top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The biology of glial cells : recent advances / / Ishan Patro [and three others], editors
The biology of glial cells : recent advances / / Ishan Patro [and three others], editors
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (763 pages)
Disciplina 612.82
Soggetto topico Central nervous system
Central nervous system - Abnormalities
Neuròglia
Sistema nerviós central
Soggetto genere / forma Llibres electrònics
ISBN 981-16-8312-3
981-16-8313-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- About the Book -- Contents -- About the Editors -- Abbreviations -- Glial Biology: A Historical Perspective -- 1 Introduction -- 1.1 Astrocytes -- 1.2 Oligodendrocytes -- 1.3 Microglia -- 2 Biology of Glia: Part I-Astrocytes -- 2.1 History -- 2.2 Morphology -- 2.3 Functions -- Astrocyte Excitability -- Astrocyte-Neuron Interaction -- Astrocytes and Synapses -- 2.4 Astrocytes and Neurovascular Regulation -- 2.5 Astrocytes and Brain Energy Metabolism -- 2.6 Astrocytes and Non-Neural Cells: Glia-Glia Interaction -- 2.7 Astrocytes and Neuroinflammation -- 2.8 Astrocytes and Other Neuropathological Conditions -- 3 Biology of Glia: Part II-Microglia -- 3.1 History -- 3.2 Morphology -- 3.3 Distribution -- 3.4 Functions -- Microglia in Immune Regulation -- Role of Microglia in Neuroinflammation and Diverse Neuropathologies -- 4 Biology of Glia: Part III-Oligodendrocytes -- 4.1 History -- 4.2 Origin and Development of Oligodendrocytes -- 4.3 Oligodendrocytes and Myelination -- 4.4 Non-Myelinating Functions of Oligodendrocytes and OPCs -- 4.5 Oligodendrocytes and CNS Pathology -- References -- Basic Biology of Astrocytes -- 1 Introduction -- 1.1 History -- 1.2 Classification -- 2 Embryogenesis and Development of CNS -- 2.1 Development of Glial Cells -- 2.2 Synaptogenesis and Synapse Maintenance -- 3 Markers and Functions -- 3.1 Cell-Specific Markers -- Astrocytes -- 3.2 Functions -- Role of Astrocytes in Blood-Brain Barrier (BBB) -- Role of Astrocytes in Brain Functions -- Role of Astrocytes in Neuronal Functions and Communication -- 4 General Pathophysiology of Astrocytes -- 4.1 Reactive Astrogliosis -- 5 Conclusion -- References -- Oligodendrocyte: Structure, Function and Pathology -- 1 Oligodendrocytes -- 1.1 Myelination -- 1.2 Structure and Composition of Myelin -- Defects in Myelination and Neuropathologies.
Primary Demyelinating Diseases -- Multiple Sclerosis -- Secondary Demyelinating Diseases -- Acute Disseminated Encephalomyelitis (ADEM) -- Neuromyelitis Optica (NMO)/Neuromyelitis Optica Spectrum Disorder (NMOSD) -- Leukodystrophies -- Demyelination Due to Mutations and Defects in Oligodendrocyte- and Myelin-Related Genes -- Mutations in Microglial and Astrocytic Genes and Leukodystrophies -- Viral Encephalopathies -- Vascular (Hypoxia/Ischaemia) -- Metabolic/Nutritional -- Other Concerns for Demyelination -- Remyelination Strategies -- References -- Oligodendroglial-Astroglial Cell-Cell Communication in the Central Nervous System -- 1 Introduction -- 2 The Myelin Sheath -- 3 Panglial Astro-Oligo Metabolic Coupling and Maintenance of CNS Homeostasis -- 4 Glial Biology in Neurodegeneration and Demyelination -- 5 The Biology of Gap Junctions -- 6 Properties of Gap Junctions: Synthesis, Oligomerization, Trafficking, and Degradation -- 7 Functional Importance of Astrocytic and Oligodendrocytic Gap Junctions -- 8 Conclusion -- 8.1 Gap Junctions as a Novel Target in Demyelinating Diseases -- References -- Oligodendroglial Gap Junction Communication in CNS Myelination and Demyelination -- 1 Gap Junctions in the Nervous System -- 2 Gap Junction Protein Mutations in Health and Disease -- 3 The Cx43/Cx47 Axis in CNS Myelination -- 4 Gap Junctions in Human CNS Demyelinating Disease Multiple Sclerosis -- 5 Remodeling of Gap Junction Proteins in Experimental Animal Models of Multiple Sclerosis -- 6 Alteration of Cx43/Cx47 Axis in Respect to Viral Model of Multiple Sclerosis -- References -- Generation and Maturation of Macroglia in the Central Nervous System -- 1 Introduction -- 2 Astrocytogenesis -- 3 Differentiation and Specification of Astrocytes -- 4 Morphological and Functional Maturation of Astrocytes -- 4.1 Astrocyte Markers -- 5 Genesis of Oligodendroglia.
6 Specification of Oligodendrocyte Precursors (OPCs) -- 7 Oligodendrocyte Differentiation -- 8 OPCs´ Migration, Maturation and Myelination -- References -- Origin and Development of Microglia -- 1 Introduction -- 2 Origin of Microglia -- 3 Early Specification and Differentiation of Microglia -- 3.1 Transcription Factors Required for Microglia Development and Homeostasis -- 3.2 Extrinsic Factors Required for Microglia Development and Homeostasis -- 4 Colonization, Distribution, and Terminal Differentiation of Microglia in Developing Brain Parenchyma -- 5 Microglial Markers to Study Their Phenotype, Distribution, and Functions -- 6 Perturbations in Microglial Development and Consequences -- 7 Perspectives -- References -- Biology of Astrocytes in CNS Infection -- 1 Introduction -- 2 Reactive Astrogliosis -- 3 Subtypes of Astrocytes -- 4 A1 Subtype -- 5 A2 Subtype -- 6 Pathobiology of Astrocytes in Various CNS Infections -- 6.1 Viral Infections (Figs. 1, 2, 3, 4, 5, and 6) -- Herpesvirus Infections -- Flavivirus Infections -- Human Immunodeficiency Virus (HIV) -- Progressive Multifocal Leukoencephalopathy (PML) -- 6.2 Bacterial Infections (Figs. 7 and 8) -- Bacterial Meningitis -- Tubercular Meningitis (TBM) -- 6.3 Fungal Infections (Figs. 9 and 10) -- Cryptococcal Meningoencephalitis -- Aspergillosis -- 6.4 Parasitic Infections (Figs. 11, 12, and 13) -- Toxoplasma Encephalitis -- Cerebral Malaria (CM) -- Neurocysticercosis (NCC) -- 7 Conclusion -- References -- Role of Reactive Astrocytes in Alzheimer´s Disease -- 1 Introduction -- 2 Astrocytes in AD -- 2.1 Types and Subtypes -- Physiological Subtypes -- Astrogliopathology -- Astrocyte Reactivity or Reactive Astrogliosis -- Astroglial Atrophy -- 2.2 Metabolic Balance and Imbalance Regulated by Astrocytes in AD -- Metabolic Dysregulation in AD -- Dysregulation in Astrocytic Metabolic Enzyme Activity.
Altered Insulin Metabolism -- 2.3 Reactive Astrocytes in Neuroinflammation in AD -- Importance of Neuroinflammation in AD -- Astrocytes Taking a Center Stage -- Blood-Brain Barrier in AD -- Microglia-Astrocyte Cross Talk -- Astrocytic Neuroinflammatory Profile Correlates with AD Stage -- 2.4 Role of Astrocytes in Abeta Clearance and Production -- Abeta Uptake and Clearance -- Abeta Production and Astrocytes -- A Hypothesis for Astrocyte Function in Abeta Clearance or Its Production -- 2.5 Reactive Astrocytes in Tau Pathology -- 2.6 Role of Astrocytes in Modulating Synaptic Plasticity in AD -- Physiological Role in Synaptic Health -- Reactive Astrocytes in Synaptic Dysfunction in AD -- 2.7 Role of Astrocytes in Neurotransmitter Recycling in AD -- Astrocytes in Glutamate Regulation in AD -- Astrocytes in GABA Regulation in AD -- 2.8 Role of Astrocytes in Neuron Death and Survival in AD -- Reactive Astrocytes Mediating Neuron Death -- Reactive Astrocytes in Neuron Survival -- 2.9 Astrocytic Biomarkers in AD Patients -- 2.10 Astrocytes as Targets for Therapy in AD -- Astrocyte Subtype-Based Therapy -- Neuroinflammatory Cytokines as Therapeutic Targets -- Targeting Metabolic Dysfunctions for Therapy -- Aquaporin as a Therapeutic Target -- 3 Conclusions -- References -- Role of Astrocyte Dysfunction in Parkinson´s Disease Pathogenesis -- 1 Introduction -- 2 Astrocytes: Role as Forming the Niche for DA Neurons -- 3 Astrocytes and Their Heterogeneity and Region Specificity -- 4 PD-Related Genes Associated with Astrocytes (PARK-7, SNCA, LRRK2, PARK-2, PLA2G6, ATP13A2, GBA, PINK1) -- 5 Deleterious Astrocytic Changes in PD -- 6 Neuroprotective Role of Astrocytes in PD -- 7 Cell-Based Treatment Strategy to Target Astrocyte Regeneration and Replacement -- 8 Conclusions -- References.
Astroglial Pathology in Major Depressive Disorders: Metabolic and Molecular Aspects -- 1 Introduction -- 1.1 Major Depressive Disorders -- 2 Glial Contributions to Neural Functions -- 2.1 Astrocytes as an Integral Part of the Neurovascular Unit and Synapse -- 2.2 Astrocytes Contribute to Synapse Formation and Refinement -- 2.3 Astrocytes are Important Players in Neurological Disorders -- 3 Techniques to Study Energy Requirement for Neural Function -- 3.1 Positron Emission Tomography (PET) -- 3.2 13C Nuclear Magnetic Resonance -- Measurement of Neurometabolic Activity -- Measurement of Astroglial Activity -- 4 Brain Energy Metabolism -- 4.1 Metabolic Activity of Neurons -- 4.2 Neurotransmitter Cycling -- 5 Neuronal Metabolic Activity in Depression -- 6 Neuron-Glia Communication in Depression -- 7 Glial Pathology in Major Depressive Disorder -- 7.1 Astrocytic Pathology in MDD -- Immunohistochemical Findings -- Studies Involving mRNA and Protein Level -- 7.2 Oligodendrocyte Pathology in MDD -- 7.3 Neuroinflammation in Major Depressive Disorder -- Dysfunction in Hypothalamus-Pituitary-Adrenal (HPA) Axis -- Dysfunction in Kynurenine Pathway -- Microglial Activation -- 8 Manipulation of Glial Function as a Therapeutic Strategy for Neuropsychiatric Disorders -- 8.1 Classical Antidepressants Modulate Astrocytic Activity -- 8.2 Atypical and Fast-Acting Antidepressants Modulate Astrocytic Activity -- 8.3 Epigenetic-Based Potential Antidepressive Molecules -- 8.4 Genetic Manipulation of Astrocytes -- 8.5 Exercise Modulates Astrocytic Function in Depressive Disorders -- 8.6 Optogenetic-Based Modulation of Astrocytic Functions -- 9 Limitations -- 10 Conclusion -- References -- Glia in Epilepsy: An Overview -- 1 Brief Introduction to Epilepsy -- 2 Reactive Gliosis in Epileptic Foci -- 3 Water and K+ Buffering -- 4 Glutamate Release and Metabolism.
5 Gliotransmission: Role of Ca2+ Signaling.
Record Nr. UNINA-9910743252403321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Glial-neuronal signaling in neuroendocrine systems / / Jeffrey G. Tasker, Jaideep S. Bains, Julie A. Chowen, editors
Glial-neuronal signaling in neuroendocrine systems / / Jeffrey G. Tasker, Jaideep S. Bains, Julie A. Chowen, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (xii, 324 pages)
Disciplina 612.8
Collana Masterclass in neuroendocrinology series
Soggetto topico Neuroglia
Neuroendocrinology
Neuròglia
Neuroendocrinologia
Soggetto genere / forma Llibres electrònics
ISBN 3-030-62383-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Preface -- Volume Preface -- Contents -- Part I: Glial-Neuronal Interactions in the Control of Hypothalamic Development -- 1: The Role of Microglia in the Developing Hypothalamus -- 1.1 Introduction -- 1.1.1 Hypothalamic Organization and Function in the Neuroendocrine System -- 1.1.2 Microglia Invasion During Hypothalamic Development -- 1.1.3 Hypothalamic Gliogenesis -- 1.2 Unraveling Hematopoiesis and the Unique Origins of Microglia -- 1.2.1 Hematopoiesis -- 1.2.2 Microglial Origins -- 1.2.3 Border-Associated Macrophages -- 1.3 Local Environmental Signals Shape Microglia Development and Influence Microglial Heterogeneity -- 1.3.1 Microglial Heterogeneity -- Box 1.1: Single-Cell RNA Sequencing -- 1.4 Microglial Functions During Hypothalamic Development -- 1.4.1 Importance of Embryonic Microglia for the Proper Development of Hypothalamic Circuitry -- Box 1.2: Using CSF1R Inhibitors to Deplete Microglia in the CNS -- Box 1.3: Hypothalamic Circuitry Involved in Feeding and Energy Balance -- 1.5 Microglia Are Sexually Dimorphic and Contribute to Sexual Dimorphism Within the Hypothalamus -- 1.5.1 A Role for Microglia in the Establishment of Sexually Dimorphic Brain Regions -- 1.6 Embryonic Microglia Act as Sensors During Development -- 1.7 Perspectives -- 1.8 Key Literature -- References -- Part II: Glial-Neuronal Interactions in the Control of the Magnocellular Neuroendocrine System -- 2: Functional Consequences of Morphological Plasticity in the Adult Hypothalamo-Neurohypophysial System -- 2.1 Introduction: Structural Glial Plasticity in the Adult HNS -- 2.1.1 Anatomy of the HNS System -- 2.1.2 Functions of Oxytocin and Vasopressin -- 2.1.3 Electrophysiology of Oxytocin and Vasopressin Neurons -- 2.1.4 Glial Cells of the HNS -- 2.1.5 Structural Glial Plasticity in the Adult HNS.
2.1.6 Investigating the Functional Consequences of Structural Plasticity -- 2.2 Contribution of the Astrocytic Environment to Homosynaptic Strength -- Box 2.1: Investigating the Presynaptic Origin of Drug Action Using Paired-Pulse Facilitation -- 2.2.1 Role of Glutamate Uptake on Homosynaptic Efficacy -- 2.2.2 Control of Homosynaptic Efficacy Through Metabotropic Glutamate Receptors -- 2.2.3 Glial Coverage Controls Homosynaptic Efficacy -- 2.2.4 Glial Coverage Controls Concentration and/or Time Course in the Synaptic Cleft -- 2.2.5 Physiological Consequences -- 2.3 Contribution of the Astrocytic Environment to Inter-synaptic Crosstalk -- 2.3.1 Glial Coverage Controls Diffusion in the Extracellular Space -- 2.3.2 Changes in Diffusion Facilitate Heterosynaptic Activity Through Metabotropic Glutamate Receptors -- 2.3.3 Limiting Changes in Diffusion Affect Glutamate Spillover -- 2.3.4 Functional Presynaptic Kainate Receptors on GABAergic Terminals in the HNS -- 2.3.5 Changes in Glial Coverage Switches Kainate Receptor Presynaptic Action -- 2.3.6 Mechanisms for Facilitation and Inhibition by KARs -- 2.3.7 Physiological Consequences -- 2.4 Gliotransmission in the HNS: A Case for d-Serine -- Box 2.2: Is Gliotransmission a Physiological Phenomenon? -- Box 2.3: Is d-Serine a Gliotransmitter? -- 2.4.1 d-serine Is Synthesized and Expressed by Astrocytes in the Supraoptic Nucleus -- 2.4.2 d-Serine Is the Endogenous Co-agonist of NMDA Receptors in the Supraoptic Nucleus -- 2.4.3 Astrocytes Regulate d-Serine Concentration in the Synaptic Cleft -- 2.4.4 Astrocytes Control Long-Term Synaptic Plasticity -- 2.4.5 Physiological Consequences -- 2.5 Perspectives -- 2.6 Key Literature -- References -- Further Recommended Reading -- 3: Fenestrated Capillary and Dynamic Neuro-Glial-Vascular Reorganization of the Adult Neurohypophysis -- 3.1 Introduction.
3.2 Cellular Components of the Neurohypophysis -- 3.2.1 Axonal Terminals -- 3.2.2 Pituicytes -- 3.2.3 Oligodendrocyte Progenitor Cells -- Box 3.1. Oligodendrocyte Progenitor Cells -- 3.2.4 Microglia -- 3.3 Fundamental Characteristics of Neurohypophysial Capillaries -- 3.3.1 Wide Perivascular Space and Thick Basement Membrane -- 3.3.2 Lack of Endothelial Blood-Brain Barrier -- Box 3.2. Blood-Brain Barrier -- Box 3.3. Circumventricular Organs -- 3.3.3 Size-Limited Vascular Permeability -- 3.3.4 Dynamics of Capillary Density by Angiogenesis -- Box 3.4. Angiogenesis -- 3.4 Activity-Dependent Structural Reorganization -- 3.4.1 Activity-Dependent Increase in Neuro-vascular Contacts -- 3.4.2 Dynamic Alteration of Neuro-vascular Contacts by Shape Conversion of Pituicytes and Pericytes -- 3.4.3 Activity-Dependent Change in Glial Proliferation -- 3.5 Perspectives -- 3.6 Key Literature -- References -- 4: Astrocyte-Magnocellular Neuron Interactions in Hypothalamic Memory -- 4.1 Introduction -- 4.1.1 Magnocellular Neuroendocrine Cells (MNCs) -- 4.1.2 Vasopressin -- 4.1.3 Oxytocin -- 4.2 Noradrenaline in MNC Output -- 4.2.1 Noradrenaline and ATP -- 4.3 Glial-Neuronal Interactions in the MNC Nuclei -- 4.4 ATP Release from Astrocytes -- 4.5 Structural Remodelling Reveals Astrocyte MNC Interactions -- Box 4.1 -- 4.6 ATP Versus Adenosine -- 4.7 Conclusion and Future Perspectives -- 4.8 Key Literature -- References -- Further Recommended Reading -- 5: The Multifaceted Roles of Hypothalamic Astrocytes and Microglial Cells in Neuroendocrine and Autonomic Regulation in Health... -- 5.1 Introduction: Neuron-Glia Interactions in the Brain -- 5.1.1 Astrocytic Diversity -- 5.1.2 Astrocytes as Regulators Between Pre- and Post-synapse -- 5.2 Transfer of Power in the Glial Kingdom: Microglial Cells.
5.2.1 Origin of Microglia: A Journey from the Yolk Sac to the Developing Brain -- 5.2.2 Role of Microglia in the Developing Brain: Neuronal Support and Synaptic Pruning -- 5.2.3 Microglia in the Adult Brain: Homeostasis and Immune Response -- Box 5.1: Overview of Astrocyte and Microglia Functions in the Developing, Mature, and Diseased Brain -- 5.3 The Supraoptic and Paraventricular Nuclei of the Hypothalamus: Role in Homeostasis and Emotional Regulation -- 5.3.1 Somato-dendritic Release of Oxytocin and Vasopressin -- 5.3.2 Role of Neuro-glial Interaction in Regulating the Physiological Activity in the SON and PVN -- 5.3.3 Neuroinflammation in the SON and PVN in Disease Conditions -- 5.3.4 Role of the Renin-Angiotensin System (RAS) in Mediating Reactive Astrocytes and Microglia Cell Activation in the SON and... -- 5.3.5 Compromised PVN Blood-Brain Barrier Integrity as Part of the Neuroinflammatory Response During Hypertension -- 5.4 Experimental Approach to Monitor Microglia Activation During the Neuroinflammatory Response -- 5.5 Perspectives -- 5.6 Key Literature -- References -- Part III: Glial-Neuronal Interactions in the Control of Metabolic Function -- 6: Control of Systemic Metabolism by Astrocytes in the Brain -- 6.1 Introduction -- 6.1.1 A Brief History of Astrocytes -- 6.2 Biology and Physiology of Astrocytes: Characteristics and Function -- 6.2.1 Astrocytes Are Critical for Energetics of the CNS -- 6.2.2 Astrocyte Networks and Diversity: Morphological and Molecular Hallmarks -- 6.2.3 Astrocytic Ca2+ Signaling: The Trademark of Astrocyte Communication -- 6.2.4 Astrocytes: Secretory Cells Within the CNS -- Box 6.1: Astrocytes Release Gliotransmitters via Ca2+-Regulated Exocytosis -- 6.2.5 Astrocytes Regulate Synaptic Plasticity and Transmission -- 6.2.6 Astrocytes as Integral Components of the Neuro-Glio-Vascular Unit.
6.2.7 Astrocytes in the Brain Control of Systemic Metabolism -- Box 6.2: Central Regulation of Glucose Homeostasis -- Box 6.3: Astrocyte-Neuron Interactions in the Arcuate Nucleus of the Hypothalamus -- 6.3 Astrocytes in Pathological Conditions -- 6.3.1 Reactive Astrocytes in Obesity -- 6.4 Perspectives -- 6.5 Key Literature -- References -- 7: Glia-Neuron Communication: Not a One-Way Street -- 7.1 Introduction -- 7.2 The Arcuate Nucleus of the Hypothalamus Regulates Energy Homeostasis -- 7.2.1 The Hypothalamus Is the Master Regulator of Homeostasis -- 7.2.2 Nuclei of the Hypothalamus -- Box 7.1: The Hypothalamus Is Home to a Diverse Array of Distinct, Specialized Nuclei That Play Critical Roles in Homeostatic a... -- 7.2.3 The Arcuate Nucleus of the Hypothalamus Is a Key Center for Regulating Feeding Behavior -- 7.2.4 Neurons of the Arcuate Nucleus Detect Nutrients and Whole-Body Energy Status -- 7.3 The Hypothalamus Contains a Heterogeneous Population of Cells -- 7.3.1 Neurons -- 7.3.2 Glial Cells -- 7.3.2.1 Oligodendrocytes -- 7.3.2.2 Tanycytes -- Box 7.2: The Discovery of Microglia by Pío del Río Hortega -- 7.3.2.3 Astrocytes -- 7.3.2.4 Microglia -- 7.4 When Things Go Wrong: Nutrient Excess and Neuroinflammation -- 7.4.1 What Is Inflammation? -- 7.4.2 The CNS Has Immune Privilege -- 7.4.3 Inflammation Develops in the Periphery and CNS During Obesity Through Different Mechanisms -- 7.4.4 Hypothalamic Neuroinflammation Impacts Energy Balance -- 7.5 Methods Used to Investigate Central Feeding Regulation and Hypothalamic Neuroinflammation -- 7.5.1 Human Models -- 7.5.2 Monogenic Rodent Models of Obesity -- 7.5.3 Diet-Induced Obese (DIO) Rodent Models -- 7.5.4 In Vitro Primary Culture -- 7.5.5 Immortalized Cell Lines -- 7.6 Neuroinflammation from the View of the Neuron -- 7.6.1 Fatty Acids Induce Inflammation Through Cell Surface Receptors.
7.6.2 Bioactive Products of Fatty Acid Metabolism Induce Inflammation.
Record Nr. UNINA-9910483095503321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui