2007 3rd International IEEE/EMBS Conference on Neural Engineering : Kohala Coast, Hawaii, 2-5 May 2007 |
Pubbl/distr/stampa | IEEE |
Disciplina | 612.8 |
Soggetto topico |
Neural networks (Neurobiology)
Neural networks (Computer science) Computational neuroscience |
ISBN | 1-5090-8668-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
2007 3rd International IEEE/EMBS Conference on Neural Engineering
Computer Design |
Record Nr. | UNISA-996280947903316 |
IEEE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
2007 3rd International IEEE/EMBS Conference on Neural Engineering : Kohala Coast, Hawaii, 2-5 May 2007 |
Pubbl/distr/stampa | IEEE |
Disciplina | 612.8 |
Soggetto topico |
Neural networks (Neurobiology)
Neural networks (Computer science) Computational neuroscience |
ISBN | 1-5090-8668-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
2007 3rd International IEEE/EMBS Conference on Neural Engineering
Computer Design |
Record Nr. | UNINA-9910143014003321 |
IEEE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Adaptive processing of brain signals [[electronic resource] /] / Saeid Sanei |
Autore | Sanei Saeid |
Pubbl/distr/stampa | Chichester, West Sussex, : John Wiley & Sons Inc., c2013 |
Descrizione fisica | 1 online resource (1039 p.) |
Disciplina | 573.8/5 |
Soggetto topico |
Brain - Physiology
Neural networks (Neurobiology) Signal processing - Digital techniques |
ISBN |
1-118-62216-2
1-118-62214-6 1-118-62215-4 |
Classificazione | SCI067000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Preface; Chapter 1 Brain Signals, Their Generation, Acquisition and Properties; 1.1 Introduction; 1.2 Historical Review of the Brain; 1.3 Neural Activities; 1.4 Action Potentials; 1.5 EEG Generation; 1.6 Brain Rhythms; 1.7 EEG Recording and Measurement; 1.8 Abnormal EEG Patterns; 1.9 Aging; 1.10 Mental Disorders; 1.11 Memory and Content Retrieval; 1.12 MEG Signals and Their Generation; 1.13 Conclusions; References; Chapter 2 Fundamentals of EEG Signal Processing; 2.1 Introduction; 2.2 Nonlinearity of the Medium; 2.3 Nonstationarity; 2.4 Signal Segmentation
2.5 Other Properties of Brain Signals2.6 Conclusions; References; Chapter 3 EEG Signal Modelling; 3.1 Physiological Modelling of EEG Generation; 3.2 Mathematical Models; 3.3 Generating EEG Signals Based on Modelling the Neuronal Activities; 3.4 Electronic Models; 3.5 Dynamic Modelling of the Neuron Action Potential Threshold; 3.6 Conclusions; References; Chapter 4 Signal Transforms and Joint Time-Frequency Analysis; 4.1 Introduction; 4.2 Parametric Spectrum Estimation and Z-Transform; 4.3 Time-Frequency Domain Transforms; 4.4 Ambiguity Function and the Wigner-Ville Distribution 4.5 Hermite Transform4.6 Conclusions; References; Chapter 5 Chaos and Dynamical Analysis; 5.1 Entropy; 5.2 Kolmogorov Entropy; 5.3 Lyapunov Exponents; 5.4 Plotting the Attractor Dimensions from Time Series; 5.5 Estimation of Lyapunov Exponents from Time Series; 5.6 Approximate Entropy; 5.7 Using Prediction Order; 5.8 Conclusions; References; Chapter 6 Classification and Clustering of Brain Signals; 6.1 Introduction; 6.2 Linear Discriminant Analysis; 6.3 Support Vector Machines; 6.4 k-Means Algorithm; 6.5 Common Spatial Patterns; 6.6 Conclusions; References Chapter 7 Blind and Semi-Blind Source Separation7.1 Introduction; 7.2 Singular Spectrum Analysis; 7.3 Independent Component Analysis; 7.4 Instantaneous BSS; 7.5 Convolutive BSS; 7.6 Sparse Component Analysis; 7.7 Nonlinear BSS; 7.8 Constrained BSS; 7.9 Application of Constrained BSS; Example; 7.10 Nonstationary BSS; 7.11 Tensor Factorization for Underdetermined Source Separation; 7.12 Tensor Factorization for Separation of Convolutive Mixtures in the Time Domain; 7.13 Separation of Correlated Sources via Tensor Factorization; 7.14 Conclusions; References Chapter 8 Connectivity of Brain Regions8.1 Introduction; 8.2 Connectivity Through Coherency; 8.3 Phase-Slope Index; 8.4 Multivariate Directionality Estimation; 8.5 Modelling the Connectivity by Structural Equation Modelling; 8.6 EEG Hyper-Scanning and Inter-Subject Connectivity; 8.7 State-Space Model for Estimation of Cortical Interactions; 8.8 Application of Adaptive Filters; 8.9 Tensor Factorization Approach; 8.10 Conclusions; References; Chapter 9 Detection and Tracking of Event-Related Potentials; 9.1 ERP Generation and Types; 9.2 Detection, Separation, and Classification of P300 Signals 9.3 Brain Activity Assessment Using ERP |
Record Nr. | UNINA-9910139054403321 |
Sanei Saeid | ||
Chichester, West Sussex, : John Wiley & Sons Inc., c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Adaptive processing of brain signals / / Saeid Sanei |
Autore | Sanei Saeid |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, : John Wiley & Sons Inc., c2013 |
Descrizione fisica | 1 online resource (1039 p.) |
Disciplina | 573.8/5 |
Soggetto topico |
Brain - Physiology
Neural networks (Neurobiology) Signal processing - Digital techniques |
ISBN |
1-118-62216-2
1-118-62214-6 1-118-62215-4 |
Classificazione | SCI067000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Preface; Chapter 1 Brain Signals, Their Generation, Acquisition and Properties; 1.1 Introduction; 1.2 Historical Review of the Brain; 1.3 Neural Activities; 1.4 Action Potentials; 1.5 EEG Generation; 1.6 Brain Rhythms; 1.7 EEG Recording and Measurement; 1.8 Abnormal EEG Patterns; 1.9 Aging; 1.10 Mental Disorders; 1.11 Memory and Content Retrieval; 1.12 MEG Signals and Their Generation; 1.13 Conclusions; References; Chapter 2 Fundamentals of EEG Signal Processing; 2.1 Introduction; 2.2 Nonlinearity of the Medium; 2.3 Nonstationarity; 2.4 Signal Segmentation
2.5 Other Properties of Brain Signals2.6 Conclusions; References; Chapter 3 EEG Signal Modelling; 3.1 Physiological Modelling of EEG Generation; 3.2 Mathematical Models; 3.3 Generating EEG Signals Based on Modelling the Neuronal Activities; 3.4 Electronic Models; 3.5 Dynamic Modelling of the Neuron Action Potential Threshold; 3.6 Conclusions; References; Chapter 4 Signal Transforms and Joint Time-Frequency Analysis; 4.1 Introduction; 4.2 Parametric Spectrum Estimation and Z-Transform; 4.3 Time-Frequency Domain Transforms; 4.4 Ambiguity Function and the Wigner-Ville Distribution 4.5 Hermite Transform4.6 Conclusions; References; Chapter 5 Chaos and Dynamical Analysis; 5.1 Entropy; 5.2 Kolmogorov Entropy; 5.3 Lyapunov Exponents; 5.4 Plotting the Attractor Dimensions from Time Series; 5.5 Estimation of Lyapunov Exponents from Time Series; 5.6 Approximate Entropy; 5.7 Using Prediction Order; 5.8 Conclusions; References; Chapter 6 Classification and Clustering of Brain Signals; 6.1 Introduction; 6.2 Linear Discriminant Analysis; 6.3 Support Vector Machines; 6.4 k-Means Algorithm; 6.5 Common Spatial Patterns; 6.6 Conclusions; References Chapter 7 Blind and Semi-Blind Source Separation7.1 Introduction; 7.2 Singular Spectrum Analysis; 7.3 Independent Component Analysis; 7.4 Instantaneous BSS; 7.5 Convolutive BSS; 7.6 Sparse Component Analysis; 7.7 Nonlinear BSS; 7.8 Constrained BSS; 7.9 Application of Constrained BSS; Example; 7.10 Nonstationary BSS; 7.11 Tensor Factorization for Underdetermined Source Separation; 7.12 Tensor Factorization for Separation of Convolutive Mixtures in the Time Domain; 7.13 Separation of Correlated Sources via Tensor Factorization; 7.14 Conclusions; References Chapter 8 Connectivity of Brain Regions8.1 Introduction; 8.2 Connectivity Through Coherency; 8.3 Phase-Slope Index; 8.4 Multivariate Directionality Estimation; 8.5 Modelling the Connectivity by Structural Equation Modelling; 8.6 EEG Hyper-Scanning and Inter-Subject Connectivity; 8.7 State-Space Model for Estimation of Cortical Interactions; 8.8 Application of Adaptive Filters; 8.9 Tensor Factorization Approach; 8.10 Conclusions; References; Chapter 9 Detection and Tracking of Event-Related Potentials; 9.1 ERP Generation and Types; 9.2 Detection, Separation, and Classification of P300 Signals 9.3 Brain Activity Assessment Using ERP |
Record Nr. | UNINA-9910821926303321 |
Sanei Saeid | ||
Chichester, West Sussex, : John Wiley & Sons Inc., c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in brain, vision, and artificial intelligence : second international symposium, BVAI 2007, Naples, Italy, October 10-12, 2007 : proceedings / / Francesco Mele ... [et al.] (eds.) |
Edizione | [1st ed. 2007.] |
Pubbl/distr/stampa | Berlin ; ; New York, : Springer, c2007 |
Descrizione fisica | 1 online resource (XVI, 618 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MeleFrancesco |
Collana |
LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics
Lecture notes in computer science |
Soggetto topico |
Neural networks (Neurobiology)
Neural networks (Computer science) Computer vision Optical pattern recognition Artificial intelligence |
ISBN | 3-540-75555-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Basic models in visual sciences -- Cortical mechanism of vision -- Color processing in natural vision -- Action oriented vision -- Visual recognition and attentive modulation -- Biometric recognition -- Image segmentation and recognition -- Disparity calculation and noise analysis -- Signal identification in neural models -- Natural and artificial representation issues in artificial intelligence -- Meaning, interaction and emotion -- Robot navigation and control. |
Record Nr. | UNINA-9910484295703321 |
Berlin ; ; New York, : Springer, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Neural Signal Processing / / edited by Ramana Vinjamuri |
Pubbl/distr/stampa | London : , : IntechOpen, , 2020 |
Descrizione fisica | 1 online resource (xi, 142 pages) : illustrations |
Disciplina | 621.3822028563 |
Soggetto topico |
Neural networks (Computer science)
Neural networks (Neurobiology) Signal processing |
ISBN | 1-78984-114-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910424651003321 |
London : , : IntechOpen, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial neural networks : formal models and their applications : ICANN 2005 : 15th International Conference, Warsaw, Poland, September 11-15, 2005 : proceedings, pt. II / / Wodzisaw Duch ... [et al.] (eds.) |
Edizione | [1st ed. 2005.] |
Pubbl/distr/stampa | Berlin, : Springer, 2005 |
Descrizione fisica | 1 online resource (XXXII, 1045 p.) |
Disciplina | 006.3 |
Altri autori (Persone) | DuchWodzisaw |
Collana | Lecture notes in computer science |
Soggetto topico |
Neural networks (Neurobiology)
Neural networks (Computer science) Computational neuroscience |
ISBN | 3-540-28756-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | New Neural Network Models -- Supervised Learning Algorithms -- Ensemble-Based Learning -- Unsupervised Learning -- Recurrent Neural Networks -- Reinforcement Learning -- Bayesian Approaches to Learning -- Learning Theory -- Artificial Neural Networks for System Modeling, Decision Making, Optimalization and Control -- Special Session: Knowledge Extraction from Neural Networks Organizer and Chair: D. A. Elizondo -- Temporal Data Analysis, Prediction and Forecasting -- Support Vector Machines and Kernel-Based Methods -- Soft Computing Methods for Data Representation, Analysis and Processing -- Special Session: Data Fusion for Industrial, Medical and Environmental Applications Organizers and Chairs: D. Mandic, D. Obradovic -- Special Session: Non-linear Predictive Models for Speech Processing Organizers and Chairs: M. Chetouani, M. Faundez-Zanuy, B. Gas, A. Hussain -- Special Session: Intelligent Multimedia and Semantics Organizers and Chairs: Y. Avrithis, S. Kollias -- Applications to Natural Language Proceesing -- Various Applications -- Special Session: Computational Intelligence in Games Organizer and Chair: J. Ma´ndziuk -- Issues in Hardware Implementation -- Erratum. |
Record Nr. | UNINA-9910483490203321 |
Berlin, : Springer, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch |
Autore | Koch Christof <1956-> |
Pubbl/distr/stampa | New York, : Oxford University Press, 1999 |
Descrizione fisica | 1 online resource (587 p.) |
Disciplina | 573.8/536 |
Collana | Computational neuroscience |
Soggetto topico |
Computational neuroscience
Neurons Neural networks (Neurobiology) Action potentials (Electrophysiology) Neural conduction |
Soggetto genere / forma | Electronic books. |
ISBN |
0-19-756233-7
1-280-59509-4 9786613624925 0-19-976055-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example 3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic 4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input 4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates 5.1.7 Retinal Directional Selectivity and Synaptic Logic |
Record Nr. | UNINA-9910457836903321 |
Koch Christof <1956-> | ||
New York, : Oxford University Press, 1999 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch |
Autore | Koch Christof <1956-> |
Pubbl/distr/stampa | New York, : Oxford University Press, 1999 |
Descrizione fisica | 1 online resource (587 p.) |
Disciplina | 573.8/536 |
Collana | Computational neuroscience |
Soggetto topico |
Computational neuroscience
Neurons Neural networks (Neurobiology) Action potentials (Electrophysiology) Neural conduction |
ISBN |
0-19-029285-7
0-19-756233-7 1-280-59509-4 9786613624925 0-19-976055-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example 3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic 4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input 4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates 5.1.7 Retinal Directional Selectivity and Synaptic Logic |
Record Nr. | UNINA-9910779059703321 |
Koch Christof <1956-> | ||
New York, : Oxford University Press, 1999 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biophysics of computation : information processing in single neurons / / Christof Koch |
Autore | Koch Christof <1956-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New York, : Oxford University Press, 1999 |
Descrizione fisica | 1 online resource (587 p.) |
Disciplina |
573.8/536
573.8536 |
Collana | Computational neuroscience |
Soggetto topico |
Computational neuroscience
Neurons Neural networks (Neurobiology) Action potentials (Electrophysiology) Neural conduction |
ISBN |
0-19-029285-7
0-19-756233-7 1-280-59509-4 9786613624925 0-19-976055-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example 3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic 4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input 4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates 5.1.7 Retinal Directional Selectivity and Synaptic Logic |
Record Nr. | UNINA-9910825116003321 |
Koch Christof <1956-> | ||
New York, : Oxford University Press, 1999 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|