top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2007 3rd International IEEE/EMBS Conference on Neural Engineering : Kohala Coast, Hawaii, 2-5 May 2007
2007 3rd International IEEE/EMBS Conference on Neural Engineering : Kohala Coast, Hawaii, 2-5 May 2007
Pubbl/distr/stampa IEEE
Disciplina 612.8
Soggetto topico Neural networks (Neurobiology)
Neural networks (Computer science)
Computational neuroscience
ISBN 1-5090-8668-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2007 3rd International IEEE/EMBS Conference on Neural Engineering
Computer Design
Record Nr. UNISA-996280947903316
IEEE
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2007 3rd International IEEE/EMBS Conference on Neural Engineering : Kohala Coast, Hawaii, 2-5 May 2007
2007 3rd International IEEE/EMBS Conference on Neural Engineering : Kohala Coast, Hawaii, 2-5 May 2007
Pubbl/distr/stampa IEEE
Disciplina 612.8
Soggetto topico Neural networks (Neurobiology)
Neural networks (Computer science)
Computational neuroscience
ISBN 1-5090-8668-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2007 3rd International IEEE/EMBS Conference on Neural Engineering
Computer Design
Record Nr. UNINA-9910143014003321
IEEE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive processing of brain signals [[electronic resource] /] / Saeid Sanei
Adaptive processing of brain signals [[electronic resource] /] / Saeid Sanei
Autore Sanei Saeid
Pubbl/distr/stampa Chichester, West Sussex, : John Wiley & Sons Inc., c2013
Descrizione fisica 1 online resource (1039 p.)
Disciplina 573.8/5
Soggetto topico Brain - Physiology
Neural networks (Neurobiology)
Signal processing - Digital techniques
ISBN 1-118-62216-2
1-118-62214-6
1-118-62215-4
Classificazione SCI067000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Preface; Chapter 1 Brain Signals, Their Generation, Acquisition and Properties; 1.1 Introduction; 1.2 Historical Review of the Brain; 1.3 Neural Activities; 1.4 Action Potentials; 1.5 EEG Generation; 1.6 Brain Rhythms; 1.7 EEG Recording and Measurement; 1.8 Abnormal EEG Patterns; 1.9 Aging; 1.10 Mental Disorders; 1.11 Memory and Content Retrieval; 1.12 MEG Signals and Their Generation; 1.13 Conclusions; References; Chapter 2 Fundamentals of EEG Signal Processing; 2.1 Introduction; 2.2 Nonlinearity of the Medium; 2.3 Nonstationarity; 2.4 Signal Segmentation
2.5 Other Properties of Brain Signals2.6 Conclusions; References; Chapter 3 EEG Signal Modelling; 3.1 Physiological Modelling of EEG Generation; 3.2 Mathematical Models; 3.3 Generating EEG Signals Based on Modelling the Neuronal Activities; 3.4 Electronic Models; 3.5 Dynamic Modelling of the Neuron Action Potential Threshold; 3.6 Conclusions; References; Chapter 4 Signal Transforms and Joint Time-Frequency Analysis; 4.1 Introduction; 4.2 Parametric Spectrum Estimation and Z-Transform; 4.3 Time-Frequency Domain Transforms; 4.4 Ambiguity Function and the Wigner-Ville Distribution
4.5 Hermite Transform4.6 Conclusions; References; Chapter 5 Chaos and Dynamical Analysis; 5.1 Entropy; 5.2 Kolmogorov Entropy; 5.3 Lyapunov Exponents; 5.4 Plotting the Attractor Dimensions from Time Series; 5.5 Estimation of Lyapunov Exponents from Time Series; 5.6 Approximate Entropy; 5.7 Using Prediction Order; 5.8 Conclusions; References; Chapter 6 Classification and Clustering of Brain Signals; 6.1 Introduction; 6.2 Linear Discriminant Analysis; 6.3 Support Vector Machines; 6.4 k-Means Algorithm; 6.5 Common Spatial Patterns; 6.6 Conclusions; References
Chapter 7 Blind and Semi-Blind Source Separation7.1 Introduction; 7.2 Singular Spectrum Analysis; 7.3 Independent Component Analysis; 7.4 Instantaneous BSS; 7.5 Convolutive BSS; 7.6 Sparse Component Analysis; 7.7 Nonlinear BSS; 7.8 Constrained BSS; 7.9 Application of Constrained BSS; Example; 7.10 Nonstationary BSS; 7.11 Tensor Factorization for Underdetermined Source Separation; 7.12 Tensor Factorization for Separation of Convolutive Mixtures in the Time Domain; 7.13 Separation of Correlated Sources via Tensor Factorization; 7.14 Conclusions; References
Chapter 8 Connectivity of Brain Regions8.1 Introduction; 8.2 Connectivity Through Coherency; 8.3 Phase-Slope Index; 8.4 Multivariate Directionality Estimation; 8.5 Modelling the Connectivity by Structural Equation Modelling; 8.6 EEG Hyper-Scanning and Inter-Subject Connectivity; 8.7 State-Space Model for Estimation of Cortical Interactions; 8.8 Application of Adaptive Filters; 8.9 Tensor Factorization Approach; 8.10 Conclusions; References; Chapter 9 Detection and Tracking of Event-Related Potentials; 9.1 ERP Generation and Types; 9.2 Detection, Separation, and Classification of P300 Signals
9.3 Brain Activity Assessment Using ERP
Record Nr. UNINA-9910139054403321
Sanei Saeid  
Chichester, West Sussex, : John Wiley & Sons Inc., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive processing of brain signals / / Saeid Sanei
Adaptive processing of brain signals / / Saeid Sanei
Autore Sanei Saeid
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, : John Wiley & Sons Inc., c2013
Descrizione fisica 1 online resource (1039 p.)
Disciplina 573.8/5
Soggetto topico Brain - Physiology
Neural networks (Neurobiology)
Signal processing - Digital techniques
ISBN 1-118-62216-2
1-118-62214-6
1-118-62215-4
Classificazione SCI067000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Preface; Chapter 1 Brain Signals, Their Generation, Acquisition and Properties; 1.1 Introduction; 1.2 Historical Review of the Brain; 1.3 Neural Activities; 1.4 Action Potentials; 1.5 EEG Generation; 1.6 Brain Rhythms; 1.7 EEG Recording and Measurement; 1.8 Abnormal EEG Patterns; 1.9 Aging; 1.10 Mental Disorders; 1.11 Memory and Content Retrieval; 1.12 MEG Signals and Their Generation; 1.13 Conclusions; References; Chapter 2 Fundamentals of EEG Signal Processing; 2.1 Introduction; 2.2 Nonlinearity of the Medium; 2.3 Nonstationarity; 2.4 Signal Segmentation
2.5 Other Properties of Brain Signals2.6 Conclusions; References; Chapter 3 EEG Signal Modelling; 3.1 Physiological Modelling of EEG Generation; 3.2 Mathematical Models; 3.3 Generating EEG Signals Based on Modelling the Neuronal Activities; 3.4 Electronic Models; 3.5 Dynamic Modelling of the Neuron Action Potential Threshold; 3.6 Conclusions; References; Chapter 4 Signal Transforms and Joint Time-Frequency Analysis; 4.1 Introduction; 4.2 Parametric Spectrum Estimation and Z-Transform; 4.3 Time-Frequency Domain Transforms; 4.4 Ambiguity Function and the Wigner-Ville Distribution
4.5 Hermite Transform4.6 Conclusions; References; Chapter 5 Chaos and Dynamical Analysis; 5.1 Entropy; 5.2 Kolmogorov Entropy; 5.3 Lyapunov Exponents; 5.4 Plotting the Attractor Dimensions from Time Series; 5.5 Estimation of Lyapunov Exponents from Time Series; 5.6 Approximate Entropy; 5.7 Using Prediction Order; 5.8 Conclusions; References; Chapter 6 Classification and Clustering of Brain Signals; 6.1 Introduction; 6.2 Linear Discriminant Analysis; 6.3 Support Vector Machines; 6.4 k-Means Algorithm; 6.5 Common Spatial Patterns; 6.6 Conclusions; References
Chapter 7 Blind and Semi-Blind Source Separation7.1 Introduction; 7.2 Singular Spectrum Analysis; 7.3 Independent Component Analysis; 7.4 Instantaneous BSS; 7.5 Convolutive BSS; 7.6 Sparse Component Analysis; 7.7 Nonlinear BSS; 7.8 Constrained BSS; 7.9 Application of Constrained BSS; Example; 7.10 Nonstationary BSS; 7.11 Tensor Factorization for Underdetermined Source Separation; 7.12 Tensor Factorization for Separation of Convolutive Mixtures in the Time Domain; 7.13 Separation of Correlated Sources via Tensor Factorization; 7.14 Conclusions; References
Chapter 8 Connectivity of Brain Regions8.1 Introduction; 8.2 Connectivity Through Coherency; 8.3 Phase-Slope Index; 8.4 Multivariate Directionality Estimation; 8.5 Modelling the Connectivity by Structural Equation Modelling; 8.6 EEG Hyper-Scanning and Inter-Subject Connectivity; 8.7 State-Space Model for Estimation of Cortical Interactions; 8.8 Application of Adaptive Filters; 8.9 Tensor Factorization Approach; 8.10 Conclusions; References; Chapter 9 Detection and Tracking of Event-Related Potentials; 9.1 ERP Generation and Types; 9.2 Detection, Separation, and Classification of P300 Signals
9.3 Brain Activity Assessment Using ERP
Record Nr. UNINA-9910821926303321
Sanei Saeid  
Chichester, West Sussex, : John Wiley & Sons Inc., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in brain, vision, and artificial intelligence : second international symposium, BVAI 2007, Naples, Italy, October 10-12, 2007 : proceedings / / Francesco Mele ... [et al.] (eds.)
Advances in brain, vision, and artificial intelligence : second international symposium, BVAI 2007, Naples, Italy, October 10-12, 2007 : proceedings / / Francesco Mele ... [et al.] (eds.)
Edizione [1st ed. 2007.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2007
Descrizione fisica 1 online resource (XVI, 618 p.)
Disciplina 006.3/7
Altri autori (Persone) MeleFrancesco
Collana LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics
Lecture notes in computer science
Soggetto topico Neural networks (Neurobiology)
Neural networks (Computer science)
Computer vision
Optical pattern recognition
Artificial intelligence
ISBN 3-540-75555-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Basic models in visual sciences -- Cortical mechanism of vision -- Color processing in natural vision -- Action oriented vision -- Visual recognition and attentive modulation -- Biometric recognition -- Image segmentation and recognition -- Disparity calculation and noise analysis -- Signal identification in neural models -- Natural and artificial representation issues in artificial intelligence -- Meaning, interaction and emotion -- Robot navigation and control.
Record Nr. UNINA-9910484295703321
Berlin ; ; New York, : Springer, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Neural Signal Processing / / edited by Ramana Vinjamuri
Advances in Neural Signal Processing / / edited by Ramana Vinjamuri
Pubbl/distr/stampa London : , : IntechOpen, , 2020
Descrizione fisica 1 online resource (xi, 142 pages) : illustrations
Disciplina 621.3822028563
Soggetto topico Neural networks (Computer science)
Neural networks (Neurobiology)
Signal processing
ISBN 1-78984-114-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910424651003321
London : , : IntechOpen, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial neural networks : formal models and their applications : ICANN 2005 : 15th International Conference, Warsaw, Poland, September 11-15, 2005 : proceedings, pt. II / / Wodzisaw Duch ... [et al.] (eds.)
Artificial neural networks : formal models and their applications : ICANN 2005 : 15th International Conference, Warsaw, Poland, September 11-15, 2005 : proceedings, pt. II / / Wodzisaw Duch ... [et al.] (eds.)
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin, : Springer, 2005
Descrizione fisica 1 online resource (XXXII, 1045 p.)
Disciplina 006.3
Altri autori (Persone) DuchWodzisaw
Collana Lecture notes in computer science
Soggetto topico Neural networks (Neurobiology)
Neural networks (Computer science)
Computational neuroscience
ISBN 3-540-28756-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto New Neural Network Models -- Supervised Learning Algorithms -- Ensemble-Based Learning -- Unsupervised Learning -- Recurrent Neural Networks -- Reinforcement Learning -- Bayesian Approaches to Learning -- Learning Theory -- Artificial Neural Networks for System Modeling, Decision Making, Optimalization and Control -- Special Session: Knowledge Extraction from Neural Networks Organizer and Chair: D. A. Elizondo -- Temporal Data Analysis, Prediction and Forecasting -- Support Vector Machines and Kernel-Based Methods -- Soft Computing Methods for Data Representation, Analysis and Processing -- Special Session: Data Fusion for Industrial, Medical and Environmental Applications Organizers and Chairs: D. Mandic, D. Obradovic -- Special Session: Non-linear Predictive Models for Speech Processing Organizers and Chairs: M. Chetouani, M. Faundez-Zanuy, B. Gas, A. Hussain -- Special Session: Intelligent Multimedia and Semantics Organizers and Chairs: Y. Avrithis, S. Kollias -- Applications to Natural Language Proceesing -- Various Applications -- Special Session: Computational Intelligence in Games Organizer and Chair: J. Ma´ndziuk -- Issues in Hardware Implementation -- Erratum.
Record Nr. UNINA-9910483490203321
Berlin, : Springer, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Autore Koch Christof <1956->
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (587 p.)
Disciplina 573.8/536
Collana Computational neuroscience
Soggetto topico Computational neuroscience
Neurons
Neural networks (Neurobiology)
Action potentials (Electrophysiology)
Neural conduction
Soggetto genere / forma Electronic books.
ISBN 0-19-756233-7
1-280-59509-4
9786613624925
0-19-976055-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example
3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic
4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input
4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates
5.1.7 Retinal Directional Selectivity and Synaptic Logic
Record Nr. UNINA-9910457836903321
Koch Christof <1956->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Autore Koch Christof <1956->
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (587 p.)
Disciplina 573.8/536
Collana Computational neuroscience
Soggetto topico Computational neuroscience
Neurons
Neural networks (Neurobiology)
Action potentials (Electrophysiology)
Neural conduction
ISBN 0-19-029285-7
0-19-756233-7
1-280-59509-4
9786613624925
0-19-976055-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example
3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic
4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input
4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates
5.1.7 Retinal Directional Selectivity and Synaptic Logic
Record Nr. UNINA-9910779059703321
Koch Christof <1956->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biophysics of computation : information processing in single neurons / / Christof Koch
Biophysics of computation : information processing in single neurons / / Christof Koch
Autore Koch Christof <1956->
Edizione [1st ed.]
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (587 p.)
Disciplina 573.8/536
573.8536
Collana Computational neuroscience
Soggetto topico Computational neuroscience
Neurons
Neural networks (Neurobiology)
Action potentials (Electrophysiology)
Neural conduction
ISBN 0-19-029285-7
0-19-756233-7
1-280-59509-4
9786613624925
0-19-976055-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example
3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic
4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input
4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates
5.1.7 Retinal Directional Selectivity and Synaptic Logic
Record Nr. UNINA-9910825116003321
Koch Christof <1956->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui