| Edizione | [1st ed.] |
| Pubbl/distr/stampa |
New York, : Nova Science Publishers, c2010
|
| Descrizione fisica |
1 online resource (216 p.)
|
| Disciplina |
620.1/127
|
| Altri autori (Persone) |
MalloryEarl N
|
| Collana |
Mechanical engineering theory and applications
|
| Soggetto topico |
Nondestructive testing
Nondestructive testing - Mathematical models
|
| ISBN |
1-61209-363-9
|
| Formato |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione |
eng
|
| Nota di contenuto |
Intro -- NONDESTRUCTIVE TESTING: METHODS, ANALYSES AND APPLICATIONS -- NONDESTRUCTIVE TESTING: METHODS, ANALYSES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 NONDESTRUCTIVE MATERIALS CHARACTERIZATION BY MAGNETIC SENSING -- ABSTRACT -- 1. INTRODUCTION -- 2. MODELING OF THE SIGNAL FROM ISOTROPIC SPHERICAL INCLUSIONS -- 2.1. Infinite Homogeneous Medium Containing a Spherical Inclusion -- 2.2. Numerical Results -- 2.3. Half-Space with a Surface-Breaking Spherical Inclusion -- 2.4. Half-Space with a Subsurface Spherical Inclusion -- 3. EXPERIMENTAL INVESTIGATION OF THE SIGNAL FROM ISOTROPIC SPHERICAL INCLUSIONS -- 3.1. Thermoelectric Detection of Surface-Breaking Spherical Tin Inclusions in Copper -- 3.1.1. Experimental method -- 3.1.2. Experimental results -- 3.2. Thermoelectric Detection of Subsurface Tin Inclusions In Copper -- 3.2.1. Experimental method -- 3.2.2. Experimental results -- 4. THERMOELECTRIC DETECTION OF HARD ALPHA INCLUSION IN TI-6AL-4V -- 4.1. State of Art -- 4.2. Experimental Method -- 4.3. Experimental Results -- 5. THERMOELECTRIC SIGNATURE PRODUCED BY RESIDUAL STRESS -- 5.1. State of Art -- 5.2. Monitoring Residual Stress Relaxation in Copper -- 5.2.1. Thermal stress release -- 5.2.2. Experimental results -- 5.3. Monitoring Residual Stress Relaxation in Nickel-Base Superalloys -- 6. CONCLUSION -- REFERENCES -- Chapter 2 EXPERIMENTAL AND NUMERICAL METHOD FOR NONDESTRUCTIVE ULTRASONIC DEFECT DETECTION -- ABSTRACT -- 1. INTRODUCTION -- 2. LASER-BASED ULTRASOUND -- 3. MODELING PROCEDURES -- 3.1. Explicit Dynamic Analysis for Wave Propagation -- 3.2. Propagation of Sound Waves through Air -- 4. RESULTS -- 4.1. Comparison with Analytical Solution - Circular Annulus -- 4.2. Testing of the Rail Head without Defects -- 4.3. Testing of the Rail Web -- 4.4. Testing of the Rail Head with Defect.
4.5. Testing of the Rail Head without Defects Using a Non-Contact Transducer -- 5. CONCLUSION -- REFERENCES -- Chapter 3 INVESTIGATION OF THERMAL PROPERTIES OF STEEL UNDERGOING HEAT TREATMENT BY THE PHOTOTHERMAL DEFLECTION TECHNIQUE: CORRELATION WITH MECHANICAL PROPERTIES -- ABSTRACT -- 1. INTRODUCTION -- 2. PRINCIPLE OF THE PTD TECHNIQUE -- 3. THEORY -- 3.1. Heat Transfer by Conduction Mode -- 3.2. Calculation of the Laser Probe Beam Deflection Ψ -- 3.3. Calculation of the Periodic Elevation Temperature T0 at the Sample Surface -- 3.3.1. Case of bulk sample -- 3.3.2. Sample composed of a layer deposed on a substrate -- 3.3.3. Case of n layers deposed on a substrate -- 3.4. Optimization of Experimental Conditions for Determining the Thermal Properties of the Graphite Layer and the Sample -- 3.4.1. Study of the thermal properties of the graphite layer -- 3.4.1.1. Case where the graphite layer is thermally thick: Determination of its thermal diffusivity -- 3.4.1.2. Case of thermally thin graphite layer: Determination of its thermal conductivity -- 3.4.2. Influence of the graphite layer thickness on the determination of thermal properties of the sample -- 3.4.2.1. Case of thermally thick graphite layer -- 3.4.2.2. Case of thermally thin graphite layer -- 4. EXPERIMENTAL SET-UP OF THE PTD TECHNIQUE -- 5. EXPERIMENTAL RESULTS -- 5.1. Comparison between Different Photothermal Deflection Technique to Determine Thermal Properties of Bulk Semiconductors -- 5.1.1. First method -- 5.1.2. Second method -- 5.1.3. Third Method -- CONCLUSION -- 5.2. Determination of Thermal Properties of Steel Undergoing Heat Treatments -- 5.2.1. Determination of thermal properties of the graphite layer -- 5.2.2. Determination of thermal properties of some metals -- 5.2.3. Study of treated steels -- A. DETERMINATION OF THE THERMAL AND MECHANICAL PROPERTIES OF CARBURIZED SAMPLES.
A.1. Preparation of the Sample -- A.2. Thermal Properties Investigation -- A.3. Mechanical Properties -- CONCLUSION -- B. DETERMINATION OF THE THERMAL AND MECHANICAL PROPERTIES OF NITRIDE SAMPLES -- B.1. Nitriding Process -- B.2. Correlation between Thermal and Mechanical Properties -- CONCLUSION -- C. ELECTROEROSION -- C.1. Preparation of the Sample -- C.2. Prospecting of the Affected Depth by the PTD Technique -- C.3. Evolution of the Thermal Properties -- CONCLUSION -- D. CORRELATION BETWEEN THE THERMAL PROPERTIES AND THE HARDNESS OF END-QUENCH BARS FOR C48, 42CRMO4 AND 35NICRMO16 STEELS -- D.1. Heat Treatment and Preparation of the Sample -- D.2. Determination of the Thermal Properties -- D.3. Measurements of Rockwell Hardness (HRC) -- 6.4.4. Correlation between the thermal and the mechanical properties -- CONCLUSION -- REFERENCES -- Chapter 4 MACHINE THERMAL DIAGNOSTICS LATEST ADVANCES -- ABSTRACT -- 1. INTRODUCTION -- 2. THEORETICAL BACKGROUND -- 2.1. Diagnostic Parameter -- 2.2. Residual Service Life -- 3. EXPERIMENTAL AND FIT OF EXPERIMENTAL DATA -- 4. ON INFLUENCE OF CONDITIONS ON MACHINE HEATING -- 5. PREDICTED RSL RELIABILITY -- 5.1. Determination of RSL Reliabiliy by Simulation -- 5.2. Calculation Algorithm and Results of Simulations -- 6. CONCLUSION -- 6. ACKNOWLEDGMENTS -- REFERENCES -- NOMENCLATURE -- Chapter 5 SCANNING ACOUSTIC CORRELATION MICROSCOPY -- ABSTRACT -- INTRODUCTION -- Propagation Analysis -- Cross Correlation Analysis -- RESULTS -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- INDEX.
|
| Record Nr. | UNINA-9910973129903321 |