Deep Neural Evolution [[electronic resource] ] : Deep Learning with Evolutionary Computation / / edited by Hitoshi Iba, Nasimul Noman
| Deep Neural Evolution [[electronic resource] ] : Deep Learning with Evolutionary Computation / / edited by Hitoshi Iba, Nasimul Noman |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (437 pages) |
| Disciplina | 006.32 |
| Collana | Natural Computing Series |
| Soggetto topico |
Machine learning
Neural networks (Computer science) Machine Learning Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN | 981-15-3685-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Evolutionary Computation and meta-heuristics -- Chapter 2: A Shallow Introduction to Deep Neural Networks -- Chapter 3: On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks -- Chapter 4: Automated development of DNN based spoken language systems using evolutionary algorithms -- Chapter 5: Search heuristics for the optimization of DBN for Time Series Forecasting -- Chapter 6: Particle Swarm Optimisation for Evolving Deep Convolutional Neural Networks for Image Classification: Single- and Multi-objective Approaches -- Chapter 7: Designing Convolutional Neural Network Architectures Using Cartesian Genetic Programming -- Chapter 8: Fast Evolution of CNN Architecture for Image Classificaiton -- Chapter 9: Discovering Gated Recurrent Neural Network Architectures -- Chapter 10: Investigating Deep Recurrent Connections and Recurrent Memory Cells Using Neuro-Evolution -- Chapter 11: Neuroevolution of Generative Adversarial Networks -- Chapter 12: Evolving deep neural networks for X-ray based detection of dangerous objects -- Chapter 13: Evolving the architecture and hyperparameters of DNNs for malware detection -- Chapter 14: Data Dieting in GAN Training -- Chapter 15: One-Pixel Attack: Understanding and Improving Deep Neural Networks with Evolutionary Computation. |
| Record Nr. | UNISA-996465469103316 |
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Effective Statistical Learning Methods for Actuaries III [[electronic resource] ] : Neural Networks and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin
| Effective Statistical Learning Methods for Actuaries III [[electronic resource] ] : Neural Networks and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin |
| Autore | Denuit Michel |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (258 pages) : illustrations |
| Disciplina | 368.01 |
| Collana | Springer Actuarial Lecture Notes |
| Soggetto topico |
Actuarial science
Statistics Neural networks (Computer science) Actuarial Sciences Statistics for Business, Management, Economics, Finance, Insurance Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN | 3-030-25827-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References. |
| Record Nr. | UNISA-996416847203316 |
Denuit Michel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Introduction to deep learning : from logical calculus to artificial intelligence / / by Sandro Skansi
| Introduction to deep learning : from logical calculus to artificial intelligence / / by Sandro Skansi |
| Autore | Skansi Sandro |
| Edizione | [1st edition.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (XIII, 191 p. 38 illus.) |
| Disciplina | 004 |
| Collana | Undergraduate Topics in Computer Science |
| Soggetto topico |
Machine learning
Pattern recognition Neural networks (Computer science) Coding theory Information theory |
| ISBN | 3-319-73004-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | From Logic to Cognitive Science -- Mathematical and Computational Prerequisites -- Machine Learning Basics -- Feed-forward Neural Networks -- Modifications and Extensions to a Feed-forward Neural Network -- Convolutional Neural Networks -- Recurrent Neural Networks -- Autoencoders -- Neural Language Models -- An Overview of Different Neural Network Architectures -- Conclusion. |
| Record Nr. | UNINA-9910299277703321 |
Skansi Sandro
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Network Algorithms, Data Mining, and Applications [[electronic resource] ] : NET, Moscow, Russia, May 2018 / / edited by Ilya Bychkov, Valery A. Kalyagin, Panos M. Pardalos, Oleg Prokopyev
| Network Algorithms, Data Mining, and Applications [[electronic resource] ] : NET, Moscow, Russia, May 2018 / / edited by Ilya Bychkov, Valery A. Kalyagin, Panos M. Pardalos, Oleg Prokopyev |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XIII, 244 p. 65 illus., 43 illus. in color.) |
| Disciplina | 658.4032 |
| Collana | Springer Proceedings in Mathematics & Statistics |
| Soggetto topico |
Mathematical optimization
Neural networks (Computer science) Combinatorics Optimization Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN | 3-030-37157-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I: Network algorithms -- Obaid, H. B. and Trafalis, T: Fairness in Resource Allocation: Foundation and Applications -- Ignatov, D., Ivanova, P., Zamaletdinova, A. and Prokopyev, O: Searching for Maximum Quasi-Bicliques with Mixed Integer Programming -- Miasnikof, P., Pitsoulis, L., Bonner, A. J., Lawryshyn, Y. and Pardalos, P. M: Graph Clustering Via Intra-Cluster Density Maximization -- Shvydun, S.: Computational Complexity of SRIC and LRIC indices -- Sifaleras, A. and Konstantaras, I: A survey on variable neighborhood search methods for supply network inventory -- Part II: Network Data Mining -- Ananyeva, M. and Makarov, I: GSM: Inductive Learning on Dynamic Graph Embeddings -- Averchenkova, A., Akhmetzyanova, A., Sudarikov, K., Sulimov, P., Makarov I. and Zhukov, L. E: Collaborator Recommender System based on Co-authorship Network Analysis -- Demochkin, K. and Savchenko, A: User Preference Prediction in a Set of Photos based on Neural Aggregation Network -- Makrushin , S.: Network structure and scheme analysis of the Russian language segment of Wikipedia -- Meshcheryakova, N., Shvydun, S. and Aleskerov, F: Indirect Influence Assessment in the Context of Retail Food Network -- Sokolova, A. D. and Savchenko, A. V: Facial clustering in video data using deep convolutional neural networks -- Part III: Network Applications -- Egamov, A.: The existence and uniqueness theorem for initial-boundary value problem of the same class of integro-differential PDEs -- Gradoselskaya, G., Karpov, I. and Shcheglova, T: Mapping of politically active groups on social networks of Russian regions (on the example of Karachay-Cherkessia Republic) -- Mikhailova, O., Gradoselskaya, G. and Kharlamov, A: Social Mechanisms of the Subject Area Formation. The Case of “Digital Economy -- Shcheglova, T., Gradoselskaya, G. and Karpov, I: Methodology for measuring polarization of political discourse: case of comparing oppositional and patriotic discourse in online social networks -- Zaytsev, D., Khvatsky, G., Talovsky, N. and Kuskova, V: Network Analysis Methodology of Policy Actors Identification and Power Evaluation (the case of the Unified State Exam introduction in Russia). |
| Record Nr. | UNISA-996418261603316 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Neural-Network Simulation of Strongly Correlated Quantum Systems [[electronic resource] /] / by Stefanie Czischek
| Neural-Network Simulation of Strongly Correlated Quantum Systems [[electronic resource] /] / by Stefanie Czischek |
| Autore | Czischek Stefanie |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (212 pages) : illustrations |
| Disciplina | 530.12 |
| Collana | Springer Theses, Recognizing Outstanding Ph.D. Research |
| Soggetto topico |
Quantum physics
Machine learning Neural networks (Computer science) Condensed matter Quantum Physics Machine Learning Mathematical Models of Cognitive Processes and Neural Networks Condensed Matter Physics |
| ISBN | 3-030-52715-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Quantum Mechanics and Spin Systems -- Artificial Neural Networks -- Discrete Truncated Wigner Approximation -- BM-Based Wave Function Parametrization -- Deep Neural Networks and Phase Reweighting -- Towards Neuromorphic Sampling of Quantum States -- Conclusion. |
| Record Nr. | UNISA-996418432103316 |
Czischek Stefanie
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Operads of Wiring Diagrams [[electronic resource] /] / by Donald Yau
| Operads of Wiring Diagrams [[electronic resource] /] / by Donald Yau |
| Autore | Yau Donald |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (XI, 308 p. 437 illus.) |
| Disciplina | 621.31924 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Category theory (Mathematics)
Homological algebra Dynamics Ergodic theory Information theory Neural networks (Computer science) Category Theory, Homological Algebra Dynamical Systems and Ergodic Theory Information and Communication, Circuits Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN | 3-319-95001-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Part I Wiring Diagrams -- Wiring Diagrams -- Generators and Relations -- Decomposition of Wiring Diagrams -- Finite Presentation -- Finite Presentation for Algebras over Wiring Diagrams -- Part II Undirected Wiring Diagrams -- Undirected Wiring Diagrams -- Generators and Relations -- Decomposition of Undirected Wiring Diagrams -- Finite Presentation for Undirected Wiring Diagrams -- Algebras of Undirected Wiring Diagrams -- Part III Maps Between Operads of Wiring Diagrams -- A Map from Normal to Undirected Wiring Diagrams -- A Map from Wiring Diagrams to Undirected Wiring Diagrams -- Problems. |
| Record Nr. | UNISA-996466532003316 |
Yau Donald
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Smart Cities: Big Data Prediction Methods and Applications [[electronic resource] /] / by Hui Liu
| Smart Cities: Big Data Prediction Methods and Applications [[electronic resource] /] / by Hui Liu |
| Autore | Liu Hui |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XXXV, 314 p. 251 illus., 20 illus. in color.) |
| Disciplina | 307.760285 |
| Soggetto topico |
Artificial intelligence
Big data Computational intelligence Architecture Neural networks (Computer science) Artificial Intelligence Big Data Computational Intelligence Cities, Countries, Regions Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN | 981-15-2837-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part 1 Exordium -- 1. Key Issues of Smart Cities -- Part 2 Smart Grid and Buildings -- 2. Electrical Characteristics and Correlation Analysis in Smart Grid -- 3. Prediction Model of City Electricity Consumption -- 4. Prediction Models of Energy Consumption in Smart Urban Buildings -- Part 3 Smart Traffic Systems -- 5. Characteristics and Analysis of Urban Traffic Flow in Smart Traffic Systems -- 6. Prediction Model of Traffic Flow Driven Based on Single Data in Smart Traffic Systems -- 7. Prediction Models of Traffic Flow Driven Based on Multi-dimensional Data in Smart Traffic Systems -- Part 4 Smart Environment 8 Prediction Models of Urban Air Quality in Smart Environment -- 9. Prediction Models of Urban Hydrological Status in Smart Environment -- 10. Prediction Model of Urban Environmental Noise in Smart Environment. |
| Record Nr. | UNISA-996465443603316 |
Liu Hui
|
||
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Statistical Field Theory for Neural Networks [[electronic resource] /] / by Moritz Helias, David Dahmen
| Statistical Field Theory for Neural Networks [[electronic resource] /] / by Moritz Helias, David Dahmen |
| Autore | Helias Moritz |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XVII, 203 p. 127 illus., 5 illus. in color.) |
| Disciplina | 519.2 |
| Collana | Lecture Notes in Physics |
| Soggetto topico |
Statistical physics
Neurosciences Machine learning Neural networks (Computer science) Mathematical statistics Statistical Physics and Dynamical Systems Machine Learning Mathematical Models of Cognitive Processes and Neural Networks Probability and Statistics in Computer Science |
| ISBN | 3-030-46444-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Probabilities, moments, cumulants -- Gaussian distribution and Wick’s theorem -- Perturbation expansion -- Linked cluster theorem -- Functional preliminaries -- Functional formulation of stochastic differential equations -- Ornstein-Uhlenbeck process: The free Gaussian theory -- Perturbation theory for stochastic differential equations -- Dynamic mean-field theory for random networks -- Vertex generating function -- Application: TAP approximation -- Expansion of cumulants into tree diagrams of vertex functions -- Loopwise expansion of the effective action - Tree level -- Loopwise expansion in the MSRDJ formalism -- Nomenclature. |
| Record Nr. | UNISA-996418173603316 |
Helias Moritz
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Synergetics [[electronic resource] /] / edited by Axel Hutt, Hermann Haken
| Synergetics [[electronic resource] /] / edited by Axel Hutt, Hermann Haken |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | New York, NY : , : Springer US : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (223 illus., 95 illus. in color. eReference.) |
| Disciplina | 621 |
| Collana | Encyclopedia of Complexity and Systems Science Series |
| Soggetto topico |
Statistical physics
Neural networks (Computer science) Computational complexity Systems biology System theory Applications of Nonlinear Dynamics and Chaos Theory Mathematical Models of Cognitive Processes and Neural Networks Complexity Systems Biology Statistical Physics and Dynamical Systems Complex Systems |
| ISBN | 1-0716-0421-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Brain Pacemaker -- Fluid Dynamics, Pattern Formation -- Fluid Dynamics, Turbulence -- Intentionality: A Naturalization Proposal on the Basis of Complex Dynamical Systems -- Linear and Non-linear Fokker-Planck Equations -- Movement Coordination -- Patterns and Interfaces in Dissipative Dynamics -- Self-Organization and the City -- Self-Organization in Clinical Psychology -- Synergetics, Introduction to -- Synergetics: Basic Concepts. . |
| Record Nr. | UNINA-9910412152703321 |
| New York, NY : , : Springer US : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Synergetics [[electronic resource] /] / edited by Axel Hutt, Hermann Haken
| Synergetics [[electronic resource] /] / edited by Axel Hutt, Hermann Haken |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | New York, NY : , : Springer US : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (223 illus., 95 illus. in color. eReference.) |
| Disciplina | 621 |
| Collana | Encyclopedia of Complexity and Systems Science Series |
| Soggetto topico |
Statistical physics
Neural networks (Computer science) Computational complexity Systems biology System theory Applications of Nonlinear Dynamics and Chaos Theory Mathematical Models of Cognitive Processes and Neural Networks Complexity Systems Biology Statistical Physics and Dynamical Systems Complex Systems |
| ISBN | 1-0716-0421-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Brain Pacemaker -- Fluid Dynamics, Pattern Formation -- Fluid Dynamics, Turbulence -- Intentionality: A Naturalization Proposal on the Basis of Complex Dynamical Systems -- Linear and Non-linear Fokker-Planck Equations -- Movement Coordination -- Patterns and Interfaces in Dissipative Dynamics -- Self-Organization and the City -- Self-Organization in Clinical Psychology -- Synergetics, Introduction to -- Synergetics: Basic Concepts. . |
| Record Nr. | UNISA-996418170003316 |
| New York, NY : , : Springer US : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||