs of the American Mathematical Society
Soggetto topico Nonholonomic dynamical systems
Mechanics
Differential equations - Qualitative theory
ISBN 1-4704-0445-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections""
""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations""
""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography""
Record Nr. UNINA-9910788741103321
Delshams Amadeu  
Providence, Rhode Island : , : American Mathematical Society, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara
Autore Delshams Amadeu
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2006
Descrizione fisica 1 online resource (158 p.)
Disciplina 510 s
515/.39
Collana Memoirs of the American Mathematical Society
Soggetto topico Nonholonomic dynamical systems
Mechanics
Differential equations - Qualitative theory
ISBN 1-4704-0445-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections""
""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations""
""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography""
Record Nr. UNINA-9910827755503321
Delshams Amadeu  
Providence, Rhode Island : , : American Mathematical Society, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Autore Cushman Richard H. <1942->
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (421 p.)
Disciplina 516.3/6
Altri autori (Persone) DuistermaatJ. J <1942-> (Johannes Jisse)
ŚniatyckiJędrzej
Collana Advanced series in nonlinear dynamics
Soggetto topico Nonholonomic dynamical systems
Geometry, Differential
Rigidity (Geometry)
Caratheodory measure
Soggetto genere / forma Electronic books.
ISBN 1-282-76167-6
9786612761676
981-4289-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space
2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action
3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria
4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits
4.3.3 Runaway relative period orbits
Record Nr. UNINA-9910455562003321
Cushman Richard H. <1942->  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Autore Cushman Richard H. <1942->
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (421 p.)
Disciplina 516.3/6
Altri autori (Persone) DuistermaatJ. J <1942-2010.> (Johannes Jisse)
ŚniatyckiJędrzej
Collana Advanced series in nonlinear dynamics
Soggetto topico Nonholonomic dynamical systems
Geometry, Differential
Rigidity (Geometry)
Caratheodory measure
ISBN 1-282-76167-6
9786612761676
981-4289-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space
2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action
3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria
4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits
4.3.3 Runaway relative period orbits
Record Nr. UNINA-9910780893703321
Cushman Richard H. <1942->  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui