top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Natural Gas : formation, processing, and applications . Volume 5 Natural Gas Impurities and Condensate Removal / / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Advances in Natural Gas : formation, processing, and applications . Volume 5 Natural Gas Impurities and Condensate Removal / / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (320 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Chemical engineering
ISBN 9780443192241
0443192243
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Front Matter -- Natural Gas Impurities and Condensate Removal -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Particulates and condensates removalfrom natural gas -- 1 - Introduction to nonacidic impurities of natural gas: Particulates, condensates, mercury, nitrogen, helium -- 1. Introduction -- 1.1 Natural gas categories based on chemical composition -- 1.1.1 Hydrocarbon percentage -- 1.1.2 Quantity of sulfur -- 1.2 Natural gas processing -- 2. The constituents of natural gas -- 2.1 Hydrocarbon constituents -- 2.2 Nonhydrocarbon constituents -- 2.2.1 The diluents -- 2.2.2 Pollutants -- 2.2.3 Solid matter -- 3. Mercury cycle -- 3.1 Physical properties of mercury -- 3.2 Chemical substance characteristics -- 4. Helium -- 4.1 Characteristics of helium -- 5. Nitrogen -- 6. Nonacidic component removal from natural gas -- 6.1 Hydrocarbon removal from liquid -- 6.2 Removing mercury -- 6.2.1 Nonregenerative processes -- 6.2.2 Regenerative process -- 6.3 Elimination of miniscule substances -- 7. Conclusion and future outlooks -- Abbreviation and symbols -- References -- 2 - Arsenic removal from natural gas condensate -- 1. Introduction -- 2. Arsenic removal -- 2.1 Pyrolysis -- 2.2 Adsorption processes -- 2.3 Absorption process -- 3. Case study -- 4. The effects of arsenic exposure on human health -- 4.1 The adverse effects of arsenic exposure on human health -- 4.1.1 Impacts on lungs -- 4.1.2 Impacts on hemoglobin -- 4.1.3 Carcinogenicity -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Condensate stabilization process -- 1. Introduction -- 2. Condensate stabilization -- 2.1 Cascade flash separation for condensate stabilization -- 2.2 Stabilization by distillation -- 2.2.1 Condensate production -- 2.3 Cold-feed distillation tower.
3. Design considerations of stabilization column -- 4. Trays and packing -- 4.1 Trays -- 4.2 Packing -- 4.3 Trays or packaging -- 4.3.1 Distillation service -- 4.3.2 Stripping service -- 5. Storage of condensate -- 5.1 Factors to consider in tank design -- 5.2 Management of tank emissions -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Refrigeration process for condensate recovery from natural gas -- 1. Introduction -- 1.1 Refrigeration processes -- 2. Liquefied natural gas and process of liquefaction -- 3. Refrigerant process mixed with propane precooler -- 4. Self-refrigeration -- 5. Dual mixed refrigerant process -- 6. Multistage mixed refrigerant process -- 7. Cryogenic refrigeration -- 8. Classification of existing refrigeration processes in the LNG production industry -- 8.1 Cascade refrigeration -- 8.2 One-step mixed refrigerant process without phase separator -- 8.3 Precooling process without phase separator -- 8.4 The mixed refrigerant process with phase separator -- 8.5 Mixed refrigerant process with precooling and phase separator -- 8.6 Mixed refrigerant process with propane precooling (C3MR) -- 8.7 The mixed refrigerant process with one-stage precooling and phase separator (DMR) -- 8.8 Expansion liquefaction process -- 9. Single nitrogen expansion liquefaction process -- 10. Dual nitrogen expansion liquefaction process -- 11. Solid bed adsorption -- 12. Membrane separation process -- 13. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Membrane technologies for condensate recovery from natural gas -- 1. Introduction -- 1.1 Natural gas liquids -- 1.2 Technologies for the removal of natural gas liquids -- 2. Membrane separation mechanisms -- 3. Current applications and cases of membranes for condensate recovery -- 3.1 Polymeric membranes -- 3.2 Inorganic membranes.
3.3 Mixed matrix membranes -- 4. Conclusions and future outlooks -- Abbreviations and symbols -- References -- 6 - Supersonic technology for condensate removal from natural gas -- 1. Introduction -- 2. Natural gas purification technologies -- 3. Natural gas condensates removal -- 4. Supersonic technology for condensates removal in natural gas -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- Greek symbols -- References -- 7 - Mercury removal from natural gas by absorption and adsorption processes -- 1. Introduction -- 2. Systems for the removal of mercury -- 2.1 Mercury adsorption on activated carbon -- 2.2 Mercury adsorption on activated carbon with sulfur -- 2.3 Mercury adsorption on metal sulfide-containing alumina -- 2.4 Mercury adsorption on molecular sieves -- 2.5 Mercury absorption using ionic liquids -- 3. Resistance of H2S and H2O -- 4. Functional groups and active sites -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane technologies for mercury removal from natural gas -- 1. Introduction -- 2. Mercury in natural gas -- 2.1 Mercury species classification -- 3. Mercury removal methods -- 3.1 Mercury removal using activated carbon -- 3.1.1 Carbon activated with sulfur -- 3.2 Mercury removal using membrane -- 3.2.1 Mercury removal using metal-organic framework membranes -- 3.2.2 MOF nanofiber membrane -- 3.2.3 Mercury removal using polymer-supported MOF membranes -- 4. MOF material stability -- 4.1 Altered ligands -- 4.2 Metal protection -- 4.3 Refinement after synthesis -- 4.4 Other materials -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References -- 9 - Nitrogen separation from natural gas using absorption and cryogenic processes -- 1. Introduction -- 2. Methods for nitrogen separation from natural gas -- 2.1 Membranes -- 2.2 Adsorption.
2.3 Cryogenic distillation -- 2.4 Absorption processes for nitrogen separation -- 2.4.1 Lean oil absorption -- 2.4.2 Liquid ammonia N2-selective absorption process -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 10 - Nitrogen rejection from natural gas by adsorption processes and swing technologies -- 1. Introduction -- 1.1 N2 in natural gas -- 2. Convectional technologies for N2 rejection from natural gas -- 3. Adsorption, merits, and shortcomings -- 3.1 Adsorbent, types, and features -- 4. N2 rejection from natural gas by adsorption processes -- 4.1 Pure and binary adsorption of CH4 and N2 -- 4.2 Kinetics of adsorption -- 4.3 Adsorption selectivity of CH4/N2 mixture -- 5. N2 rejection from natural gas by swing adsorption -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgments -- References -- 11 - Membrane technology for nitrogen separation from natural gas -- 1. Introduction -- 2. Nitrogen separation from methane technologies -- 2.1 Cryogenic distillation -- 2.2 Pressure swing absorption -- 2.3 Membrane technology -- 3. Membrane module configuration -- 3.1 Hollow fibers -- 3.2 Spiral-wound modules -- 3.3 Plate-and-frame modules -- 4. Flow pattern -- 5. Process design -- 6. Application and cases -- 6.1 One-stage membrane design -- 6.2 Two-stage membrane design -- 7. Polymers -- 7.1 Polysulfones -- 7.2 Cellulose acetates -- 7.3 Polyimides -- 8. Effect of different parameters on membrane performance -- 8.1 Effect of temperature -- 8.2 Effect of polymer structure -- 8.3 Effect of pressure -- 9. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 12 - Adsorption processes and swing technologies for helium removal from natural gas -- 1. Introduction -- 2. Principles of helium removal using swing technologies -- 3. Helium recovery from natural gas.
4. Current application and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 13 - Helium removal from natural gas by membrane technologies -- 1. Introduction -- 2. Helium separation by membrane technology -- 2.1 Principles -- 2.2 Mechanisms of gas transport -- 2.2.1 Solution-diffusion model -- 2.2.2 Pore-flow model -- 3. Membranes used for helium separation -- 3.1 Polymeric membranes -- 3.2 Inorganic membranes -- 3.3 Mixed-matrix membranes -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Index -- Back Cover.
Altri titoli varianti Natural Gas Impurities and Condensate Removal
Record Nr. UNINA-9911007167703321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas
Advances in Natural Gas
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (420 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Chemical engineering
ISBN 9780443192166
0443192162
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES IN NATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS: Natural Gas Formation and Extraction -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Natural gas formation and properties -- 1 - Introduction to natural gas importance and characteristics -- 1. Introduction -- 2. A historical overview of natural gas -- 3. Natural gas sources -- 4. Natural gas composition -- 5. Natural gas classification -- 5.1 Classification of natural gas according to chemical composition -- 5.2 Classification of natural gas according to origin source -- 6. The phase behavior of natural gas -- 7. Physical and chemical properties of natural gas -- 8. Importance of natural gas for energy generation and material production -- 9. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Natural gas resources, emission, and climate change -- 1. Introduction -- 2. Natural gas characteristics -- 3. Natural gas origin -- 3.1 Thermogenic process -- 3.2 Biogenic process
Record Nr. UNINA-9911007184803321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas
Advances in Natural Gas
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (350 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Gas engineering
ISBN 9780443192203
0443192200
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Fundamental aspects of natural gas hydrates -- 1 - Introduction to natural gas hydrate formation and applications -- 1. Introduction -- 2. Potential application of gas hydrates -- 2.1 Carbon dioxide final disposal -- 2.2 Storage of energy gases -- 2.3 Desalination, ions removal, and treatment of waste water and effluents -- 2.4 Concentration and preservation of food -- 2.5 Cold storage -- 3. Usage of chemical additive to alter the formation and/or dissociation of gas hydrates -- 3.1 Chemical inhibitors -- 3.1.1 Chemical inhibitors having a selective behavior -- 3.1.2 Contemporary application of several inhibitors -- 3.2 Chemical promoters -- 3.2.1 Motivations for using chemical promoters -- 3.2.2 Contemporary application of several promoters -- 3.3 Additives capable to act as inhibitor or promoter, depending on the process conditions -- 3.4 Reasons behind the contemporary usage of promoters and inhibitors -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Introduction to natural gas hydrates extraction methods -- 1. Introduction -- 2. Introducing NGH detection techniques -- 2.1 Seismic survey and analysis -- 2.2 Drilling to get cores -- 2.3 Logging methods -- 2.4 Geochemical exploration -- 3. Techniques to extract natural gas hydrate -- 3.1 Thermal stimulation -- 3.1.1 Thermal properties -- 3.2 Depressurization -- 3.3 Chemical inhibitor injection -- 3.4 Gas displacement method -- 4. Real field tests -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Thermophysical properties of natural gas hydrates -- 1. Introduction.
2. Phase equilibrium of hydrates -- 2.1 Methods for measuring phase equilibrium -- 2.2 Models of the hydrate phase equilibrium -- 3. Thermal conductivity of hydrates -- 3.1 Measurements of thermal conductivity -- 3.2 Models of thermal conductivity -- 4. Dissociation enthalpy -- 5. Specific heat capacity and thermal diffusivity and of gas hydrates -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Thermodynamic properties and phase equilibria characteristics of natural gas hydrates -- 1. Introduction -- 2. Thermodynamic aspects of gas hydrate formation -- 2.1 Thermodynamic requirements for gas hydrate formation -- 2.2 Thermodynamic equilibrium states of simple gas hydrates and their coexisting phases -- 3. Predicting thermodynamic properties and phase behavior -- 3.1 Thermodynamic models for predicting the phase behavior of gas hydrates -- 3.2 Guest molecular properties, salinity, and sediments on hydrate thermodynamics -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Chemical structure and crystal types of natural gas hydrates -- 1. Introduction -- 1.1 Clathrate hydrates -- 1.2 Semi-clathrate hydrates -- 1.3 Guest-void size ratio -- 2. Properties of the NGHs -- 2.1 Mechanical properties -- 2.2 Thermodynamic properties -- 2.2.1 Thermodynamics -- 2.2.2 Phase equilibria -- 2.3 Thermal properties -- 2.4 Electromagnetic properties -- 2.5 Interfacial properties -- 3. NGH formation and dissociation -- 3.1 Nucleation and crystal growth -- 3.2 Nucleation -- 3.3 Crystal growth -- 3.4 Dissociation -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 6 - Natural gas hydrate dissociation and dissolution -- 1. Introduction -- 2. Sources of methane origin in NGH -- 2.1 Biogenic methane source -- 2.2 Thermogenic methane source.
3. Gas hydrate stability zone -- 3.1 The requirements for NGH stability -- 4. Gas hydrates in natural porous media -- 5. Hydrate dissociation and production of CH4 from NGH -- 5.1 Pressure reduction -- 5.2 Thermoelectric stimulation (increment) -- 5.3 Change in chemical potential -- 5.3.1 Inhibitor injection -- 5.3.2 Increased-sized injection of guest gas -- 5.3.3 Reduced-size guest gas injection in NGH reservoirs -- 6. The uncontrolled dissociation of NGH in the climate (environment) -- 7. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 7 - Natural gas hydrates as a carbon neutral energy source: How the intrinsic properties can affect the CO2/CH4 exchange pr ... -- 1. Introduction -- 2. CO2/CH4 replacement mechanism into hydrates -- 3. Effect of intrinsic properties of hydrates formation on the replacement process -- 3.1 Memory effect -- 3.2 Saturation -- 3.3 Induction time -- 4. Re-definition of the thermodynamic region available for CO2-CH4 exchange -- 5. Replacement above and below the freezing point of water -- 6. Conclusion and future outlooks -- References -- 8 - The application of natural gas hydrates as an energy source -- 1. Introduction -- 2. Gas hydrate -- 2.1 Structure -- 2.2 Hydrates in natural environments -- 3. Latest developments in MH energy recovery -- 3.1 MH occurrence and resource evaluation -- 3.2 Programs for drilling, experimental fields, and production technologies -- 4. Recovery techniques -- 4.1 Thermal simulation -- 4.1.1 Thermal characteristics -- 4.1.2 Computational modeling -- 4.1.3 Experimental research -- 4.2 Depressurization -- 4.2.1 Numerical modeling -- 4.2.2 Experiments conducted in a lab -- 4.3 Injectable chemical inhibitors -- 4.4 The mix of methods -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References.
9 - Natural gas hydrate-related disasters and case studies -- 1. Introduction -- 1.1 Hydrate structure -- 2. Gas hydrate in pipelines -- 2.1 Disasters case studies -- 2.1.1 Case study 1 -- 2.1.2 Case study 2 -- 2.1.3 Case study 3 -- 2.1.4 Case study 4 -- 2.1.5 Case study 5 -- 2.1.6 Case study 6 -- 2.1.7 Case study 7 -- 3. Gas hydrates in seabed -- 4. Gas hydrate environmental aspects -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- II - Pipeline natural gas hydrates -- 10 . Removal of natural gas hydrate plugs -- 1. Introduction -- 1.1 Gas hydrates -- 1.2 Existence of gas hydrate -- 1.3 Pipelines and gas hydrates -- 1.4 Gulf of Mexico pipeline: A case study -- 1.5 Remediation techniques for gas hydrate -- 2. Chemical inhibitors -- 2.1 Thermodynamic inhibitors -- 2.2 Low-dosage inhibitors -- 2.2.1 Kinetic hydrate inhibitors -- 2.2.2 Antiagglomerates (AA) inhibitors -- 3. Advancement in gas hydrate inhibitors -- 3.1 Contemporary inhibitors for gas hydrate mitigation -- 3.2 Ionic liquids -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Natural gas thermodynamic hydrate inhibitors -- 1. Introduction -- 2. Thermodynamic hydrate inhibitors -- 2.1 Conventional THIs -- 2.1.1 Alcohols -- 2.1.2 Diols -- 2.1.3 Salts -- 2.2 Novel THIs -- 2.2.1 Ionic liquids -- 2.2.2 Natural amino acids -- 2.2.3 Sugar-derived compounds -- 2.2.4 Amines and nitrogenates -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgments -- References -- III - Oceanic natural gas hydrates -- 12 - Distribution and discovery of oceanic natural gas hydrates -- 1. Introduction -- 1.1 Geographical distribution of gas hydrates -- 1.2 Global distribution -- 1.3 Production rate of different sources of gas hydrates -- 2. Geochemical signs -- 2.1 Geological indicators -- 3. Diapirism.
3.1 Signs of fluid movement -- 3.2 Submerged holes -- 4. Mud volcano -- 5. Faulting -- 6. Methods for identification and study of gaseous hydrates -- 6.1 Thermodynamic conditions -- 6.2 Ingredients containing hydrates -- 6.3 Reflector for bed simulator -- 7. Zone of stability for gaseous hydrates -- 8. Some projects carried out in the field of gas hydrate exploration -- 9. Conclusion and future outlook -- Abbreviations and symbols -- References -- 13 - Geophysical indicators and methods for producing oceanic gas hydrates -- 1. Introduction -- 2. Principles and procedures for gas hydrate exploration -- 2.1 Hydrates resource estimation -- 2.2 Gas hydrate indicators -- 2.2.1 Seismic indicators -- 2.2.2 Well log data -- 2.3 Pressure coring and analysis -- 3. Gas hydrate processes and characteristics -- 3.1 Hydrates thermodynamic conditions -- 3.2 The gas hydrate system -- 3.3 Hydrate morphology and gas availability -- 3.4 Methods of hydrates production -- 3.4.1 Thermal stimulation -- 3.4.2 Depressurization -- 3.4.3 Inhibitor injection -- 4. Current applications and cases -- 4.1 Case study 1 -- 4.2 Case study 2 -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- Index -- Back Cover.
Record Nr. UNINA-9911007172903321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas : Formation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Advances in Natural Gas : Formation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (776 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Simulation methods
ISBN 9780443192302
0443192308
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Modeling and simulationof natural gassweetening processes and apparatus -- 1 - Process modeling and simulation of natural gas sweetening by absorption processes -- 1. Introduction -- 1.1 Natural gas sweetening process: Parameters for modeling -- 2. Absorption in a fluidic media -- 2.1 Types of alkanol amines -- 2.2 Hydrogen sulfide and alkanol amines -- 2.3 Carbon dioxide and alkanol amines -- 3. Process selection -- 4. Modeling -- 4.1 Generalization of distillation tower algorithm -- 4.2 Mathematical model of acidic gas absorption tower -- 4.3 Model assumptions -- 4.4 Model theory -- 5. Fundamental equations and principles for modeling natural gas sweetening -- 6. Benefits of using simulation models -- 7. Simulation models to reduce costs and improve efficiency -- 8. Simulation models to optimize -- 9. Limitations of using simulation models -- 10. Successful implementation of simulation models -- 11. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 2 - Modeling and simulation of natural gas sweetening by various adsorption technologies -- 1. Introduction -- 2. Sweetening adsorption processes -- 2.1 Pressure swing adsorption -- 2.1.1 Procedure -- 2.1.2 The effect of different parameters on the PSA process with related equations -- 2.1.2.1 Adsorbent -- 2.1.2.2 Bed porosity -- 2.1.2.3 Pressure -- 2.1.2.4 Residence time -- 2.1.2.5 Adsorption time -- 2.1.2.6 Purge/feed ratio -- 2.1.2.7 Depressurization and pressure equalization -- 2.1.2.8 Rinse time -- 2.1.3 Literature -- 2.2 Temperature swing adsorption -- 2.2.1 Procedure.
2.2.1.1 Heat and mass transfer model equations -- 2.2.1.2 Mass balance equations -- 2.2.1.3 Heat balance equations -- 2.2.2 Literature -- 2.3 Electric swing adsorption -- 2.3.1 Procedure -- 2.3.2 Literature -- 2.4 Vacuum swing adsorption -- 2.4.1 Procedure -- 2.4.2 Literature -- 2.5 Mixed swing adsorption processes -- 2.5.1 Temperature Electric Swing Adsorption -- 2.5.1.1 Model description -- 2.5.2 Pressure temperature swing adsorption -- 2.5.2.1 Procedure -- 2.5.3 Vacuum pressure swing adsorption -- 2.5.3.1 Procedure -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Modeling and simulation of natural gas sweetening using membranes -- 1. Introduction -- 1.1 Natural gas sweetening -- 1.2 Mathematical modeling -- 1.3 Membrane systems -- 1.3.1 Classification of membrane systems -- 2. Principles and procedures -- 2.1 Gas separation using HFM -- 2.1.1 Mathematical model of gas separation -- 2.2 Gas absorption using gas-liquid membrane contactor -- 2.2.1 Mathematical modeling -- 2.2.1.1 Membrane lumen side (liquid) -- 2.2.1.2 Membrane walls -- 2.2.1.3 Module shell (gas) -- 3. Current applications and cases -- 3.1 Membrane separation of CO2 at high pressure -- 3.2 Membrane separation at moderate pressure -- 3.3 Liquid-gas membrane contactor -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Modeling and simulation of CO2 removal from CO2-rich natural gas via supersonic separators -- 1. Introduction -- 1.1 State of the art in natural gas CO2 removal -- 2. Overview of CO2-Rich natural gas in raw form -- 3. The content of CO2-rich NG and its processing techniques -- 4. Technologies for CO2 capture from CO2-Rich natural gas -- 5. CO2-rich natural gas processing using supersonic separators -- 6. Comparison of process alternatives -- 6.1 Conventional process: TEG+JT/LTS.
6.2 Comparison between TEG+JT/LTS and supersonic separator -- 7. HYSYS modeling of supersonic separator units for CO2-Rich natural gas treatment -- 8. Modeling supersonic separation for natural gas dew-point adjustment -- 9. Supersonic separation for natural gas CO2 removal -- 9.1 Supersonic separator modeling and simulation: SS-UOE -- 10. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Case studies of modeling and simulation of natural gas sweetening processes -- 1. Introduction -- 2. Acid gas removal methodology -- 2.1 AGR from natural gas using cryogenic process -- 2.2 AGR from natural gas using absorption -- 2.3 AGR from natural gas using membrane-gas solvent contactors -- 2.4 AGR from natural gas using adsorption -- 3. Conclusions and future outlooks -- Abbreviations and symbols -- References -- II - Modeling and simulationof natural gas dehydrationprocesses and apparatus -- 6 - Process modeling and simulation of natural gas dehydration by absorption technology -- 1. Introduction -- 2. Gas hydrate -- 3. Gas dehydration process -- 3.1 Traditional methods of dehydration -- 3.2 Gas stripping dehydration method -- 4. Modeling thermodynamics -- 4.1 Modeling UMR-PRU -- 4.1.1 Summary of the model -- 4.1.2 Adoption in industrial simulation -- 4.2 An outline of TST/NRTL -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 7 - Modeling and simulating natural gas dehydration by adsorption technologies: Pressure swing adsorption, temperature swin ... -- 1. Introduction -- 2. Mathematical foundations for dehydration modeling -- 3. Adsorption-based dehydration technologies -- 3.1 Pressure swing adsorption -- 3.2 Vacuum swing adsorption -- 3.3 Temperature swing adsorption -- 4. Typical industrial application units -- 4.1 Typical operating modes -- 4.1.1 PSA for hydrogen purification.
4.1.2 TSA for natural gas dehydration -- 4.2 Other applications -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane-based modeling and simulation of natural gas dehydration -- 1. Introduction -- 2. Dehydration process -- 2.1 DEG regeneration -- 3. Function, configuration, and characteristics of membrane processes -- 3.1 Conventional cross-flow design -- 3.2 Cross-flow model with the influent under vacuum -- 3.3 Role of an expanded residue slipstream as the sweep in a countercurrent design -- 3.4 Design employing a countercurrent flow of sweep-dry nitrogen -- 3.5 Four membrane system concepts have been evaluated -- 3.6 Another application of SS for NG purification: Polymer membrane modeling -- 4. Modeling and simulation overview -- 4.1 Modeling -- 5. Simulation -- 5.1 Overview of process simulation instruments -- 5.2 Interface for connecting to simulators -- 6. System design of membrane processes -- 6.1 Different phases of system design -- 6.2 Different design techniques for membrane systems -- 6.2.1 Customization of already-existing membrane characteristics -- 6.2.2 Program development customization -- 7. Membranes challenges -- 8. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Modeling and simulation of natural gas dehydration via supersonic separators -- 1. Introduction -- 2. Natural gas dehydration methods -- 3. Condensation process -- 3.1 Laval nozzle history for condensation -- 3.2 Condensation mechanisms -- 3.2.1 Nucleation -- 3.2.2 Droplet formation and growth -- 3.3 Modeling and simulations -- 3.4 Condensation experimentation -- 3.5 Modeling of supersonic separation -- 4. Separation processes -- 4.1 Swirler design -- 4.2 Shock wave location -- 5. Pressure recovery -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References.
III - Modeling and simulation of other impuritiesremoval from natural gas -- 10 - Modeling and simulation of hydrocarbon dew point adjustment of natural gas via supersonic separators -- 1. Introduction -- 2. Hydrocarbon dew point -- 3. Supersonic technology -- 3.1 Design procedure -- 3.2 History -- 3.3 Translang technologies ltd -- 3.4 Effectiveness -- 3.5 Supersonic technology comparing to other technologies -- 4. Supersonic process design -- 4.1 Supersonic process design specification -- 4.2 Process simulation of the supersonic separation -- 4.3 Operating unit design and sizing -- 4.3.1 Vessels, containers, and separators -- 4.3.2 Compressors, turbines, and pumps -- 4.3.3 Heat exchangers, coolers, and heaters -- 4.3.4 Towers and columns -- 4.4 Technoeconomics -- 4.4.1 Capital expenditures estimation -- 4.4.2 Operating expenditure estimation -- 4.4.3 Revenue estimation -- 5. Supersonic separation modeling -- 5.1 Condensation -- 5.1.1 Condensation mechanisms -- 5.1.2 Condensation models -- 5.2 Separation processes -- 5.3 Shock wave location -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Thermodynamic models and process simulation of mercury removal from natural gas -- 1. Introduction -- 2. Principles and procedures of thermodynamic models for mercury removal from natural gas -- 2.1 UMR-PRU model -- 2.2 Soave-Redlich-Kwong EOS -- 2.3 SAFT models -- 2.3.1 PC-SAFT model -- 2.3.2 Critical point-based perturbed-chain statistical association fluid theory model -- 2.4 Peng and Robinson model -- 3. Simulation and modeling of mercury removal process from natural gas -- 4. Processes of mercury removal in natural gas industry -- 4.1 Fixed-bed reactors -- 4.2 Scrubbing solution -- 4.3 Simultaneous mercury and hydrogen sulfide removal process -- 4.4 Glycol and molecular sieve dehydration process.
4.5 Type of scenarios for installing mercury removal process from the natural gas.
Record Nr. UNINA-9911006673303321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas Emerging Technologies / / edited by Hamid A. Al-Megren and Rashid H. Altamimi
Advances in Natural Gas Emerging Technologies / / edited by Hamid A. Al-Megren and Rashid H. Altamimi
Pubbl/distr/stampa Rijeka : , : IntechOpen, , 2017
Descrizione fisica 1 online resource (252 pages) : illustrations
Disciplina 665.7
Soggetto topico Natural gas
ISBN 953-51-4717-X
953-51-3434-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910251421003321
Rijeka : , : IntechOpen, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas Technology / / edited by Hamid A. Al-Megren
Advances in Natural Gas Technology / / edited by Hamid A. Al-Megren
Pubbl/distr/stampa Rijeka : , : IntechOpen, , 2012
Descrizione fisica 1 online resource (xi, 556 pages) : illustrations (some color), maps (some color)
Disciplina 665.7
Soggetto topico Natural gas
Chemical engineering
ISBN 953-51-4303-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317602203321
Rijeka : , : IntechOpen, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Aktualʹnye problemy nefti i gaza = Actual problems of oil and gas
Aktualʹnye problemy nefti i gaza = Actual problems of oil and gas
Pubbl/distr/stampa Moskva : , : Institut problem nefti i gaza RAN
Descrizione fisica 1 electronic resource
Soggetto topico Petroleum
Natural gas
Soggetto genere / forma Periodicals.
ISSN 2687-0312
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione rus
Altri titoli varianti Actual problems of oil and gas
Record Nr. UNISA-996433051203316
Moskva : , : Institut problem nefti i gaza RAN
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Aktualʹnye problemy nefti i gaza = Actual problems of oil and gas
Aktualʹnye problemy nefti i gaza = Actual problems of oil and gas
Pubbl/distr/stampa Moskva : , : Institut problem nefti i gaza RAN
Descrizione fisica 1 electronic resource
Soggetto topico Petroleum
Natural gas
Soggetto genere / forma Periodicals.
ISSN 2687-0312
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione rus
Altri titoli varianti Actual problems of oil and gas
Record Nr. UNINA-9910490729303321
Moskva : , : Institut problem nefti i gaza RAN
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Anticlines in the southern part of the Big Horn basin, Wyoming : a preliminary report on the occurrence of oil / / by D.F. Hewett and C.T. Lupton
Anticlines in the southern part of the Big Horn basin, Wyoming : a preliminary report on the occurrence of oil / / by D.F. Hewett and C.T. Lupton
Autore Hewett D. F (Donnel Foster), <1881-1971, >
Pubbl/distr/stampa [Washington, D.C.] : , : Department of the Interior, United States Geological Survey, , 1917
Descrizione fisica 1 online resource (192 pages, XXXII pages of plates) : illustrations, maps
Collana Bulletin / Department of the Interior, United States Geological Survey
Soggetto topico Geology - Wyoming
Petroleum - Bighorn Basin (Mont. and Wyo.)
Natural gas - Bighorn Basin (Mont. and Wyo.)
Geology - Bighorn Basin (Mont. and Wyo.)
Geology
Natural gas
Petroleum
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Anticlines in the southern part of the Big Horn basin, Wyoming
Record Nr. UNINA-9910703817503321
Hewett D. F (Donnel Foster), <1881-1971, >  
[Washington, D.C.] : , : Department of the Interior, United States Geological Survey, , 1917
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assessment of undiscovered continuous oil and gas resources in the Dnieper-Donets Basin and North Carpathian Basin Provinces, Ukraine, Romania, Moldova, and Poland, 2015
Assessment of undiscovered continuous oil and gas resources in the Dnieper-Donets Basin and North Carpathian Basin Provinces, Ukraine, Romania, Moldova, and Poland, 2015
Pubbl/distr/stampa [Reston, Va.] : , : U.S. Department of the Interior, U.S. Geological Survey, , 2016
Descrizione fisica 1 online resource (1 sheet (2 unnumbered pages)) : color map
Collana Fact sheet
Soggetto topico Petroleum - Donets Basin (Ukraine and Russia)
Petroleum - Pannonia Region
Natural gas - Donets Basin (Ukraine and Russia)
Natural gas - Pannonia Region
Natural gas
Petroleum
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti National and Global Petroleum Assessment
Record Nr. UNINA-9910708617903321
[Reston, Va.] : , : U.S. Department of the Interior, U.S. Geological Survey, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui