Surface production operations . Vol. 2 Design of gas- handling systems and facilities / / Ken Arnold, Maurice Stewart
| Surface production operations . Vol. 2 Design of gas- handling systems and facilities / / Ken Arnold, Maurice Stewart |
| Autore | Arnold Ken <1942-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Burlington, Mass., : Elsevier, 1999, c1989 |
| Descrizione fisica | 1 online resource (585 p.) |
| Disciplina |
665.5 21
665.7 |
| Altri autori (Persone) | StewartMaurice |
| Collana | Surface production operations |
| Soggetto topico |
Natural gas - Equipment and supplies
Gas wells - Equipment and supplies |
| ISBN |
1-281-98528-7
9786611985288 0-08-051822-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Surface Production Operations; Copyright Page; Contents; Acknowledgments; Preface; Chapter 1. Overview of Gas-Handling Facilities; Chapter 2. Heat Transfer Theory; Mechanisms of Heat Transfer; Process Heat Duty; Chapter 3. Heat Exchangers; Heat Exchangers; Shell-and-Hube Exchangers; Double-Pipe Exchangers; Plate-and-Frame Exchangers; Aerial Coolers; Fired Heater; Heat Recovery Units; Heat Exchanger Example Problem; Chapter 4. Hydrates; Determination of Hydrate Formation Temperature or Pressure; Condensation of Water Vapor; Temperature Drop Due to Gas Expansion
Thermodynamic InhibitorsKinetic Inhibitors and Anti-Agglomerators; Chapter 5. LTX Units and Line Heaters; LTX Units; Line Heaters; Heat Duty; Fire-Tuibe Size; Coil Sizing; Standard Size Line Heaters; Line Heater Design Example Problem; Chapter 6. Condensate Stabilization; Partial Pressures; Multistage Separation; Multiple Flashes at Constant Pressure and Increasing Temperature; Cold Feed Distillation Tower; Distillation Tower with Reflux; Condensate Stabilizer Design; Trays and Packing; Condensate Stabilizer as a Gas Processing Plant; LTX Unit as a Condensate Stabilizer Chapter 7. Acid Gas TreatingGas Sweetening Processes; Process Selection; Design Procedures for Iron-Sponge Units; Design Procedures for Amine Systems; Example Problems; Chapter 8. Gas Dehydration; Water Content Determination; Glycol Dehydration; Glycol Dehydration Example; Solid Bed Dehydration; Dry Desiccant Design Example; Chapter 9. Gas Processing; Absorption/Lean Oil; Refrigeration; Choice of Process; Chapter 10. Compressors; Types of Compressors; Specifying a Compressor; Reciprocating Compressors-Process Considerations; Centrifugal Compressors-Surge Control and Stonewalling Centrifugal Compressors Process ConsiderationsChapter 11. Reciprocating Compressors; Components; Cylinder Sizing; Rod Load; Cooling and Lubrication Systems; Pipe Sizing Considerations; Example Problem; Chapter 12. Mechanical Design of Pressure Vessels; Design Considerations; Inspection Procedures; Estimating Vessel Weights; Specification and Design of Pressure Vessels; Example Problem; Chapter 13. Pressure Relief; Relief Requirements; Type of Devices; Valve Sizing; Installation; Example Problems; Chapter 14. Safety Systems; Hazard Tree; Developing a Safe Process; Primary Defense Failure Mode Effect Analysis-FMEAModified FMEA Approach; API Recommended Practice 14C; Manual Emergency Shutdown; Annunciation Systems; Function Matrix and Function Charts; Symbols; Hazards Analysis; Safety Management Systems; Safety Case and Individual Risk Rate; Chapter 15. Valves, Fittings, and Piping Details; Valve Types; Chokes; Piping Design Considerations; General Piping Design Details; Miscellaneous Piping Design Details; Chapter 16. Prime Movers; Reciprocating Engines; Gas Turbine Engines; Environmental Considerations; Chapter 17. Electrical Systems; Sources of Power Power System Design |
| Altri titoli varianti | Design of gas-handling systems and facilities |
| Record Nr. | UNINA-9911006723303321 |
Arnold Ken <1942->
|
||
| Burlington, Mass., : Elsevier, 1999, c1989 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Surface production operations . Volume 2 [[electronic resource] ] : design of gas-handling systems and facilities / / Maurice I. Stewart, Jr
| Surface production operations . Volume 2 [[electronic resource] ] : design of gas-handling systems and facilities / / Maurice I. Stewart, Jr |
| Autore | Stewart Maurice |
| Edizione | [3rd ed.] |
| Pubbl/distr/stampa | Waltham, MA, : Gulf Professional Pub., c2014 |
| Descrizione fisica | 1 online resource (1 v.) : ill |
| Disciplina | 665.7 |
| Soggetto topico |
Gas engineering
Gas wells - Equipment and supplies Natural gas - Equipment and supplies Oil fields |
| ISBN |
0-12-810019-2
0-12-382208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Surface Production Operations: Design of Gas-Handling Systems and Facilities -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter One: Overview of Gas-Handling, Conditioning, and Processing Facilities -- 1.1. Heating -- 1.2. Separation -- 1.3. Cooling -- 1.4. Stabilization -- 1.5. Compression -- 1.6. Gas Treating -- 1.7. Gas Dehydration -- 1.8. Gas Processing -- Chapter Two: Basic Principles -- 2.1. Introduction -- 2.2. Fluid Analysis -- 2.3. Physical Properties -- 2.3.1. Equations of State -- 2.3.2. Molecular Weight and Apparent Molecular Weight -- 2.3.3. Gas Specific Gravity -- 2.3.4. Nonideal Gas Equations of State -- 2.3.5. Liquid Density and Specific Gravity -- 2.3.6. Liquid Volume -- 2.3.7. Viscosity -- 2.4. Flash Calculations -- 2.4.1. Determine Gas and Liquid Compositions -- 2.5. Characterizing the Flow Stream -- 2.6. Use of Computer Programs for Flash Calculations -- 2.7. Approximate Flash Calculations -- 2.8. Other Properties -- 2.9. Phase Equilibrium -- Chapter Three: Heat Transfer Theory -- 3.1. Objectives -- 3.2. What Is a Heat Exchanger? -- 3.2.1. Commonly Used Types of Heat Exchangers -- Shell-and-Tube -- Plate-and-Frame -- Plate-Fin -- Air-Cooled -- 3.2.2. Heat Exchangers-The Bad News -- 3.2.3. General Considerations -- 3.2.4. Company Engineering Standards and Specifications -- 3.2.5. Tube Vibration and Tube Rupture -- 3.2.6. Acoustic Resonance and Vibration -- 3.3. Process Specification -- 3.3.1. Process Specification Sheet -- 3.3.2. Design Data Sheet -- 3.3.3. Required Physical/Thermal Properties -- 3.4. Pressure Drop Considerations -- 3.4.1. Key Parameter for Design and Troubleshooting -- Tube side -- Shell side -- Other ways -- Typical Pressure gradients (DeltaP/L) -- Flow path lengths, ft or m (L) -- 3.5. Basic Heat Transfer Theory -- 3.5.1. Heat Transfer Mechanisms -- 3.5.2. Basic Equations.
3.5.3. Flow of Heat -- 3.5.4. Multiple Transfer Mechanisms -- 3.6. Determination of Mean Temperature Difference -- 3.6.1. Mean Temperature Difference -- 3.6.2. Log Mean Temperature Difference -- 3.6.3. Nonconstant ``U´´ -- 3.6.4. Different Flow Arrangements -- 3.6.5. Nonlinear Temperature Profile -- 3.7. Selection of Temperature Approach (T2) -- 3.8. Determination of Heat Transfer Coefficient -- 3.8.1. Overview -- 3.8.2. Area Basis -- 3.8.3. Heat Transfer Coefficient-Clean Tube -- 3.8.4. Heat Transfer Coefficient-Fouled Tube -- 3.8.4.1. Fouling Factors -- 3.8.4.2. Fouling Considerations -- 3.8.4.3. Fouling Mechanisms -- 3.8.5. Evaluating Performance -- 3.8.6. Heat Transfer Research Inc. Computer Simulation Programs -- 3.9. Calculation of Film Coefficients -- 3.9.1. Inside Film Coefficient -- 3.9.2. Mass Velocity of a Fluid -- 3.9.3. Outside Film Coefficient in a Liquid Bath -- 3.9.4. Outside Film Coefficient for Shell-and-Tube Exchangers -- 3.10. Tube Metal Resistance -- 3.11. Approximate Overall Heat Transfer Coefficients -- 3.12. Determination of Process Heat Duty -- 3.12.1. Overview -- 3.12.2. Sensible Heat -- 3.12.3. Latent Heat -- 3.12.4. Heat Duty for Multiphase Streams -- 3.12.5. Natural Gas Sensible Heat Duty at Constant Pressure -- 3.12.6. Gas Heat Capacity -- 3.12.7. Calculation of Gas Pseudo Critical Pressure and Temperature -- 3.12.8. Oil Sensible Heat Duty -- 3.12.9. Water Sensible Heat Duty -- 3.12.10. Heat Duty Where There Are Phase Changes -- 3.12.11. Heat Loss to Atmosphere -- 3.12.12. Heat Transfer from a Fire Tube -- 3.12.13. Natural Draft Fire Tubes -- 3.12.14. Procedure to Size a Shell-and-Tube Heat Exchanger -- References -- Chapter Four: Heat Exchanger Configurations -- 4.1. Overview -- Fluid-fluid -- Cooling with air -- Bath heaters -- 4.2. Shell-and-Tube Exchangers -- 4.2.1. Tubular Exchanger Manufacturers Association. 4.2.2. Common Services -- 4.2.3. Components (Figures4.1 and 4.2) -- 4.2.4. Configuration Considerations -- 4.2.5. Baffles -- 4.2.5.1. Pass Partition -- 4.2.5.2. Two-Pass Fixed Exchanger -- 4.2.5.3. Impingement -- 4.2.5.4. Transverse or Support (Figures4.7-4.10) -- Examples -- placeholder -- 4.2.5.5. Longitudinal -- 4.2.6. Use of Baffles -- 4.2.7. Types of Baffles -- 4.2.8. Installation of Baffles -- 4.2.9. Tubes -- 4.2.10. Shells -- 4.2.11. Tube Pitch (Figure4.11) -- 4.2.11.1. Square Pitch Is Easy to Clean -- 4.2.11.2. Triangular Pitch Common Pitches -- 4.2.12. Options -- 4.2.13. Classification of Exchangers -- 4.2.13.1. Nominal Diameter -- 4.2.13.2. Nominal Length -- 4.2.13.3. Type -- 4.2.14. Examples of Classification -- 4.2.15. Selection of Types -- 4.2.16. Selecting Heat Exchanger Components -- 4.2.17. Picking Heat Exchanger Components -- 4.2.17.1. Picking Shell Style -- 4.2.17.2. Picking Baffles -- 4.2.17.3. Picking Components -- 4.2.18. Fixed Tube Sheet -- 4.2.18.1. Advantages -- 4.2.18.2. Disadvantages -- 4.2.18.3. Heads -- 4.2.18.4. Uses -- 4.2.19. U Tube (Hairpin) -- 4.2.19.1. Advantages -- 4.2.19.2. Disadvantages -- 4.2.19.3. Heads -- 4.2.19.4. Uses -- 4.2.20. Floating Head -- 4.2.20.1. Advantages -- 4.2.20.2. Disadvantages -- 4.2.20.3. Heads -- 4.2.20.4. Uses -- 4.2.21. Placement of Fluid -- Tubes when: -- Shell when: -- 4.2.22. Mean Temperature Difference Correction Factor -- 4.2.23. Corrected MTD -- 4.2.24. Heat Exchanger Specification Sheet -- 4.2.25. Sizing Procedures -- 4.3. Double-Pipe Exchangers -- 4.3.1. Overview -- 4.3.1.1. Advantages -- 4.3.1.2. Disadvantages -- 4.3.1.3. Uses -- 4.3.2. Two Shells Joined at One End Through a ``Return Bonnet´´ (Figure4.32) -- 4.3.3. Hairpin Exchanger (Variation of U Tube) -- 4.3.3.1. Double Pipe -- 4.3.3.2. Multitube -- 4.3.4. Design of Finned Units -- 4.4. Plate-Fin Exchangers -- 4.4.1. Overview. 4.4.2. Dependent on Application Requirements -- 4.5. Plate-and-Frame Exchangers -- 4.5.1. Overview -- 4.5.2. Advantages -- 4.5.3. Disadvantages -- 4.5.4. Plates -- 4.6. Indirect-Fired Heaters -- 4.6.1. Advantages -- 4.6.2. Disadvantage -- 4.6.3. Intermediate Liquid -- 4.6.4. Sizing Considerations -- 4.6.5. Heat Duty -- 4.6.6. Sizing Fire Tubes -- 4.6.7. Coil Sizing -- 4.6.7.1. Calculate the Coil Temperature -- 4.6.7.2. Calculate the Heat Duty (q) -- 4.6.7.3. Calculate the Overall Heat Transfer Coefficient (U) -- 4.6.7.4. Calculate Coil Length -- 4.6.8. Heater Sizing -- 4.7. Direct-Fired Heaters -- 4.7.1. Overview -- 4.7.2. Horizontal Tubes (Refer to Figure4.77) -- 4.7.2.1. Cabin -- 4.7.2.2. Two-Cell Box -- 4.7.2.3. Cabin with Bridge-Wall -- 4.7.3. End Fired Box -- 4.7.3.1. Single Row, Double Fired -- 4.7.4. Vertical Tubes (Refer to Figure4.78) -- 4.7.4.1. All Radiant -- 4.7.4.2. Cylindrical, Helical Coil -- 4.7.4.3. Cylindrical, with Cross-Flow Convection -- 4.7.4.4. Cylindrical, with Integral Convention -- 4.7.4.5. Arbor or Wicket -- 4.7.4.6. Single-Row, Double-Fired -- 4.7.5. Development of ``Hot Spots´´ and Tube Failure -- 4.7.6. Thermal Efficiency Considerations -- 4.7.7. Determining Required Heat Input -- 4.7.7.1. Flow Rate Determination -- 4.7.7.2. Total Heat Required -- 4.8. Air-Cooled Exchangers -- 4.8.1. General Considerations -- 4.8.2. Typical Air-Cooled Exchanger Configurations -- 4.8.3. Advantages of Forced Draft Design -- 4.8.4. Disadvantages of Forced Draft Design -- 4.8.5. Advantages of Induced Draft Design -- 4.8.6. Disadvantages of Induced Draft Design -- 4.8.7. Air-Side Control -- 4.8.8. Procedure for Calculating Number of Tubes Required for Aerial Coolers -- 4.8.8.1. Procedure for Sizing Air-Cooled Exchanger -- 4.8.9. Considerations When Sizing an Aerial Cooler -- 4.9. Cooling Towers -- 4.10. Other Types of Heat Exchangers. 4.10.1. Electric Heat Exchangers -- 4.10.2. Heat Recovery Steam Generator -- 4.11. Heat Exchanger Selection -- 4.11.1. Guidelines We Should Follow -- 4.12. Comments on Example 4.3 -- Exercises -- Chapter Five: Hydrate Prediction and Prevention -- 5.1. Objectives -- 5.2. Overview -- 5.2.1. Dew Point -- 5.2.2. Dew-Point Depression -- 5.2.3. Why Dehydrate? -- 5.3. Water of Gas -- 5.3.1. Introduction -- 5.3.2. Partial Pressure and Fugacity -- 5.3.3. Empirical Plots -- 5.3.4. Sour Gas Correlations -- 5.3.4.1. Weighted-Average Method -- 5.3.4.2. Sharma Correlation -- 5.3.4.3. SRK Sour Gas Correlation -- 5.3.5. Effect of Nitrogen and Heavy Ends -- 5.3.6. Applications -- 5.3.7. Amount of Water Condensed -- 5.4. Gas Hydrates -- 5.4.1. What Are Gas Hydrates? -- 5.4.2. Why Is Hydrate Control Necessary? -- 5.4.3. What Conditions Are Necessary to Promote Hydrate Formation? -- 5.4.4. How Do We Prevent or Control Hydrates? -- 5.5. Prediction of Operating Temperature and Pressure -- 5.5.1. Wellhead Conditions -- 5.5.2. Flowline Conditions -- 5.5.3. Calculation of Temperature and Pressure at the Wellhead -- 5.5.4. Calculation of Flowline Downstream Temperature -- 5.6. Temperature Drop Determination -- 5.6.1. Overview -- 5.6.2. Temperature Drop Correlation (Figure5.7) -- 5.7. Hydrate Prediction Correlations -- 5.7.1. Overview -- 5.7.2. Pressure-Temperature Curves -- 5.7.3. Equations of State Calculations -- 5.7.4. Vapor-Solid Equilibrium Constants -- 5.7.5. Pressure-Temperature Curves (Figure5.13) -- 5.8. Hydrate Prevention -- 5.8.1. Overview -- 5.8.2. Adding Heat -- 5.8.3. Temperature Control -- 5.8.3.1. Indirect Heaters -- 5.8.3.1.1. Overview -- 5.8.3.1.2. Wellhead Heater Description (Figures5.14 and 5.15) -- 5.8.3.1.2.1. Safety Shut-Down ``Wing´´ Valve -- 5.8.3.1.2.2. High-Pressure Flowline -- 5.8.3.1.2.3. Expansion Loop. 5.8.3.1.2.4. Long-Nose Heater Choke (Figure5.15). |
| Altri titoli varianti | Design of gas-handling systems and facilities |
| Record Nr. | UNINA-9911006648203321 |
Stewart Maurice
|
||
| Waltham, MA, : Gulf Professional Pub., c2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||