top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (449 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Synthesis
Nanostructured materials
Nanostructures
Soggetto genere / forma Electronic books.
ISBN 3-527-82394-8
3-527-82396-4
3-527-82395-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State‐of‐the‐Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide‐Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co‐precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self‐Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co‐remediation Anionic SeO42− and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two‐Dimensional Nanomaterials for Next‐Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation.
4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D‐Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation.
6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X‐ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X‐ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR‐Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X‐Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X‐Ray‐Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications.
9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two‐Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene‐Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two‐Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution‐Processed MoS2‐Based Resistive Memories -- 10.5.2.2 Solution‐Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h‐BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT.
11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials‐Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc‐Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT‐IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x & -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano‐Powder for IT‐SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) -- 15.1.3 Why Samarium‐Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)?.
15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells.
Record Nr. UNINA-9910555274103321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (449 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials
Nanostructured materials - Synthesis
ISBN 3-527-82394-8
3-527-82396-4
3-527-82395-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State‐of‐the‐Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide‐Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co‐precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self‐Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co‐remediation Anionic SeO42− and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two‐Dimensional Nanomaterials for Next‐Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation.
4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D‐Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation.
6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X‐ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X‐ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR‐Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X‐Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X‐Ray‐Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications.
9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two‐Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene‐Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two‐Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution‐Processed MoS2‐Based Resistive Memories -- 10.5.2.2 Solution‐Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h‐BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT.
11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials‐Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc‐Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT‐IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x & -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano‐Powder for IT‐SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) -- 15.1.3 Why Samarium‐Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)?.
15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells.
Record Nr. UNINA-9910830428203321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chapter Nanostructured Biosensors : influence of Adhesion Layer, Roughness and Size on the LSPR : A Parametric Study / / Sameh Kessentini
Chapter Nanostructured Biosensors : influence of Adhesion Layer, Roughness and Size on the LSPR : A Parametric Study / / Sameh Kessentini
Autore Kessentini Sameh
Pubbl/distr/stampa [Place of publication not identified] : , : IntechOpen, , 2013
Descrizione fisica 1 online resource
Disciplina 620.115
Soggetto topico Nanostructured materials - Synthesis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Chapter Nanostructured Biosensors
Record Nr. UNINA-9910774639803321
Kessentini Sameh  
[Place of publication not identified] : , : IntechOpen, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functionalized nanomaterials / / edited by Muhammad Akhyar Farrukh
Functionalized nanomaterials / / edited by Muhammad Akhyar Farrukh
Pubbl/distr/stampa Rijeka, Crotia : , : IntechOpen, , [2016]
Descrizione fisica 1 online resource (174 pages) : illustrations
Disciplina 620.115
Soggetto topico Nanostructured materials - Synthesis
ISBN 953-51-4128-7
953-51-2856-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317681103321
Rijeka, Crotia : , : IntechOpen, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphene-based nanomaterial catalysis / / edited by Manorama Singh, Vijai K Rai, Ankita Rai
Graphene-based nanomaterial catalysis / / edited by Manorama Singh, Vijai K Rai, Ankita Rai
Pubbl/distr/stampa Singapore : , : Bentham Books, , [2022]
Descrizione fisica 1 online resource (227 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Synthesis
ISBN 981-5040-49-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795031103321
Singapore : , : Bentham Books, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphene-based nanomaterial catalysis / / edited by Manorama Singh, Vijai K Rai, Ankita Rai
Graphene-based nanomaterial catalysis / / edited by Manorama Singh, Vijai K Rai, Ankita Rai
Pubbl/distr/stampa Singapore : , : Bentham Books, , [2022]
Descrizione fisica 1 online resource (227 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Synthesis
ISBN 981-5040-49-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910819883503321
Singapore : , : Bentham Books, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Descrizione fisica 1 online resource (719 pages)
Disciplina 620/.50286
Soggetto topico Metal nanoparticles
Metal nanoparticles - Industrial applications
Nanostructured materials - Synthesis
Soggetto genere / forma Electronic books.
ISBN 1-119-41887-9
1-119-41886-0
1-119-41890-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555026103321
Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Descrizione fisica 1 online resource (719 pages)
Disciplina 620/.50286
Soggetto topico Metal nanoparticles
Metal nanoparticles - Industrial applications
Nanostructured materials - Synthesis
ISBN 1-119-41887-9
1-119-41886-0
1-119-41890-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830747903321
Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook on synthesis strategies for advanced materials . Volume-III Materials specific synthesis strategies / / A. K. Tyagi, Raghumani S. Ningthoujam, editors
Handbook on synthesis strategies for advanced materials . Volume-III Materials specific synthesis strategies / / A. K. Tyagi, Raghumani S. Ningthoujam, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (921 pages)
Disciplina 620.115
Collana Indian Institute of Metals Series
Soggetto topico Nanostructured materials - Synthesis
Synthetic products
Materials
ISBN 981-16-1892-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Editor's Preface -- Preface -- Contents -- About the Editors -- 1 High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations -- 1.1 Introduction -- 1.2 PC Constituents and Their Modification -- 1.2.1 Fillers -- 1.2.2 Polymer Matrix -- 1.2.3 Interface in Composites -- 1.3 Fabrication, Assembly, and Processing of Composites -- 1.4 Composites and Their Applications -- 1.5 Smart Composites -- 1.6 Outlook and Future Trends -- References -- 2 Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms -- 2.1 Introduction -- 2.2 Nanomaterials and Nanostructures Relevant to Electrochemical Sensing -- 2.3 Noble Metal Nanomaterials -- 2.3.1 Gold Nanoparticles -- 2.3.2 Platinum Nanoparticles -- 2.3.3 Silver Nanoparticles -- 2.3.4 Palladium Nanoparticles -- 2.4 Metal Oxide Nanomaterials -- 2.5 Carbon-Based Nanomaterial Modified Electrodes -- 2.5.1 Carbon Nanotubes -- 2.5.2 Single-Walled Carbon Nanotubes -- 2.5.3 Multi-walled Carbon Nanotubes -- 2.5.4 Carbon Nanohorns -- 2.5.5 Fullerene -- 2.5.6 Graphene -- 2.6 Conducting Polymer Nanomaterials -- 2.6.1 Polypyrrole -- 2.6.2 Polythiophene -- 2.6.3 Polyaniline (PANI) -- 2.7 Conclusions and Outlook -- References -- 3 Synthesis of Noble Gas Compounds: Defying the Common Perception -- 3.1 Introduction -- 3.2 Discovery of Noble Gases -- 3.3 Reactivity of Noble Gases and Discovery of First Noble Gas Compound -- 3.4 Initial Progress in the Synthesis of Other Xenon Compounds -- 3.5 Synthesis of Compounds of Noble Gases -- 3.6 Missing Xenon Paradox -- 3.7 Summary and Outlook -- References -- 4 Synthesis of Inorganic Fluorides -- 4.1 Introduction -- 4.2 Fluorine -- 4.3 Hydrogen Fluoride -- 4.4 Inorganic Fluorides and Oxyfluorides -- 4.4.1 Fluorides of Metals -- 4.4.2 Binary Fluorides -- 4.4.3 Nonmetal Fluorides.
4.4.4 Complex Fluorides -- 4.4.5 Oxyfluorides -- 4.5 Preparative Strategies -- 4.5.1 Fluorinating Reagents and Common F− Ion Sources -- 4.5.2 Materials Compatibility -- 4.5.3 Toxicological Effects -- 4.6 General Preparation Chemistry -- 4.6.1 Gas-Gas -- 4.6.2 Liquid/Solid-Gas -- 4.6.3 Solid/Liquid-Liquid -- 4.6.4 Solid-Solid -- 4.6.5 Fluorides of Cations with Unusual Oxidation State -- 4.7 Representative Examples -- 4.8 Summary and Conclusions -- References -- 5 Synthesis of Materials with Unusual Oxidation State -- 5.1 Introduction -- 5.2 Oxidation States -- 5.3 Unusual Oxidation States -- 5.4 Preparation and Stabilization of Materials with Unusual Oxidation States -- 5.5 Preparation Strategies for Materials with Unusual Oxidation States -- 5.5.1 High Temperature Reactions -- 5.5.2 High Pressure and High Temperature Reactions -- 5.5.3 Reaction at Lower or Moderate Temperature and Stepwise Reactions -- 5.5.4 Electrochemical Reactions -- 5.5.5 Electron or γ-radiation-Induced Redox Reactions -- 5.6 Conclusions -- References -- 6 Up-Converting Lanthanide Ions Doped Fluoride Nanophosphors: Advances from Synthesis to Applications -- 6.1 Introduction -- 6.2 Luminescence from Lanthanides Ions -- 6.2.1 Lanthanides -- 6.2.2 Origin of Luminescence -- 6.2.3 Photo-Physical Mechanism -- 6.3 Photoluminescence Measurement Technique -- 6.3.1 Instrumentation -- 6.3.2 Photoluminescence Measurement -- 6.4 Critical Factors that Influence Luminescence Characteristics -- 6.4.1 Choice of Activator -- 6.4.2 Choice of Sensitizer -- 6.4.3 Choice of a Host Material -- 6.4.4 Doping Concentration -- 6.4.5 Morphology -- 6.4.6 Crystal Structure -- 6.5 Controlled Preparation of Up-Converting Fluoride-Based Nanophosphors -- 6.5.1 Nucleation and Growth -- 6.5.2 Synthesis Methods -- 6.6 Critical Parameters that Influence Morphology and Phase -- 6.6.1 Reaction Temperature and Time.
6.6.2 Ligand, additives, and Solvents -- 6.6.3 Precursor Salts -- 6.6.4 PH Parameter -- 6.6.5 Incorporation of Foreign Species -- 6.7 Applications -- 6.7.1 Bio-Imaging -- 6.7.2 Tumor Targeting -- 6.7.3 Energy Harvesting -- 6.7.4 Temperature Sensing -- 6.7.5 Anti-counterfeiting -- 6.8 Conclusions -- References -- 7 Synthesis and Characterization of Quantum Cutting Phosphor Materials -- 7.1 Introduction -- 7.2 Quantum Cutting Mechanism -- 7.3 Synthesis Methods -- 7.3.1 Combustion Method -- 7.3.2 Sol-gel Method -- 7.3.3 Hydrothermal Method -- 7.3.4 Hot-Injection Method -- 7.3.5 Solid-State Reaction Method -- 7.3.6 Melting-Quenching Method -- 7.4 Characterization of Quantum Cutting Phosphors -- 7.4.1 Photoluminescence (Excitation and Emission) -- 7.4.2 Laser Power Dependent Photoluminescence Intensity -- 7.4.3 Lifetime Characteristics -- 7.5 Conclusions -- 7.6 Future Scope -- References -- 8 Synthesis, Characterization, Physical Properties and Applications of Metal Borides -- 8.1 Introduction -- 8.2 Synthesis and Characterization -- 8.2.1 High-Temperature Synthesis (Above 1000 °C) Using Pure Metal Powder and Boron Powder in Inert Atmosphere or Vacuum by Solid-State Reaction -- 8.2.2 Electrolysis Process in Molten Salts -- 8.2.3 Reduction of Metal Oxides/Halides with Boron in Presence of Carbon/Aluminum/Magnesium -- 8.2.4 Reduction of Metal Oxides with Boron Carbide -- 8.2.5 Self-propagating High-Temperature Synthesis (SHS) -- 8.2.6 Mechano-Chemically Assisted Preparation -- 8.2.7 Reduction Process of Metal Salts with Borohydrides (LiBH4, NaBH4, KBH4) -- 8.2.8 Deposition from a Reactive Vapor Phase (Thin Films or Single Crystals or Polycrystals) -- 8.2.9 Single-Source Precursor Route -- 8.2.10 Nanostructure Formation in 0D, 1D, 2D and 3D Ways -- 8.3 Physical Properties -- 8.3.1 Magnetism -- 8.3.2 Electronic Structure -- 8.3.3 Electrical Resistivity.
8.3.4 Optics -- 8.4 Applications -- 8.4.1 Catalyst -- 8.4.2 Superconducting Materials -- 8.4.3 Coating Materials to Improve Mechanical Properties (Hardness, Corrosion Resistance, Wear Resistance) -- 8.4.4 Metallic Ceramics Materials -- 8.4.5 Magnetic Materials -- 8.4.6 Brightness in Electron Microscopy and Monochromator for Synchrotron Radiation -- 8.4.7 Other Hybrids/Composites of Borides for Applications -- 8.5 Conclusions -- References -- 9 Synthesis and Applications of Borides, Carbides, Phosphides, and Nitrides -- 9.1 Introduction -- 9.2 Synthesis Methods of Nitrides -- 9.2.1 Interaction of N2 Gas with the Metal Powder or Film at Elevated Temperature -- 9.2.2 Interaction of NH3 Gas with the Metal Powder or Film or Oxides or Sulphides or Halides at Elevated Temperature -- 9.2.3 Decomposition of Single Source Precursor Containing Metal-Nitrogen Link -- 9.2.4 Use of Urea/Azide and Reductant Precursor -- 9.2.5 Use of Hard Template Having Nitrogen Source -- 9.2.6 Epitaxial Growth of Nanowires or Nanorods on Substrate -- 9.2.7 In the Form of Thin Film Formation and Coating -- 9.2.8 In the Form of Single Crystals -- 9.2.9 Mesoporous Metal Nitrides -- 9.2.10 Metathesis Reaction -- 9.2.11 Layered Nitrides -- 9.2.12 Mechanical Transfer of Metal Nitrides Grown on a Substrate to Another Substrate -- 9.2.13 Formation of Heterostructure Types -- 9.2.14 Formation of Advanced Ceramic Materials of Borides, Carbides, and Nitrides at Low Temperature -- 9.2.15 Formation of Different Phases of Nitrides, Carbides, Oxy-Carbides/Nitrides, and Borides Under High Pressure and Temperature -- 9.2.16 Formation of Different Phases of Nitrides Under Sudden Cooling and Tempering -- 9.2.17 Formation of Nanotubes -- 9.2.18 Formation of Different Sizes and Shapes -- 9.2.19 Electrochemical Route -- 9.2.20 Deposition of Prepared Nitrides on Substrate.
9.2.21 Supercritical Fluid Ammonia or Solvothermal or Ammono-Thermal Route -- 9.2.22 Self-propagating High Temperature Synthesis -- 9.3 Synthesis Methods of Carbides -- 9.3.1 Carbo-Thermal Route -- 9.3.2 Carbo-Thermic Reduction Route -- 9.3.3 Carburisation Route -- 9.3.4 Microwave Route -- 9.3.5 Hydrothermal or Solvothermal Route -- 9.3.6 Self-propagating High Temperature Synthesis Route -- 9.3.7 Thin Film -- 9.3.8 Single Crystals -- 9.3.9 Preparation of Nanostructured Carbides (0D, 1D, 2D, and 3D) -- 9.3.10 Sol-gel Approach -- 9.3.11 Preparation of Carbides Under Pressure -- 9.4 Synthesis Methods of Phosphides -- 9.4.1 Direction Reaction Between Metal or Non-metal and Phosphorus -- 9.4.2 Reaction Between Metal Salt or Complex and PH3/H2 Mixture -- 9.4.3 Reaction Between Metal Salt and Hypophosphite -- 9.4.4 Reaction Between Metal Salt and Phosphorous Acid (H3PO3) -- 9.4.5 H2 Plasma Reduction -- 9.4.6 Reaction of Metal Salts with Organic Compounds of Phosphorous -- 9.4.7 Metathesis Reactions -- 9.4.8 Solvothermal Reaction -- 9.4.9 Different Sizes and Shapes of Nanoparticles (0D, 1D, 2D, 3D) -- 9.4.10 Thin Film Technique -- 9.5 Synthesis Methods of Borides -- 9.6 Applications -- 9.6.1 Electronics -- 9.6.2 Catalysts -- 9.6.3 Optical Materials -- 9.6.4 Materials on Basis of Mechanical Properties -- 9.6.5 Biomaterials -- 9.6.6 Ultra-High Temperature Ceramic Materials -- 9.6.7 Coloring Materials -- 9.6.8 Materials for Battery, Fuel Cells, Capacitor, Sensors -- 9.6.9 Magnetic Materials -- 9.6.10 Miscellaneous Applications -- 9.7 Conclusions -- References -- 10 Synthesis Methods for Carbon-Based Materials -- 10.1 Introduction -- 10.2 Synthesis of Graphite -- 10.3 Synthesis of Diamond -- 10.3.1 High Pressure and High Temperature (HPHT) -- 10.3.2 Chemical Vapor Deposition -- 10.3.3 Other Methods -- 10.4 Synthesis of Fullerene -- 10.4.1 Soot Method.
10.4.2 Chemical Vapor Deposition.
Record Nr. UNINA-9910506401503321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Synthesis and applications of nanomaterials and nanocomposites / / Imran Uddin and Irfan Ahmad, editors
Synthesis and applications of nanomaterials and nanocomposites / / Imran Uddin and Irfan Ahmad, editors
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd., , [2023]
Descrizione fisica 1 online resource (398 pages)
Disciplina 620.118
Collana Composites Science and Technology Series
Soggetto topico Nanocomposites (Materials)
Nanostructured materials - Synthesis
Soggetto non controllato Materials
Nanoscience
Nanotechnology
Technology & Engineering
Science
ISBN 981-9913-50-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910720096803321
Singapore : , : Springer Nature Singapore Pte Ltd., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui