top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Complex-valued neural networks : advances and applications / / edited by Akira Hirose
Complex-valued neural networks : advances and applications / / edited by Akira Hirose
Pubbl/distr/stampa Hoboken [New Jersey] : , : Wiley, , 2013
Descrizione fisica 1 online resource (310 p.)
Disciplina 006.3/2
006.32
Altri autori (Persone) HiroseAkira <1963->
Collana IEEE Press Series on Computational Intelligence
Soggetto topico Neural networks (Computer science)
Neural networks (Computer science) - Industrial applications
ISBN 1-118-59006-6
1-118-59014-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- 1 Application Fields and Fundamental Merits 1 -- Akira Hirose -- 1.1 Introduction 1 -- 1.2 Applications of Complex-Valued Neural Networks 2 -- 1.3 What is a complex number? 5 -- 1.4 Complex numbers in feedforward neural networks 8 -- 1.5 Metric in complex domain 12 -- 1.6 Experiments to elucidate the generalization characteristics 16 -- 1.7 Conclusions 26 -- 2 Neural System Learning on Complex-Valued Manifolds 33 -- Simone Fiori -- 2.1 Introduction 34 -- 2.2 Learning Averages over the Lie Group of Unitary Matrices 35 -- 2.3 Riemannian-Gradient-Based Learning on the Complex Matrix-Hypersphere 41 -- 2.4 Complex ICA Applied to Telecommunications 49 -- 2.5 Conclusion 53 -- 3 N-Dimensional Vector Neuron and Its Application to the N-Bit Parity Problem 59 -- Tohru Nitta -- 3.1 Introduction 59 -- 3.2 Neuron Models with High-Dimensional Parameters 60 -- 3.3 N-Dimensional Vector Neuron 65 -- 3.4 Discussion 69 -- 3.5 Conclusion 70 -- 4 Learning Algorithms in Complex-Valued Neural Networks using Wirtinger Calculus 75 -- Md. Faijul Amin and Kazuyuki Murase -- 4.1 Introduction 76 -- 4.2 Derivatives in Wirtinger Calculus 78 -- 4.3 Complex Gradient 80 -- 4.4 Learning Algorithms for Feedforward CVNNs 82 -- 4.5 Learning Algorithms for Recurrent CVNNs 91 -- 4.6 Conclusion 99 -- 5 Quaternionic Neural Networks for Associative Memories 103 -- Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Matsui -- 5.1 Introduction 104 -- 5.2 Quaternionic Algebra 105 -- 5.3 Stability of Quaternionic Neural Networks 108 -- 5.4 Learning Schemes for Embedding Patterns 124 -- 5.5 Conclusion 128 -- 6 Models of Recurrent Clifford Neural Networks and Their Dynamics 133 -- Yasuaki Kuroe -- 6.1 Introduction 134 -- 6.2 Clifford Algebra 134 -- 6.3 Hopfield-Type Neural Networks and Their Energy Functions 137 -- 6.4 Models of Hopfield-Type Clifford Neural Networks 139 -- 6.5 Definition of Energy Functions 140 -- 6.6 Existence Conditions of Energy Functions 142 -- 6.7 Conclusion 149 -- 7 Meta-cognitive Complex-valued Relaxation Network and its Sequential Learning Algorithm 153 -- Ramasamy Savitha, Sundaram Suresh, and Narasimhan Sundararajan.
7.1 Meta-cognition in Machine Learning 154 -- 7.2 Meta-cognition in Complex-valued Neural Networks 156 -- 7.3 Meta-cognitive Fully Complex-valued Relaxation Network 164 -- 7.4 Performance Evaluation of McFCRN: Synthetic Complexvalued Function Approximation Problem 171 -- 7.5 Performance Evaluation of McFCRN: Real-valued Classification Problems 172 -- 7.6 Conclusion 178 -- 8 Multilayer Feedforward Neural Network with Multi-Valued Neurons for Brain-Computer Interfacing 185 -- Nikolay V. Manyakov, Igor Aizenberg, Nikolay Chumerin, and Marc M. Van Hulle -- 8.1 Brain-Computer Interface (BCI) 185 -- 8.2 BCI Based on Steady-State Visual Evoked Potentials 188 -- 8.3 EEG Signal Preprocessing 192 -- 8.4 Decoding Based on MLMVN for Phase-Coded SSVEP BCI 196 -- 8.5 System Validation 201 -- 8.6 Discussion 203 -- 9 Complex-Valued B-Spline Neural Networks for Modeling and Inverse of Wiener Systems 209 -- Xia Hong, Sheng Chen and Chris J. Harris -- 9.1 Introduction 210 -- 9.2 Identification and Inverse of Complex-Valued Wiener Systems 211 -- 9.3 Application to Digital Predistorter Design 222 -- 9.4 Conclusions 229 -- 10 Quaternionic Fuzzy Neural Network for View-invariant Color Face Image Recognition 235 -- Wai Kit Wong, Gin Chong Lee, Chu Kiong Loo, Way Soong Lim, and Raymond Lock -- 10.1 Introduction 236 -- 10.2 Face Recognition System 238 -- 10.3 Quaternion-Based View-invariant Color Face Image Recognition 244 -- 10.4 Enrollment Stage and Recognition Stage for Quaternion- Based Color Face Image Correlator 255 -- 10.5 Max-Product Fuzzy Neural Network Classifier 260 -- 10.6 Experimental Results 266 -- 10.7 Conclusion and Future Research Directions 274 -- References 274 -- Index 279.
Record Nr. UNINA-9910141604503321
Hoboken [New Jersey] : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Complex-valued neural networks : advances and applications / / edited by Akira Hirose
Complex-valued neural networks : advances and applications / / edited by Akira Hirose
Pubbl/distr/stampa Hoboken [New Jersey] : , : Wiley, , 2013
Descrizione fisica 1 online resource (310 p.)
Disciplina 006.3/2
006.32
Altri autori (Persone) HiroseAkira <1963->
Collana IEEE Press Series on Computational Intelligence
Soggetto topico Neural networks (Computer science)
Neural networks (Computer science) - Industrial applications
ISBN 1-118-59006-6
1-118-59014-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- 1 Application Fields and Fundamental Merits 1 -- Akira Hirose -- 1.1 Introduction 1 -- 1.2 Applications of Complex-Valued Neural Networks 2 -- 1.3 What is a complex number? 5 -- 1.4 Complex numbers in feedforward neural networks 8 -- 1.5 Metric in complex domain 12 -- 1.6 Experiments to elucidate the generalization characteristics 16 -- 1.7 Conclusions 26 -- 2 Neural System Learning on Complex-Valued Manifolds 33 -- Simone Fiori -- 2.1 Introduction 34 -- 2.2 Learning Averages over the Lie Group of Unitary Matrices 35 -- 2.3 Riemannian-Gradient-Based Learning on the Complex Matrix-Hypersphere 41 -- 2.4 Complex ICA Applied to Telecommunications 49 -- 2.5 Conclusion 53 -- 3 N-Dimensional Vector Neuron and Its Application to the N-Bit Parity Problem 59 -- Tohru Nitta -- 3.1 Introduction 59 -- 3.2 Neuron Models with High-Dimensional Parameters 60 -- 3.3 N-Dimensional Vector Neuron 65 -- 3.4 Discussion 69 -- 3.5 Conclusion 70 -- 4 Learning Algorithms in Complex-Valued Neural Networks using Wirtinger Calculus 75 -- Md. Faijul Amin and Kazuyuki Murase -- 4.1 Introduction 76 -- 4.2 Derivatives in Wirtinger Calculus 78 -- 4.3 Complex Gradient 80 -- 4.4 Learning Algorithms for Feedforward CVNNs 82 -- 4.5 Learning Algorithms for Recurrent CVNNs 91 -- 4.6 Conclusion 99 -- 5 Quaternionic Neural Networks for Associative Memories 103 -- Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Matsui -- 5.1 Introduction 104 -- 5.2 Quaternionic Algebra 105 -- 5.3 Stability of Quaternionic Neural Networks 108 -- 5.4 Learning Schemes for Embedding Patterns 124 -- 5.5 Conclusion 128 -- 6 Models of Recurrent Clifford Neural Networks and Their Dynamics 133 -- Yasuaki Kuroe -- 6.1 Introduction 134 -- 6.2 Clifford Algebra 134 -- 6.3 Hopfield-Type Neural Networks and Their Energy Functions 137 -- 6.4 Models of Hopfield-Type Clifford Neural Networks 139 -- 6.5 Definition of Energy Functions 140 -- 6.6 Existence Conditions of Energy Functions 142 -- 6.7 Conclusion 149 -- 7 Meta-cognitive Complex-valued Relaxation Network and its Sequential Learning Algorithm 153 -- Ramasamy Savitha, Sundaram Suresh, and Narasimhan Sundararajan.
7.1 Meta-cognition in Machine Learning 154 -- 7.2 Meta-cognition in Complex-valued Neural Networks 156 -- 7.3 Meta-cognitive Fully Complex-valued Relaxation Network 164 -- 7.4 Performance Evaluation of McFCRN: Synthetic Complexvalued Function Approximation Problem 171 -- 7.5 Performance Evaluation of McFCRN: Real-valued Classification Problems 172 -- 7.6 Conclusion 178 -- 8 Multilayer Feedforward Neural Network with Multi-Valued Neurons for Brain-Computer Interfacing 185 -- Nikolay V. Manyakov, Igor Aizenberg, Nikolay Chumerin, and Marc M. Van Hulle -- 8.1 Brain-Computer Interface (BCI) 185 -- 8.2 BCI Based on Steady-State Visual Evoked Potentials 188 -- 8.3 EEG Signal Preprocessing 192 -- 8.4 Decoding Based on MLMVN for Phase-Coded SSVEP BCI 196 -- 8.5 System Validation 201 -- 8.6 Discussion 203 -- 9 Complex-Valued B-Spline Neural Networks for Modeling and Inverse of Wiener Systems 209 -- Xia Hong, Sheng Chen and Chris J. Harris -- 9.1 Introduction 210 -- 9.2 Identification and Inverse of Complex-Valued Wiener Systems 211 -- 9.3 Application to Digital Predistorter Design 222 -- 9.4 Conclusions 229 -- 10 Quaternionic Fuzzy Neural Network for View-invariant Color Face Image Recognition 235 -- Wai Kit Wong, Gin Chong Lee, Chu Kiong Loo, Way Soong Lim, and Raymond Lock -- 10.1 Introduction 236 -- 10.2 Face Recognition System 238 -- 10.3 Quaternion-Based View-invariant Color Face Image Recognition 244 -- 10.4 Enrollment Stage and Recognition Stage for Quaternion- Based Color Face Image Correlator 255 -- 10.5 Max-Product Fuzzy Neural Network Classifier 260 -- 10.6 Experimental Results 266 -- 10.7 Conclusion and Future Research Directions 274 -- References 274 -- Index 279.
Record Nr. UNINA-9910830306903321
Hoboken [New Jersey] : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Complex-valued neural networks : advances and applications / / edited by Akira Hirose
Complex-valued neural networks : advances and applications / / edited by Akira Hirose
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc., 2013
Descrizione fisica 1 online resource (310 p.)
Disciplina 006.32
Altri autori (Persone) HiroseAkira
Collana IEEE Press series on computational intelligence
Soggetto topico Neural networks (Computer science)
Neural networks (Computer science) - Industrial applications
ISBN 1-118-59006-6
1-118-59014-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- 1 Application Fields and Fundamental Merits 1 -- Akira Hirose -- 1.1 Introduction 1 -- 1.2 Applications of Complex-Valued Neural Networks 2 -- 1.3 What is a complex number? 5 -- 1.4 Complex numbers in feedforward neural networks 8 -- 1.5 Metric in complex domain 12 -- 1.6 Experiments to elucidate the generalization characteristics 16 -- 1.7 Conclusions 26 -- 2 Neural System Learning on Complex-Valued Manifolds 33 -- Simone Fiori -- 2.1 Introduction 34 -- 2.2 Learning Averages over the Lie Group of Unitary Matrices 35 -- 2.3 Riemannian-Gradient-Based Learning on the Complex Matrix-Hypersphere 41 -- 2.4 Complex ICA Applied to Telecommunications 49 -- 2.5 Conclusion 53 -- 3 N-Dimensional Vector Neuron and Its Application to the N-Bit Parity Problem 59 -- Tohru Nitta -- 3.1 Introduction 59 -- 3.2 Neuron Models with High-Dimensional Parameters 60 -- 3.3 N-Dimensional Vector Neuron 65 -- 3.4 Discussion 69 -- 3.5 Conclusion 70 -- 4 Learning Algorithms in Complex-Valued Neural Networks using Wirtinger Calculus 75 -- Md. Faijul Amin and Kazuyuki Murase -- 4.1 Introduction 76 -- 4.2 Derivatives in Wirtinger Calculus 78 -- 4.3 Complex Gradient 80 -- 4.4 Learning Algorithms for Feedforward CVNNs 82 -- 4.5 Learning Algorithms for Recurrent CVNNs 91 -- 4.6 Conclusion 99 -- 5 Quaternionic Neural Networks for Associative Memories 103 -- Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Matsui -- 5.1 Introduction 104 -- 5.2 Quaternionic Algebra 105 -- 5.3 Stability of Quaternionic Neural Networks 108 -- 5.4 Learning Schemes for Embedding Patterns 124 -- 5.5 Conclusion 128 -- 6 Models of Recurrent Clifford Neural Networks and Their Dynamics 133 -- Yasuaki Kuroe -- 6.1 Introduction 134 -- 6.2 Clifford Algebra 134 -- 6.3 Hopfield-Type Neural Networks and Their Energy Functions 137 -- 6.4 Models of Hopfield-Type Clifford Neural Networks 139 -- 6.5 Definition of Energy Functions 140 -- 6.6 Existence Conditions of Energy Functions 142 -- 6.7 Conclusion 149 -- 7 Meta-cognitive Complex-valued Relaxation Network and its Sequential Learning Algorithm 153 -- Ramasamy Savitha, Sundaram Suresh, and Narasimhan Sundararajan.
7.1 Meta-cognition in Machine Learning 154 -- 7.2 Meta-cognition in Complex-valued Neural Networks 156 -- 7.3 Meta-cognitive Fully Complex-valued Relaxation Network 164 -- 7.4 Performance Evaluation of McFCRN: Synthetic Complexvalued Function Approximation Problem 171 -- 7.5 Performance Evaluation of McFCRN: Real-valued Classification Problems 172 -- 7.6 Conclusion 178 -- 8 Multilayer Feedforward Neural Network with Multi-Valued Neurons for Brain-Computer Interfacing 185 -- Nikolay V. Manyakov, Igor Aizenberg, Nikolay Chumerin, and Marc M. Van Hulle -- 8.1 Brain-Computer Interface (BCI) 185 -- 8.2 BCI Based on Steady-State Visual Evoked Potentials 188 -- 8.3 EEG Signal Preprocessing 192 -- 8.4 Decoding Based on MLMVN for Phase-Coded SSVEP BCI 196 -- 8.5 System Validation 201 -- 8.6 Discussion 203 -- 9 Complex-Valued B-Spline Neural Networks for Modeling and Inverse of Wiener Systems 209 -- Xia Hong, Sheng Chen and Chris J. Harris -- 9.1 Introduction 210 -- 9.2 Identification and Inverse of Complex-Valued Wiener Systems 211 -- 9.3 Application to Digital Predistorter Design 222 -- 9.4 Conclusions 229 -- 10 Quaternionic Fuzzy Neural Network for View-invariant Color Face Image Recognition 235 -- Wai Kit Wong, Gin Chong Lee, Chu Kiong Loo, Way Soong Lim, and Raymond Lock -- 10.1 Introduction 236 -- 10.2 Face Recognition System 238 -- 10.3 Quaternion-Based View-invariant Color Face Image Recognition 244 -- 10.4 Enrollment Stage and Recognition Stage for Quaternion- Based Color Face Image Correlator 255 -- 10.5 Max-Product Fuzzy Neural Network Classifier 260 -- 10.6 Experimental Results 266 -- 10.7 Conclusion and Future Research Directions 274 -- References 274 -- Index 279.
Record Nr. UNINA-9910876802303321
Hoboken, N.J., : John Wiley & Sons, Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent computing theories and application . Part I : 18th International Conference, ICIC 2022, Xi'an, China, August 7-11, 2022, proceedings / / editors, De-Shuang Huang [and five others]
Intelligent computing theories and application . Part I : 18th International Conference, ICIC 2022, Xi'an, China, August 7-11, 2022, proceedings / / editors, De-Shuang Huang [and five others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (858 pages)
Disciplina 006.3
Collana Lecture notes in computer science
Soggetto topico Computational intelligence
Neural networks (Computer science) - Industrial applications
ISBN 3-031-13870-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Contents - Part III -- Evolutionary Computing and Learning -- Evolutionary Game Analysis of Suppliers Considering Quality Supervision of the Main Manufacturer -- 1 Introduction -- 2 Related Work -- 3 Two-Party Evolutionary Game Between Suppliers -- 3.1 Model Assumptions and Payoff Matrix -- 3.2 Evolutionary Game and Stability Analysis Between Supplier a and Supplier B -- 4 Simulation Analysis -- 5 Conclusion -- References -- Multi-party Evolution Stability Analysis of Electric Vehicles- Microgrid Interaction Mechanism -- 1 Introduction -- 2 Multi-party Evolutionary Game of EV-MG Interaction -- 3 Designing the Game Model -- 3.1 Describing the Game Strategy -- 3.2 Game Solution Analysis -- 3.3 Building the Simulation Model Based on System Dynamics -- 4 Discussion -- 5 Conclusion -- References -- An Efficient Multi-objective Evolutionary Algorithm for a Practical Dynamic Pickup and Delivery Problem -- 1 Introduction -- 2 Preliminary -- 2.1 A Brief Review of DPDPs -- 3 Problem Definition -- 3.1 Objective Functions -- 3.2 Constraints -- 4 The Proposed MOEA/D-ES -- 4.1 Framework -- 4.2 The Crossover Operator -- 4.3 The Local Search Procedure -- 5 Experimental Study -- 5.1 Benchmark Problems and Performance Metrics -- 5.2 The Compared Algorithms and Experimental Settings -- 5.3 The Comparison Experiments on the HW Benchmarks -- 6 Conclusions and Future Work -- References -- An Efficient Evaluation Mechanism for Evolutionary Reinforcement Learning -- 1 Introduction -- 2 Preliminary -- 2.1 Related Works of the Combination of EA and RL -- 3 The Proposed Evaluation Mechanism and E-ERL -- 3.1 The Proposed Evaluation Mechanism -- 3.2 The Proposed E-ERL -- 3.3 Discussions on E-ERL -- 4 Experimental Studies -- 4.1 Benchmark Problems and Performance Metrics.
4.2 The Compared Algorithms and Experimental Settings -- 4.3 Comparisons Between E-ERL and Other Algorithms -- 5 Conclusions and Future Work -- References -- A Mixed-Factor Evolutionary Algorithm for Multi-objective Knapsack Problem -- 1 Introduction -- 2 Background -- 2.1 Multi-objective Evolutionary Algorithm -- 2.2 Multi-objective Knapsack Problem -- 3 Mixed-Factor Evolutionary Algorithm -- 3.1 Definitions -- 3.2 Framework of MFEA -- 3.3 Offspring Creation -- 4 Experiments and Results -- 4.1 Experiment Methodology -- 4.2 Constraints Handling -- 4.3 Experimental Results and Comments -- 5 Conclusion -- References -- NSLS with the Clustering-Based Entropy Selection for Many-Objective Optimization Problems -- 1 Introduction -- 2 Proposed Algorithm NSLS-CE -- 2.1 NSLS -- 2.2 Clustering-Based Entropy Selection -- 2.3 NSLS-CE -- 3 Experimental Result and Discussion -- 3.1 Test Problems -- 3.2 Performance Measures -- 3.3 Parameter Setting -- 3.4 Discussion of Results -- 4 Conclusions -- References -- Tunicate Swarm Algorithm Based Difference Variation Flower Pollination Algorithm -- 1 Introduction -- 2 Flower Pollination Algorithm -- 3 Tunicate Swarm Algorithm Based Differential Variation Flower Pollination Algorithm -- 3.1 Strategy of Simplified TSA -- 3.2 Differential Variation Strategy of Local Pollination -- 3.3 Dynamic Switching Probability Strategy -- 3.4 Procedure of TSA-DVFPA -- 3.5 Time Complexity Analysis of TSA-DVFPA -- 4 Simulation Experiment and Results Analysis -- 4.1 Experimental Parameter Settings -- 4.2 Comparative Analysis of Benchmark Test Function Experiment Results -- 4.3 Ablation Experiments -- 5 Conclusions and Future Works -- References -- A Multi-strategy Improved Fireworks Optimization Algorithm -- 1 Introduction -- 2 Related Work -- 2.1 Fireworks Algorithm -- 2.2 Multi-strategy Fireworks Algorithm.
3 Experimental Simulation and Analysis -- 3.1 Parameter Setting and Sensitivity Analysis -- 3.2 Experimental Results and Analysis -- 3.3 Statistical Test -- 4 Application of MSFWA in Engineering Constrained Optimization Problem -- 5 Concluding Remarks -- Appendix -- References -- A New Fitness-Landscape-Driven Particle Swarm Optimization -- 1 Introduction -- 2 Related Works -- 2.1 Fitness Distance Correlation -- 2.2 Basic Particle Swarm Optimization -- 3 Proposed FLDPSO Algorithm -- 3.1 Fitness-Landscape-Driven Strategy -- 3.2 Variants of PSO -- 3.3 Selection Strategy -- 4 Simulation -- 4.1 Evaluation Function and Parameter Setting -- 4.2 Experimental Results -- 5 Conclusions -- References -- Neighborhood Combination Strategies for Solving the Bi-objective Max-Bisection Problem -- 1 Introduction -- 2 Bi-objective Optimization -- 3 Neighborhood Combination Strategies -- 3.1 One-Flip Move -- 3.2 Two-Flip Move -- 4 Experiments -- 4.1 Parameters Settings -- 4.2 Performance Assessment Protocol -- 4.3 Computational Results -- 5 Conclusions -- References -- Neural Networks -- Rolling Bearing Fault Diagnosis Based on Model Migration -- 1 Introduction -- 2 Introduction of Transfer Learning -- 2.1 Transfer Learning -- 2.2 Methods of Transfer Learning -- 2.3 1D CNN Model and Parameters -- 2.4 Fault Diagnosis Procedure Based on Model Migration -- 3 Bearing Fault Diagnosis Based on Model Migration -- 3.1 Experimental Data -- 3.2 Network Training -- 3.3 Feature Visualization -- 3.4 Performance Comparison -- 4 Conclusion -- References -- Yak Management Platform Based on Neural Network and Path Tracking -- 1 Introduction -- 2 Theoretical Basis -- 2.1 Global Positioning System (GPS) -- 2.2 Neural Network (NN) -- 3 Research Content -- 3.1 Yak Counting Based on Subareas -- 3.2 Individual Analysis Based on Path Tracking -- 4 Function Design and Implementation.
4.1 Functions -- 4.2 Test of Functions -- 5 Conclusion -- References -- Stability Analysis of Hopfield Neural Networks with Conformable Fractional Derivative: M-matrix Method -- 1 Introduction -- 2 Preliminaries -- 3 Main Results -- 4 A Numerical Example -- 5 Conclusions -- References -- Artificial Neural Networks for COVID-19 Forecasting in Mexico: An Empirical Study -- 1 Introduction -- 2 Theoretical Framework -- 2.1 MLP -- 2.2 CNN -- 2.3 LSTM -- 2.4 LSTM-CNN -- 3 Experimental Set Up -- 3.1 Dataset -- 3.2 Free Parameters Specification -- 3.3 Performance of the DL Models -- 4 Results and Discussion -- 5 Conclusion -- References -- Multi-view Robustness-Enhanced Weakly Supervised Semantic Segmentation -- 1 Introduction -- 2 Related Work -- 3 The Proposed Approach -- 3.1 Overview -- 3.2 Network Framework -- 3.3 Loss Function -- 4 Experiments -- 4.1 Dataset and Evaluation Metric -- 4.2 Implementation Details -- 4.3 Ablation Study -- 4.4 Comparison with Other SOTA Methods -- 5 Conclusions -- References -- Rolling Bearing Fault Diagnosis Based on Graph Convolution Neural Network -- 1 Introduction -- 2 Basic Theory -- 2.1 Graph Fourier Transform and Graph Convolution -- 2.2 Rolling Bearing Data Set and Graph Transformation -- 3 Graph Convolution Neural Network -- 3.1 Symbols and Problem Descriptions -- 3.2 Graph Convolution Neural Network Model Selection -- 3.3 Overall Neural Network Structure -- 4 Experimental Verification -- 4.1 Data Sample Division of Experiment 1 -- 4.2 Graph Convolution Neural Network Training of Experiment 1 -- 4.3 Experimental Comparison of Experiment 1 -- 4.4 Data Sample Division of Experiment 2 -- 4.5 Experimental Comparison of Experiment 2 -- 5 Conclusion -- References -- Research on Bearing Fault Feature Extraction Based on Graph Wavelet -- 1 Introduction -- 2 Graph Wavelet Based Bearing Fault Feature Extraction.
2.1 Graph Signal Processing -- 2.2 Graph Wavelet [14] -- 3 Graph Wavelet Based Bearing Fault Feature Extraction -- 3.1 Experimental Data -- 3.2 Analysis of Experimental Results -- 4 Performance Comparison of GWNN and GCN -- 4.1 Experimental Results Analysis -- 4.2 Comparative Analysis of Experimental Results -- 5 Conclusion -- References -- Correntrogram: A Robust Method for Optimal Frequency Band Selection to Bearing Fault Detection -- 1 Introduction -- 2 Correntrogram for Bearing Fault Detection -- 2.1 The Basic Theory of Correntropy -- 2.2 Definition of Spectral L2/L1 Norm and Signal Decomposition -- 2.3 Main Steps of Correntrogram for Bearing Fault Detection -- 3 Simulative Signal Analysis -- 4 Experimental Verification of Bearing Fault Detection -- 5 Conclusions -- References -- Semidefinite Relaxation Algorithm for Source Localization Using Multiple Groups of TDOA Measurements with Distance Constraints -- 1 Introduction -- 2 Proposed Method -- 2.1 Problem Formulation -- 2.2 Maximum Likelihood Estimation of Source Positions -- 2.3 Complexity Analysis -- 2.4 Constrained Cramér-Rao Lower Bound -- 3 Experiment and Analysis -- 4 Conclusion -- References -- Pattern Recognition -- Quasi Fourier Descriptor for Affine Invariant Features -- 1 Introduction -- 2 Preliminary -- 2.1 Affine Transform -- 2.2 Traditional FD -- 3 Affine Invariant Features with QFD -- 3.1 Definition of QFD -- 3.2 Properties of QFD -- 4 Experimental Results -- 4.1 Testing of Invariance -- 4.2 Pattern Classification -- 4.3 Robustness to Noise -- 5 Conclusions -- References -- A New PM2.5 Concentration Predication Study Based on CNN-LSTM Parallel Integration -- 1 Introduction -- 2 A New Parallel Integrated Prediction Method of CNN and LSTM -- 2.1 Parallel Integrated Prediction Model Framework -- 2.2 CNN Model -- 2.3 LSTM Model -- 2.4 LSTM Model -- 3 Experiments and Results.
3.1 Experimental Data.
Record Nr. UNISA-996485668303316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Neural networks for instrumentation, measurement, and related industrial applications [[electronic resource] /] / edited by Sergey Ablameyko ... [et al.]
Neural networks for instrumentation, measurement, and related industrial applications [[electronic resource] /] / edited by Sergey Ablameyko ... [et al.]
Pubbl/distr/stampa Amsterdam ; Burke, VA, : IOS Press
Descrizione fisica 1 online resource (340 p.)
Disciplina 006.32
Altri autori (Persone) AblameykoSergey <1956->
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Neural networks (Computer science)
Neural networks (Computer science) - Industrial applications
Soggetto genere / forma Electronic books.
ISBN 9786610505760
1-280-50576-1
600-00-0498-2
1-60129-447-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover""; ""Title page""; ""Preface""; ""Contents""; ""1. Introduction to Neural Networks for Instrumentation, Measurement, and Industrial Applications""; ""1.1 The scientific and application motivations""; ""1.2 The scientific and application objective""; ""1.3 The book organization""; ""1.4 The book topics""; ""1.5 The socio-economical implications""; ""2. The Fundamentals of Measurement Techniques""; ""2.1 The measurement concept""; ""2.2 A big scientific and technical problem""; ""2.3 The uncertainty concept""; ""2.4 Uncertainty: definitions and methods for its determination""
""2.5 How can the results of different measurements be compared?""""2.6 The role of the standard and the traceability concept""; ""2.7 Conclusions""; ""3. Neural Networks in Intelligent Sensors and Measurement Systems for Industrial Applications""; ""3.1 Introduction to intelligent measurement systems for industrial applications""; ""3.2 Design and implementation of neural-based systems for industrial applications""; ""3.3 Application of neural techniques for intelligent sensors and measurement systems""; ""4. Neural Networks in System Identification""; ""4.1 Introduction""
""4.2 The main steps of modeling""""4.3 Black box model structures""; ""4.4 Neural networks""; ""4.5 Static neural network architectures""; ""4.6 Dynamic neural architectures""; ""4.7 Model parameter estimation, neural network training""; ""4.8 Model validation""; ""4.9 Why neural networks?""; ""4.10 Modeling of a complex industrial process using neural networks: special difficulties and solutions (case study)""; ""4.11 Conclusions""; ""5. Neural Techniques in Control""; ""5.1 Neural control""; ""5.2 Neural approximations""; ""5.3 Gradient algebra""
""5.4 Neural modeling of dynamical systems""""5.5 Stabilization""; ""5.6 Tracking""; ""5.7 Optimal control""; ""5.8 Reinforcement learning""; ""5.9 Concluding remarks""; ""6. Neural Networks for Signal Processing in Measurement Analysis and Industrial Applications: the Case of Chaotic Signal Processing""; ""6.1 Introduction""; ""6.2 Multilayer neural networks""; ""6.3 Dynamical systems""; ""6.4 How can we verify if the behavior is chaotic?""; ""6.5 Embedding parameters""; ""6.6 Lyapunov's exponents""; ""6.7 A neural network approach to compute the Lyapunov's exponents""
""6.8 Prediction of chaotic processes by using neural networks""""6.9 State space reconstruction""; ""6.10 Conclusion""; ""7. Neural Networks for Image Analysis and Processing in Measurements, Instrumentation and Related Industrial Applications""; ""7.1 Introduction""; ""7.2 Digital imaging systems""; ""7.3 Image system design parameters and modeling""; ""7.4 Multisensor image classification""; ""7.5 Pattern recognition and classification""; ""7.6 Image shape and texture analysis""; ""7.7 Image compression""; ""7.8 Nonlinear neural networks for image compression""
""7.9 Linear neural networks for image compression""
Record Nr. UNINA-9910455963603321
Amsterdam ; Burke, VA, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neural networks for instrumentation, measurement, and related industrial applications [[electronic resource] /] / edited by Sergey Ablameyko ... [et al.]
Neural networks for instrumentation, measurement, and related industrial applications [[electronic resource] /] / edited by Sergey Ablameyko ... [et al.]
Pubbl/distr/stampa Amsterdam ; Burke, VA, : IOS Press
Descrizione fisica 1 online resource (340 p.)
Disciplina 006.32
Altri autori (Persone) AblameykoSergey <1956->
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Neural networks (Computer science)
Neural networks (Computer science) - Industrial applications
ISBN 9786610505760
1-280-50576-1
600-00-0498-2
1-60129-447-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover""; ""Title page""; ""Preface""; ""Contents""; ""1. Introduction to Neural Networks for Instrumentation, Measurement, and Industrial Applications""; ""1.1 The scientific and application motivations""; ""1.2 The scientific and application objective""; ""1.3 The book organization""; ""1.4 The book topics""; ""1.5 The socio-economical implications""; ""2. The Fundamentals of Measurement Techniques""; ""2.1 The measurement concept""; ""2.2 A big scientific and technical problem""; ""2.3 The uncertainty concept""; ""2.4 Uncertainty: definitions and methods for its determination""
""2.5 How can the results of different measurements be compared?""""2.6 The role of the standard and the traceability concept""; ""2.7 Conclusions""; ""3. Neural Networks in Intelligent Sensors and Measurement Systems for Industrial Applications""; ""3.1 Introduction to intelligent measurement systems for industrial applications""; ""3.2 Design and implementation of neural-based systems for industrial applications""; ""3.3 Application of neural techniques for intelligent sensors and measurement systems""; ""4. Neural Networks in System Identification""; ""4.1 Introduction""
""4.2 The main steps of modeling""""4.3 Black box model structures""; ""4.4 Neural networks""; ""4.5 Static neural network architectures""; ""4.6 Dynamic neural architectures""; ""4.7 Model parameter estimation, neural network training""; ""4.8 Model validation""; ""4.9 Why neural networks?""; ""4.10 Modeling of a complex industrial process using neural networks: special difficulties and solutions (case study)""; ""4.11 Conclusions""; ""5. Neural Techniques in Control""; ""5.1 Neural control""; ""5.2 Neural approximations""; ""5.3 Gradient algebra""
""5.4 Neural modeling of dynamical systems""""5.5 Stabilization""; ""5.6 Tracking""; ""5.7 Optimal control""; ""5.8 Reinforcement learning""; ""5.9 Concluding remarks""; ""6. Neural Networks for Signal Processing in Measurement Analysis and Industrial Applications: the Case of Chaotic Signal Processing""; ""6.1 Introduction""; ""6.2 Multilayer neural networks""; ""6.3 Dynamical systems""; ""6.4 How can we verify if the behavior is chaotic?""; ""6.5 Embedding parameters""; ""6.6 Lyapunov's exponents""; ""6.7 A neural network approach to compute the Lyapunov's exponents""
""6.8 Prediction of chaotic processes by using neural networks""""6.9 State space reconstruction""; ""6.10 Conclusion""; ""7. Neural Networks for Image Analysis and Processing in Measurements, Instrumentation and Related Industrial Applications""; ""7.1 Introduction""; ""7.2 Digital imaging systems""; ""7.3 Image system design parameters and modeling""; ""7.4 Multisensor image classification""; ""7.5 Pattern recognition and classification""; ""7.6 Image shape and texture analysis""; ""7.7 Image compression""; ""7.8 Nonlinear neural networks for image compression""
""7.9 Linear neural networks for image compression""
Record Nr. UNINA-9910780291903321
Amsterdam ; Burke, VA, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neural networks for instrumentation, measurement, and related industrial applications / / edited by Sergey Ablameyko ... [et al.]
Neural networks for instrumentation, measurement, and related industrial applications / / edited by Sergey Ablameyko ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; Burke, VA, : IOS Press
Descrizione fisica 1 online resource (340 p.)
Disciplina 006.32
Altri autori (Persone) AblameykoSergey <1956->
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Neural networks (Computer science)
Neural networks (Computer science) - Industrial applications
ISBN 9786610505760
1-280-50576-1
600-00-0498-2
1-60129-447-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover""; ""Title page""; ""Preface""; ""Contents""; ""1. Introduction to Neural Networks for Instrumentation, Measurement, and Industrial Applications""; ""1.1 The scientific and application motivations""; ""1.2 The scientific and application objective""; ""1.3 The book organization""; ""1.4 The book topics""; ""1.5 The socio-economical implications""; ""2. The Fundamentals of Measurement Techniques""; ""2.1 The measurement concept""; ""2.2 A big scientific and technical problem""; ""2.3 The uncertainty concept""; ""2.4 Uncertainty: definitions and methods for its determination""
""2.5 How can the results of different measurements be compared?""""2.6 The role of the standard and the traceability concept""; ""2.7 Conclusions""; ""3. Neural Networks in Intelligent Sensors and Measurement Systems for Industrial Applications""; ""3.1 Introduction to intelligent measurement systems for industrial applications""; ""3.2 Design and implementation of neural-based systems for industrial applications""; ""3.3 Application of neural techniques for intelligent sensors and measurement systems""; ""4. Neural Networks in System Identification""; ""4.1 Introduction""
""4.2 The main steps of modeling""""4.3 Black box model structures""; ""4.4 Neural networks""; ""4.5 Static neural network architectures""; ""4.6 Dynamic neural architectures""; ""4.7 Model parameter estimation, neural network training""; ""4.8 Model validation""; ""4.9 Why neural networks?""; ""4.10 Modeling of a complex industrial process using neural networks: special difficulties and solutions (case study)""; ""4.11 Conclusions""; ""5. Neural Techniques in Control""; ""5.1 Neural control""; ""5.2 Neural approximations""; ""5.3 Gradient algebra""
""5.4 Neural modeling of dynamical systems""""5.5 Stabilization""; ""5.6 Tracking""; ""5.7 Optimal control""; ""5.8 Reinforcement learning""; ""5.9 Concluding remarks""; ""6. Neural Networks for Signal Processing in Measurement Analysis and Industrial Applications: the Case of Chaotic Signal Processing""; ""6.1 Introduction""; ""6.2 Multilayer neural networks""; ""6.3 Dynamical systems""; ""6.4 How can we verify if the behavior is chaotic?""; ""6.5 Embedding parameters""; ""6.6 Lyapunov's exponents""; ""6.7 A neural network approach to compute the Lyapunov's exponents""
""6.8 Prediction of chaotic processes by using neural networks""""6.9 State space reconstruction""; ""6.10 Conclusion""; ""7. Neural Networks for Image Analysis and Processing in Measurements, Instrumentation and Related Industrial Applications""; ""7.1 Introduction""; ""7.2 Digital imaging systems""; ""7.3 Image system design parameters and modeling""; ""7.4 Multisensor image classification""; ""7.5 Pattern recognition and classification""; ""7.6 Image shape and texture analysis""; ""7.7 Image compression""; ""7.8 Nonlinear neural networks for image compression""
""7.9 Linear neural networks for image compression""
Record Nr. UNINA-9910828434703321
Amsterdam ; Burke, VA, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the ... Annual Conference of the IEEE Industrial Electronics Society / / IECON [[electronic resource]]
Proceedings of the ... Annual Conference of the IEEE Industrial Electronics Society / / IECON [[electronic resource]]
Pubbl/distr/stampa Piscataway, NJ, : IEEE Operations Center
Descrizione fisica 1 online resource
Disciplina 621.381
Soggetto topico Industrial electronics
Power electronics
Robotics - Industrial applications
Neural networks (Computer science) - Industrial applications
Computer vision - Industrial applications
Soggetto genere / forma Conference papers and proceedings.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Proceedings, the ... Annual Conference of the IEEE Industrial Electronics Society
IEEE International Conference on Industrial Electronics, Control and Instrumentation
IECON
Record Nr. UNISA-996280119503316
Piscataway, NJ, : IEEE Operations Center
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Proceedings of the ... Annual Conference of the IEEE Industrial Electronics Society / / IECON
Proceedings of the ... Annual Conference of the IEEE Industrial Electronics Society / / IECON
Pubbl/distr/stampa Piscataway, NJ, : IEEE Operations Center
Descrizione fisica 1 online resource
Disciplina 621.381
Soggetto topico Industrial electronics
Power electronics
Robotics - Industrial applications
Neural networks (Computer science) - Industrial applications
Computer vision - Industrial applications
Soggetto genere / forma Conference papers and proceedings.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Proceedings, the ... Annual Conference of the IEEE Industrial Electronics Society
IEEE International Conference on Industrial Electronics, Control and Instrumentation
IECON
Record Nr. UNINA-9910625197903321
Piscataway, NJ, : IEEE Operations Center
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
SCIMA 2003 : 2003 IEEE International Workshop on Soft Computing in Instrumentation, Measuremment and Related Applications : Brigham Young University, Provo, Utah, USA, 17 May, 2003
SCIMA 2003 : 2003 IEEE International Workshop on Soft Computing in Instrumentation, Measuremment and Related Applications : Brigham Young University, Provo, Utah, USA, 17 May, 2003
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2003
Disciplina 006.3
Soggetto topico Soft computing - Industrial applications
Electric power systems - Data processing
Neural networks (Computer science) - Industrial applications
Fuzzy systems
Evolutionary computation
Engineering & Applied Sciences
Computer Science
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996202484703316
[Place of publication not identified], : IEEE, 2003
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui