top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse
Autore Ouisse Thierry
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (399 p.)
Disciplina 530.4/1
620.5
Collana ISTE
Soggetto topico Electron transport
Nanostructured materials - Electric properties
Nanostructures - Electric properties
Mesoscopic phenomena (Physics)
Soggetto genere / forma Electronic books.
ISBN 1-282-16520-8
9786612165207
0-470-61139-1
0-470-39400-5
Classificazione VE 9850
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electron Transport in Nanostructures and Mesoscopic Devices; Table of Contents; Chapter 1. Introduction; 1.1. Introduction and preliminary warning; 1.2. Bibliography; Chapter 2. Some Useful Concepts and Reminders; 2.1. Quantum mechanics and the Schrödinger equation; 2.1.1. A more than brief introduction; 2.1.2. The postulates of quantum mechanics; 2.1.3. Essential properties of observables; 2.1.4. Momentum operator; 2.1.5. Stationary states; 2.1.6. Probability current; 2.1.7. Electrons in vacuum and group velocity; 2.2. Energy band structure in a periodic lattice
2.3. Semi-classical approximation2.4. Electrons and holes; 2.5. Semiconductor heterostructure; 2.6. Quantum well; 2.6.1. 1D case; 2.6.2. Coupled quantum wells; 2.6.3. Quantum-confined Stark effect; 2.7. Tight-binding approximation; 2.8. Effective mass approximation; 2.8.1. Wannier functions; 2.8.2. Effective mass Schrödinger equation; 2.9. How good is the effective mass approximation in a confined structure?; 2.10. Density of states; 2.10.1. 3D case; 2.10.2. 2D case; 2.10.3. 1D case; 2.10.4. Summary; 2.11. Fermi-Dirac statistics; 2.12. Examples of 2D systems
2.13. Characteristic lengths and mesoscopic nature of electron transport2.14. Mobility: Drude model; 2.15. Conduction in degenerate materials; 2.16. Einstein relationship; 2.17. Low magnetic field transport; 2.18. High magnetic field transport; 2.18.1. Introduction; 2.18.2. Some reminders about the particle Hamiltonian in the presence of an electromagnetic field; 2.18.3. Action of a magnetic field (classical); 2.18.4. High magnetic field transport; 2.19. Exercises; 2.19.1. Exercise; 2.19.2. Exercise; 2.19.3. Exercise; 2.19.4. Exercise; 2.20. Bibliography
Chapter 3. Ballistic Transport and Transmission Conductance3.1. Conductance of a ballistic conductor; 3.2. Connection between 2D and 1D systems; 3.3. A classical analogy; 3.4. Transmission conductance: Landauer's formula; 3.5. What if the device length really does go down to zero?; 3.6. A smart experiment which shows you everything; 3.7. Relationship between the Landauer formula and Ohm's law; 3.8. Dissipation with a scatterer; 3.9. Voltage probe measurements; 3.10. Comment about the assumption that T is constant; 3.11. Generalization of Landauer's formula: Büttiker's formula
3.11.1. Büttiker's formula3.11.2. Three-terminal device; 3.11.3. Four-terminal device; 3.12. Non-zero temperature; 3.12.1. Large applied bias μ1-μ2>>0; 3.12.2. Incoherent states; 3.12.3. Coherent states; 3.12.4. Physical parameters included in the transmission probability; 3.12.5. Linear response (μ1-μ2 4.1. Scattering matrix or S-matrix
Record Nr. UNINA-9910139492503321
Ouisse Thierry  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse
Autore Ouisse Thierry
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (399 p.)
Disciplina 530.4/1
620.5
Collana ISTE
Soggetto topico Electron transport
Nanostructured materials - Electric properties
Nanostructures - Electric properties
Mesoscopic phenomena (Physics)
ISBN 1-282-16520-8
9786612165207
0-470-61139-1
0-470-39400-5
Classificazione VE 9850
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electron Transport in Nanostructures and Mesoscopic Devices; Table of Contents; Chapter 1. Introduction; 1.1. Introduction and preliminary warning; 1.2. Bibliography; Chapter 2. Some Useful Concepts and Reminders; 2.1. Quantum mechanics and the Schrödinger equation; 2.1.1. A more than brief introduction; 2.1.2. The postulates of quantum mechanics; 2.1.3. Essential properties of observables; 2.1.4. Momentum operator; 2.1.5. Stationary states; 2.1.6. Probability current; 2.1.7. Electrons in vacuum and group velocity; 2.2. Energy band structure in a periodic lattice
2.3. Semi-classical approximation2.4. Electrons and holes; 2.5. Semiconductor heterostructure; 2.6. Quantum well; 2.6.1. 1D case; 2.6.2. Coupled quantum wells; 2.6.3. Quantum-confined Stark effect; 2.7. Tight-binding approximation; 2.8. Effective mass approximation; 2.8.1. Wannier functions; 2.8.2. Effective mass Schrödinger equation; 2.9. How good is the effective mass approximation in a confined structure?; 2.10. Density of states; 2.10.1. 3D case; 2.10.2. 2D case; 2.10.3. 1D case; 2.10.4. Summary; 2.11. Fermi-Dirac statistics; 2.12. Examples of 2D systems
2.13. Characteristic lengths and mesoscopic nature of electron transport2.14. Mobility: Drude model; 2.15. Conduction in degenerate materials; 2.16. Einstein relationship; 2.17. Low magnetic field transport; 2.18. High magnetic field transport; 2.18.1. Introduction; 2.18.2. Some reminders about the particle Hamiltonian in the presence of an electromagnetic field; 2.18.3. Action of a magnetic field (classical); 2.18.4. High magnetic field transport; 2.19. Exercises; 2.19.1. Exercise; 2.19.2. Exercise; 2.19.3. Exercise; 2.19.4. Exercise; 2.20. Bibliography
Chapter 3. Ballistic Transport and Transmission Conductance3.1. Conductance of a ballistic conductor; 3.2. Connection between 2D and 1D systems; 3.3. A classical analogy; 3.4. Transmission conductance: Landauer's formula; 3.5. What if the device length really does go down to zero?; 3.6. A smart experiment which shows you everything; 3.7. Relationship between the Landauer formula and Ohm's law; 3.8. Dissipation with a scatterer; 3.9. Voltage probe measurements; 3.10. Comment about the assumption that T is constant; 3.11. Generalization of Landauer's formula: Büttiker's formula
3.11.1. Büttiker's formula3.11.2. Three-terminal device; 3.11.3. Four-terminal device; 3.12. Non-zero temperature; 3.12.1. Large applied bias μ1-μ2>>0; 3.12.2. Incoherent states; 3.12.3. Coherent states; 3.12.4. Physical parameters included in the transmission probability; 3.12.5. Linear response (μ1-μ2 4.1. Scattering matrix or S-matrix
Record Nr. UNINA-9910830043003321
Ouisse Thierry  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse
Electron transport in nanostructures and mesoscopic devices [[electronic resource] /] / Thierry Ouisse
Autore Ouisse Thierry
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (399 p.)
Disciplina 530.4/1
620.5
Collana ISTE
Soggetto topico Electron transport
Nanostructured materials - Electric properties
Nanostructures - Electric properties
Mesoscopic phenomena (Physics)
ISBN 1-282-16520-8
9786612165207
0-470-61139-1
0-470-39400-5
Classificazione VE 9850
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electron Transport in Nanostructures and Mesoscopic Devices; Table of Contents; Chapter 1. Introduction; 1.1. Introduction and preliminary warning; 1.2. Bibliography; Chapter 2. Some Useful Concepts and Reminders; 2.1. Quantum mechanics and the Schrödinger equation; 2.1.1. A more than brief introduction; 2.1.2. The postulates of quantum mechanics; 2.1.3. Essential properties of observables; 2.1.4. Momentum operator; 2.1.5. Stationary states; 2.1.6. Probability current; 2.1.7. Electrons in vacuum and group velocity; 2.2. Energy band structure in a periodic lattice
2.3. Semi-classical approximation2.4. Electrons and holes; 2.5. Semiconductor heterostructure; 2.6. Quantum well; 2.6.1. 1D case; 2.6.2. Coupled quantum wells; 2.6.3. Quantum-confined Stark effect; 2.7. Tight-binding approximation; 2.8. Effective mass approximation; 2.8.1. Wannier functions; 2.8.2. Effective mass Schrödinger equation; 2.9. How good is the effective mass approximation in a confined structure?; 2.10. Density of states; 2.10.1. 3D case; 2.10.2. 2D case; 2.10.3. 1D case; 2.10.4. Summary; 2.11. Fermi-Dirac statistics; 2.12. Examples of 2D systems
2.13. Characteristic lengths and mesoscopic nature of electron transport2.14. Mobility: Drude model; 2.15. Conduction in degenerate materials; 2.16. Einstein relationship; 2.17. Low magnetic field transport; 2.18. High magnetic field transport; 2.18.1. Introduction; 2.18.2. Some reminders about the particle Hamiltonian in the presence of an electromagnetic field; 2.18.3. Action of a magnetic field (classical); 2.18.4. High magnetic field transport; 2.19. Exercises; 2.19.1. Exercise; 2.19.2. Exercise; 2.19.3. Exercise; 2.19.4. Exercise; 2.20. Bibliography
Chapter 3. Ballistic Transport and Transmission Conductance3.1. Conductance of a ballistic conductor; 3.2. Connection between 2D and 1D systems; 3.3. A classical analogy; 3.4. Transmission conductance: Landauer's formula; 3.5. What if the device length really does go down to zero?; 3.6. A smart experiment which shows you everything; 3.7. Relationship between the Landauer formula and Ohm's law; 3.8. Dissipation with a scatterer; 3.9. Voltage probe measurements; 3.10. Comment about the assumption that T is constant; 3.11. Generalization of Landauer's formula: Büttiker's formula
3.11.1. Büttiker's formula3.11.2. Three-terminal device; 3.11.3. Four-terminal device; 3.12. Non-zero temperature; 3.12.1. Large applied bias μ1-μ2>>0; 3.12.2. Incoherent states; 3.12.3. Coherent states; 3.12.4. Physical parameters included in the transmission probability; 3.12.5. Linear response (μ1-μ2 4.1. Scattering matrix or S-matrix
Record Nr. UNINA-9910841506303321
Ouisse Thierry  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular sensors and nanodevices : principles, designs and applications in biomedical engineering / / John X. J. Zhang, Kazunori Hoshino
Molecular sensors and nanodevices : principles, designs and applications in biomedical engineering / / John X. J. Zhang, Kazunori Hoshino
Autore Zhang John X. J
Pubbl/distr/stampa Waltham, Massachusetts ; ; Oxford, England : , : William Andrew, , 2014
Descrizione fisica 1 online resource (512 p.)
Disciplina 610.28
Altri autori (Persone) HoshinoKazunori
Collana Micro & Nano Technologies Series
Soggetto topico Biosensors
Detectors
Nanoelectronics
Nanostructured materials - Electric properties
Soggetto genere / forma Electronic books.
ISBN 1-4557-7676-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Molecular Sensors and Nanodevices; Copyright Page; Contents; About the Authors; Preface; Acknowledgement; 1 Introduction to Molecular Sensors; 1.1 Introduction; 1.2 Principles of Molecular Sensors; 1.2.1 Definition of Molecular Sensors; Capture and Recognition; Transduction; Measurement and Analysis; 1.2.2 Applications of Molecular Sensors; 1.2.3 Model of a Molecular Sensor; Capture and Recognition; Transduction; Measurement and Analysis; 1.2.4 Example of Molecular Sensor 1: Immunosensor Based on Field Effect Transistor; Capture and Recognition Elements; Transducer
Measurement and Analysis 1.2.5 Example of Molecular Sensor 2: Animal Olfactory System; 1.3 Capture and Recognition Elements in Molecular Sensors; 1.3.1 Antibody-Antigen Binding; Antibody Overview; Antibody-Antigen Binding; Immunoassays; 1.3.2 DNA as a Recognition Element; Discovery of DNA; DNA Structure and Characteristics; RNA Function; DNA Hybridization; Oligonucleotides; Nucleic Acid Sensors; 1.3.3 Aptamers; Aptamer Selection Process; Example Process: Bead Based Selection; 1.4 Transduction Mechanisms; 1.4.1 Electrical Transduction; Optical Transduction; Mechanical Transduction
1.4.2 Sensitivity of a Transducer Responsivity; Noise in a Sensing System; Sensitivity; Thermal Noise; Example 1; Example 2; Example 3; 1.5 Performance of Molecular Sensors; 1.6 Animals as Molecular Sensors; 1.6.1 Sensitivity of Animal Olfactory Systems; Canine Olfactory System; Insect Olfactory System; 1.6.2 Applications of Animal Molecular Sensors; Explosive Detection; Canine Detection of Explosives; Pouched Rats for the Detection of Landmines; Honeybees for the Detection of Landmines; Disease Detection; Canines for Cancer Detection; Pouched Rats for the Detection of Tuberculosis
Other Applications Canine Detection of Pirated DVDs; Canine Detection of Bed Bugs; 1.6.3 Discussion on Animals as Molecular Sensors; 1.7 Conclusion; Problems; P1.1 Molecular Sensor; P1.2 Molecular Sensor; P1.3 Recognition Element; P1.4 Basics of Molecular Sensing; P1.5 Antibodies; P1.6 Immunosensing; P1.7 DNA Biosensor; P1.8 DNA Basics; P1.9 DNA Basics; P1.10 DNA Basics; P1.11 DNA Basics; P1.12 Thermal Noise; P1.13 Thermal Noise, Responsivity and Sensitivity; P1.14 Sensitivity of a Force Sensor; P1.15 Animals as Molecular Sensors; References; Further Reading
2 Fundamentals of Nano/Microfabrication and Effect of Scaling 2.1 Introduction; 2.2 Scaling in Molecular Sensors; 2.3 Microfabrication Basics; 2.3.1 Silicon as a Material for Microfabrication; Silicon Crystal Structure; 2.3.2 Photolithography; Process of Photolithography; Resolution of Photolithography; Contact and Proximity Exposure; Projection Exposure; 2.3.3 Deposition; Spin Coating; Thermal Oxidation; Evaporation; E-beam Evaporation; Resistive Heat (Joule Heat) Evaporation; Problems Associated with Evaporation; Sputtering; Chemical Vapor Deposition; Polysilicon; Amorphous silicon
Silicon Dioxide
Record Nr. UNINA-9910453380703321
Zhang John X. J  
Waltham, Massachusetts ; ; Oxford, England : , : William Andrew, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanocarbon electrochemistry / / edited by Nianjun Yang, Guohua Zhao, John S. Foord
Nanocarbon electrochemistry / / edited by Nianjun Yang, Guohua Zhao, John S. Foord
Autore Yang Nianjun
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2020
Descrizione fisica 1 online resource (384 pages)
Disciplina 543.40284
Soggetto topico Electrodes, Carbon
Nanostructured materials - Electric properties
ISBN 1-119-46829-9
1-5231-3733-9
1-119-46828-0
1-119-46830-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nanoelectrochemistry of adsorption-coupled electron transfer at carbon electrodes / Shigeru Amemiya -- The capacitance of graphene : from model systems to large-scale devices / Pawin Iamprasertkun and Robert A.W. Dryfe -- Graphene and related materials as anode materials in li ion batteries : science and practicality / Sandeep Kumar Marka, Veera Venkata Harish Peruswamula and Venkata Satya Siva Srikanth Vadali -- Nanocarbon materials towards textile-based electrochemical energy storage devices / Qiyao Huang, Dongrui Wang, Zijian Zheng -- 1D and 2D flexible carbon matrix materials for lithium-sulfur batteries / Tianyi Wang, Yushu Liu, Dawei Su, Guoxiu Wang -- Conductive diamond for electrochemical energy applications / Siyu Yu, Nianjun Yang, Xin Jiang, Wenjun Zhang, and Shetian Liu -- Electrocatalysis at nanocarbons : model systems and applications in energy conversion / James A. Behan, Carlota Domínguez, Paula E. Colavita -- Metal-organic frameworks based porous carbons for oxygen reduction reaction electrocatalysts for fuel cell applications / Shaofang Fu, Junhua Song, Chengzhou Zhu, Dan Du, and Yuehe Lin -- Diamond electrodes for the electrogenerated chemiluminescence / Andrea Fiorani, Irkham, Giovanni Valenti, Yasuaki Einaga, Francesco Paolucci -- Decoration of advanced carbon materials with metal oxides for photoelectrochemical applications / Ya-nan Zhang, Huijie Shi, Yuqing Chen, Rongrong Cui, and Guohua Zhao.
Record Nr. UNINA-9910554866403321
Yang Nianjun  
Hoboken, NJ : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanocarbon electrochemistry / / edited by Nianjun Yang, Guohua Zhao, John S. Foord
Nanocarbon electrochemistry / / edited by Nianjun Yang, Guohua Zhao, John S. Foord
Autore Yang Nianjun
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2020
Descrizione fisica 1 online resource (384 pages)
Disciplina 543.40284
Soggetto topico Electrodes, Carbon
Nanostructured materials - Electric properties
ISBN 1-119-46829-9
1-5231-3733-9
1-119-46828-0
1-119-46830-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nanoelectrochemistry of adsorption-coupled electron transfer at carbon electrodes / Shigeru Amemiya -- The capacitance of graphene : from model systems to large-scale devices / Pawin Iamprasertkun and Robert A.W. Dryfe -- Graphene and related materials as anode materials in li ion batteries : science and practicality / Sandeep Kumar Marka, Veera Venkata Harish Peruswamula and Venkata Satya Siva Srikanth Vadali -- Nanocarbon materials towards textile-based electrochemical energy storage devices / Qiyao Huang, Dongrui Wang, Zijian Zheng -- 1D and 2D flexible carbon matrix materials for lithium-sulfur batteries / Tianyi Wang, Yushu Liu, Dawei Su, Guoxiu Wang -- Conductive diamond for electrochemical energy applications / Siyu Yu, Nianjun Yang, Xin Jiang, Wenjun Zhang, and Shetian Liu -- Electrocatalysis at nanocarbons : model systems and applications in energy conversion / James A. Behan, Carlota Domínguez, Paula E. Colavita -- Metal-organic frameworks based porous carbons for oxygen reduction reaction electrocatalysts for fuel cell applications / Shaofang Fu, Junhua Song, Chengzhou Zhu, Dan Du, and Yuehe Lin -- Diamond electrodes for the electrogenerated chemiluminescence / Andrea Fiorani, Irkham, Giovanni Valenti, Yasuaki Einaga, Francesco Paolucci -- Decoration of advanced carbon materials with metal oxides for photoelectrochemical applications / Ya-nan Zhang, Huijie Shi, Yuqing Chen, Rongrong Cui, and Guohua Zhao.
Record Nr. UNINA-9910813308703321
Yang Nianjun  
Hoboken, NJ : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanocarbons for electroanalysis / / edited by Sabine Szunerits [and three others]
Nanocarbons for electroanalysis / / edited by Sabine Szunerits [and three others]
Pubbl/distr/stampa Chichester, West Sussex, England : , : Wiley, , 2017
Descrizione fisica 1 online resource (299 pages) : illustrations (some color)
Disciplina 543.40284
Soggetto topico Electrodes, Carbon
Electrochemical analysis
Nanostructured materials - Electric properties
ISBN 1-119-24394-7
1-119-24395-5
1-119-24391-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270862103321
Chichester, West Sussex, England : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanocarbons for electroanalysis / / edited by Sabine Szunerits [and three others]
Nanocarbons for electroanalysis / / edited by Sabine Szunerits [and three others]
Pubbl/distr/stampa Chichester, West Sussex, England : , : Wiley, , 2017
Descrizione fisica 1 online resource (299 pages) : illustrations (some color)
Disciplina 543.40284
Soggetto topico Electrodes, Carbon
Electrochemical analysis
Nanostructured materials - Electric properties
ISBN 1-119-24394-7
1-119-24395-5
1-119-24391-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910820330803321
Chichester, West Sussex, England : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical and electrical properties of nanoscale materials / / Alain Diebold, Tino Hofmann
Optical and electrical properties of nanoscale materials / / Alain Diebold, Tino Hofmann
Autore Diebold Alain
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (495 pages)
Disciplina 620.115
Collana Springer Series in Materials Science
Soggetto topico Nanostructured materials - Optical properties
Nanostructured materials - Electric properties
ISBN 3-030-80323-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910520058603321
Diebold Alain  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spin-crossover materials [[electronic resource] ] : properties and applications / / edited by Malcolm A. Halcrow
Spin-crossover materials [[electronic resource] ] : properties and applications / / edited by Malcolm A. Halcrow
Pubbl/distr/stampa Chichester, : J. Wiley and Sons, Inc., 2013
Descrizione fisica 1 online resource (574 p.)
Disciplina 621.381
Altri autori (Persone) HalcrowMalcolm A
Soggetto topico Spintronics - Materials
Nanostructured materials - Electric properties
Nanostructured materials - Magnetic properties
Electron paramagnetic resonance
ISBN 1-118-51930-2
1-299-18864-8
1-118-51932-9
1-118-51931-0
Classificazione SCI013030
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: List of Contributors xv Preface xvii 1 The Development of Spin-Crossover Research 1 Keith S. Murray 1.1 Introduction 1 1.2 Discrete Clusters of SCO Compounds 4 1.3 1D Chains of FeII SCO Materials 22 1.4 1D Chains of FeIII SCO Materials 28 1.5 2D Sheets of FeII SCO Materials 29 1.6 3D Porous SCO Materials 30 1.7 Some Recent Developments in Mononuclear SCO FeII, FeIII and CoII Compounds 33 1.8 Multifunctional/Hybrid SCO Materials 37 1.9 Developments in Instrumental Methods in Spin-Crossover Measurements 40 1.10 Applications of Molecular Spin-Crossover Compounds 41 1.11 Summary 42 2 Novel Mononuclear Spin-Crossover Complexes 55 Birgit Weber 2.1 Introduction and General Considerations 55 2.2 Novel Coordination Numbers (CN), Coordination Geometries and Metal Centres 57 2.3 Iron Complexes with Novel Ligand Donor Atoms and New Ligand Systems 65 2.4 Other Examples 70 2.5 Conclusion and Outlook 72 3 Spin-Crossover in Discrete Polynuclear Complexes 77 Juan Olguin and Sally Brooker 3.1 Introduction 77 3.2 Dinuclear Iron(II) Complexes 79 3.3 Higher Nuclearity Iron(II) Compounds 98 3.4 Iron(III) 104 3.5 Cobalt(II) 109 3.6 Dinuclear Chromium(II) Complex 111 3.7 Concluding Remarks 112 4 Polymeric Spin-Crossover Materials 121 M. Carmen Munoz and Jose Antonio Real 4.1 Introduction 121 4.2 One-Dimensional SCO-CPs 121 4.3 Two-d = Dimensional SCO-CPs 128 4.4 Three-Dimensional SCO-CPs 133 4.5 Conclusion 138 5 Structure:Function Relationships in Molecular Spin-Crossover Materials 147 Malcolm A. Halcrow 5.1 Introduction 147 5.2 Molecular Shape 150 5.3 Crystal Packing 155 5.4 Cooperativity Mediated by Disorder 158 5.5 Compounds Showing Wide Thermal Hysteresis 158 5.6 Other Noteworthy Compounds 162 5.7 Conclusions 164 6 Charge Transfer-Induced Spin-Transitions in Cyanometallate Materials 171 Kim R. Dunbar, Catalina Achim and Michael Shatruk 6.1 Introduction 171 6.2 Characterization of CTIST Compounds 173 6.3 CTIST in Coordination Polymers 174 6.4 CTIST in Nanoscale Materials 189 6.5 CTIST in Polynuclear Transition Metal Complexes 195 6.6 Summary and Outlook 198 7 Valence Tautomeric Transitions in Cobalt-dioxolene Complexes 203 Colette Boskovic 7.1 Introduction 203 7.2 Induction of Valence Tautomeric Transitions 205 7.3 Other Factors that Contribute to the Valence Tautomeric Transition 210 7.4 Polynuclear Valence Tautomeric Complexes 214 7.5 Bifunctional Valence Tautomeric Complexes 218 7.6 Concluding Remarks 220 8 Reversible Spin Pairing in Crystalline Organic Radicals 225 Jeremy M. Rawson and John J. Hayward 8.1 Introduction 225 8.2 Radical Pairs: Solution and Gas Phase Studies 226 8.3 Dimerisation in the Solid State 229 8.4 Summary and Future Perspectives 234 9 Breathing Crystals from Copper Nitroxyl Complexes 239 Victor Ovcharenko and Elena Bagryanskaya 9.1 Introduction 239 9.2 Structural and Magnetic Anomalies 241 9.3 Relationship Between the Chemical Step and the Physical Property 245 9.4 Relationship Between the Thermally Induced Reorientation of Aromatic Solvate Molecules and the Character of the Magnetic Anomaly 251 9.5 EPR Study of Breathing Crystals 255 9.6 Classification of Spin-Transitions in Breathing Crystals and Correlations with Magnetic Susceptibility 261 9.7 The Detailed Magnetic Structure of Breathing Crystals 266 9.8 EPR-detected LIESST on Breathing Crystals 272 9.9 Conclusion 275 10 Spin-State Switching in Solution 281 Matthew P. Shores, Christina M. Klug and Stephanie R. Fiedler 10.1 Introduction and Scope 281 10.2 Spin-Crossover: Solid State Versus Solution 282 10.3 Practical Considerations 283 10.4 Spin-Crossover in Solution 285 10.5 Ligation Changes Driving Spin-State Switching in Solution 288 10.6 Second Coordination Sphere Triggers for Spin-State Switching 291 10.7 Challenges and Opportunities 294 10.8 Conclusions/Outlook 295 11 Multifunctional Materials Combining Spin-Crossover with Conductivity and Magnetic Ordering 303 Osamu Sato, Zhao-Yang Li, Zi-Shuo Yao, Soonchul Kang and Shinji Kanegawa 11.1 Introduction 303 11.2 Spin-Crossover and Conductivity: Spin-Crossover Conductors 303 11.3 Spin-Crossover and Magnetic Interaction: Spin-Crossover Magnets 308 12 Amphiphilic and Liquid Crystalline Spin-Crossover Complexes 321 Shinya Hayami 12.1 Introduction 321 12.2 Unique Magnetic Properties of SCO Cobalt(II) Compounds with Long Alkyl Chains 322 12.3 Liquid Crystalline SCO Compounds 325 12.4 Langmuir-Blodgett Films and Amphiphilic SCO Compounds 331 12.5 Conclusion and Outlook 339 13 Luminescent Spin-Crossover Materials 347 Helena J. Shepherd, Carlos M. Quintero, G℗þabor Molnar, Lionel Salmon and Azzedine Bousseksou 13.1 General Introduction 347 13.2 Introduction to Luminescent Materials and Luminescence Energy Transfer 348 13.3 Electronic Transitions and Optical Properties of Spin-Crossover Complexes 358 13.4 Materials with Combined Spin-Crossover and Luminescent Functionalities 361 13.5 Concluding Remarks 371 14 Nanoparticles, Thin Films and Surface Patterns from Spin-Crossover Materials and Electrical Spin State Control 375 Paulo Nuno Martinho, Cyril Rajnak and Mario Ruben 14.1 Introduction 375 14.2 Nanoparticles and Nanocrystals 376 14.3 Thin Films 387 14.4 Surface Patterns 393 14.5 Electrical Spin State Control 396 14.6 Conclusion 399 15 Ultrafast Studies of the Light-Induced Spin Change in Fe(II)-Polypyridine Complexes 405 Majed Chergui 15.1 Introduction 405 15.2 Properties of Fe(II) Complexes 406 15.3 From the Singlet to the Quintet State 408 15.4 Ultrafast X-Ray Studies 415 15.5 Summary and Outlook 417 16 Real-Time Observation of Spin-Transitions by Optical Microscopy 425 Francois Varret, Ahmed Slimani, Damien Garrot, Yann Garcia and Anil D. Naik 16.1 Introduction 425 16.2 Experimental Aspects 426 16.3 Selected Investigations 429 16.4 Conclusions and Prospects 439 17 Theoretical Prediction of Spin-Crossover at the Molecular Level 443 Robert J. Deeth, Christopher M. Handley and Benjamin J. Houghton 17.1 Introduction 443 17.2 Beginnings: Valence Bond and Ligand Field Theories 443 17.3 Quantum Chemistry 446 17.4 Empirical Methods 449 17.5 Conclusions 452 18 Theoretical Descriptions of Spin-Transitions in Bulk Lattices 455 Cristian, Enachescu, Masamichi Nishino and Seiji Miyashita 18.1 Introduction 455 18.2 Elastic Interaction Models for Spin-Crossover Systems 457 18.3 Mechano-Elastic Model 463 18.4 Conclusions 471 19 Optimizing the Stability of Trapped Metastable Spin States 475 Jean-Francois Letard, Guillaume Chastanet, Philippe Guionneau and Cedric Desplanches 19.1 Introduction 475 19.2 Light-Induced Excited Spin-State Trapping (LIESST) Effect 476 19.3 The T(LIESST) Approach: The Case of Mononuclear Compounds 479 19.4 The T(LIESST) Approach: An Extension to Polynuclear Iron(II) Complexes 487 19.5 Simulation and Extrapolation of a T(LIESST) Experiment 495 19.6 Conclusions 500 20 Piezo- and Photo-Crystallography Applied to Spin-Crossover Materials 507 Philippe Guionneau and Eric Collet 20.1 Introduction 507 20.2 Spin-Crossover and Piezo-Crystallography 507 20.3 Crystallography of Photoexcited SCO Materials 512 21 Spin-Transitions in Metal Oxides 527 Jean-Pascal RUEFF 21.1 Introduction 527 21.2 RIXS: A Probe of the 3d Electronic Properties 530 21.3 Experimental Results 533 21.4 Conclusions and Perspectives 538 References 540 Index.
Record Nr. UNINA-9910141486803321
Chichester, : J. Wiley and Sons, Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui