top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Methods for Large Systems : Electronic Structure Approaches for Biotechnology and Nanotechnology
Computational Methods for Large Systems : Electronic Structure Approaches for Biotechnology and Nanotechnology
Autore Reimers Jeffrey R
Pubbl/distr/stampa Hoboken, : Wiley, 2011
Descrizione fisica 1 online resource (683 p.)
Disciplina 620.50285
620/.50285
Soggetto topico Nanostructured materials - Computer simulation
Nanotechnology - Data processing
Biotechnology - Data processing
Electronics - Materials - Computer simulation
ISBN 1-283-20364-2
9786613203649
0-470-93077-2
0-470-93076-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto COMPUTATIONAL METHODS FOR LARGE SYSTEMS; Contents; Contributors; Preface: Choosing the Right Method for Your Problem; A DFT: THE BASIC WORKHORSE; 1 Principles of Density Functional Theory: Equilibrium and Nonequilibrium Applications; 1.1 Equilibrium Theories; 1.2 Local Approximations; 1.3 Kohn-Sham Formulation; 1.4 Why DFT Is So Successful; 1.5 Exact Properties of DFTs; 1.6 Time-Dependent DFT; 1.7 TDDFT and Transport Calculations; 1.8 Modeling Reservoirs In and Out of Equilibrium; 2 SIESTA: A Linear-Scaling Method for Density Functional Calculations; 2.1 Introduction; 2.2 Methodology
2.3 Future Perspectives3 Large-Scale Plane-Wave-Based Density Functional Theory: Formalism, Parallelization, and Applications; 3.1 Introduction; 3.2 Plane-Wave Basis Set; 3.3 Pseudopotential Plane-Wave Method; 3.4 Charged Systems; 3.5 Exact Exchange; 3.6 Wavefunction Optimization for Plane-Wave Methods; 3.7 Car-Parrinello Molecular Dynamics; 3.8 Parallelization; 3.9 AIMD Simulations of Highly Charged Ions in Solution; 3.10 Conclusions; B HIGHER-ACCURACY METHODS
4 Quantum Monte Carlo, Or, Solving the Many-Particle Schrödinger Equation Accurately While Retaining Favorable Scaling with System Size4.1 Introduction; 4.2 Variational Monte Carlo; 4.3 Wavefunctions and Their Optimization; 4.4 Diffusion Monte Carlo; 4.5 Bits and Pieces; 4.6 Applications; 4.7 Conclusions; 5 Coupled-Cluster Calculations for Large Molecular and Extended Systems; 5.1 Introduction; 5.2 Theory; 5.3 General Structure of Parallel Coupled-Cluster Codes; 5.4 Large-Scale Coupled-Cluster Calculations; 5.5 Conclusions
6 Strongly Correlated Electrons: Renormalized Band Structure Theory and Quantum Chemical Methods6.1 Introduction; 6.2 Measure of the Strength of Electron Correlations; 6.3 Renormalized Band Structure Theory; 6.4 Quantum Chemical Methods; 6.5 Conclusions; C MORE-ECONOMICAL METHODS; 7 The Energy-Based Fragmentation Approach for Ab Initio Calculations of Large Systems; 7.1 Introduction; 7.2 The Energy-Based Fragmentation Approach and Its Generalized Version; 7.3 Results and Discussion; 7.4 Conclusions; 7.5 Appendix: Illustrative Example of the GEBF Procedure
8 MNDO-like Semiempirical Molecular Orbital Theory and Its Application to Large Systems8.1 Basic Theory; 8.2 Parameterization; 8.3 Natural History or Evolution of MNDO-like Methods; 8.4 Large Systems; 9 Self-Consistent-Charge Density Functional Tight-Binding Method: An Efficient Approximation of Density Functional Theory; 9.1 Introduction; 9.2 Theory; 9.3 Performance of Standard SCC-DFTB; 9.4 Extensions of Standard SCC-DFTB; 9.5 Conclusions; 10 Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry; 10.1 Brief Introduction to Second Quantization Notation
10.2 Hückel or Tight-Binding Model
Record Nr. UNINA-9910139627103321
Reimers Jeffrey R  
Hoboken, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods for Large Systems : Electronic Structure Approaches for Biotechnology and Nanotechnology
Computational Methods for Large Systems : Electronic Structure Approaches for Biotechnology and Nanotechnology
Autore Reimers Jeffrey R
Pubbl/distr/stampa Hoboken, : Wiley, 2011
Descrizione fisica 1 online resource (683 p.)
Disciplina 620.50285
620/.50285
Soggetto topico Nanostructured materials - Computer simulation
Nanotechnology - Data processing
Biotechnology - Data processing
Electronics - Materials - Computer simulation
ISBN 1-283-20364-2
9786613203649
0-470-93077-2
0-470-93076-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto COMPUTATIONAL METHODS FOR LARGE SYSTEMS; Contents; Contributors; Preface: Choosing the Right Method for Your Problem; A DFT: THE BASIC WORKHORSE; 1 Principles of Density Functional Theory: Equilibrium and Nonequilibrium Applications; 1.1 Equilibrium Theories; 1.2 Local Approximations; 1.3 Kohn-Sham Formulation; 1.4 Why DFT Is So Successful; 1.5 Exact Properties of DFTs; 1.6 Time-Dependent DFT; 1.7 TDDFT and Transport Calculations; 1.8 Modeling Reservoirs In and Out of Equilibrium; 2 SIESTA: A Linear-Scaling Method for Density Functional Calculations; 2.1 Introduction; 2.2 Methodology
2.3 Future Perspectives3 Large-Scale Plane-Wave-Based Density Functional Theory: Formalism, Parallelization, and Applications; 3.1 Introduction; 3.2 Plane-Wave Basis Set; 3.3 Pseudopotential Plane-Wave Method; 3.4 Charged Systems; 3.5 Exact Exchange; 3.6 Wavefunction Optimization for Plane-Wave Methods; 3.7 Car-Parrinello Molecular Dynamics; 3.8 Parallelization; 3.9 AIMD Simulations of Highly Charged Ions in Solution; 3.10 Conclusions; B HIGHER-ACCURACY METHODS
4 Quantum Monte Carlo, Or, Solving the Many-Particle Schrödinger Equation Accurately While Retaining Favorable Scaling with System Size4.1 Introduction; 4.2 Variational Monte Carlo; 4.3 Wavefunctions and Their Optimization; 4.4 Diffusion Monte Carlo; 4.5 Bits and Pieces; 4.6 Applications; 4.7 Conclusions; 5 Coupled-Cluster Calculations for Large Molecular and Extended Systems; 5.1 Introduction; 5.2 Theory; 5.3 General Structure of Parallel Coupled-Cluster Codes; 5.4 Large-Scale Coupled-Cluster Calculations; 5.5 Conclusions
6 Strongly Correlated Electrons: Renormalized Band Structure Theory and Quantum Chemical Methods6.1 Introduction; 6.2 Measure of the Strength of Electron Correlations; 6.3 Renormalized Band Structure Theory; 6.4 Quantum Chemical Methods; 6.5 Conclusions; C MORE-ECONOMICAL METHODS; 7 The Energy-Based Fragmentation Approach for Ab Initio Calculations of Large Systems; 7.1 Introduction; 7.2 The Energy-Based Fragmentation Approach and Its Generalized Version; 7.3 Results and Discussion; 7.4 Conclusions; 7.5 Appendix: Illustrative Example of the GEBF Procedure
8 MNDO-like Semiempirical Molecular Orbital Theory and Its Application to Large Systems8.1 Basic Theory; 8.2 Parameterization; 8.3 Natural History or Evolution of MNDO-like Methods; 8.4 Large Systems; 9 Self-Consistent-Charge Density Functional Tight-Binding Method: An Efficient Approximation of Density Functional Theory; 9.1 Introduction; 9.2 Theory; 9.3 Performance of Standard SCC-DFTB; 9.4 Extensions of Standard SCC-DFTB; 9.5 Conclusions; 10 Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry; 10.1 Brief Introduction to Second Quantization Notation
10.2 Hückel or Tight-Binding Model
Record Nr. UNINA-9910818358603321
Reimers Jeffrey R  
Hoboken, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Autore Tu K. N (King-Ning), <1937->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (308 p.)
Disciplina 620.1/1599
Soggetto topico Nanostructured materials
Chemical kinetics
Nanostructured materials - Analysis
Nanostructured materials - Computer simulation
ISBN 1-118-74283-4
1-118-74314-8
1-118-74287-7
Classificazione TEC021000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to kinetics in nanoscale materials -- 1.1 Introduction -- 1.2 Nanosphere: Surface energy equivalent to the Gibbs-Thomson potential -- 1.3 Nanosphere: Lower melting point -- 1.4 Nanosphere: Effect on homogeneous nucleation and phase diagram -- 1.5 Nanosphere: The Kirkendall effect and instability of hollow nanospheres -- 1.6 Nanosphere: The inverse Kirkendall effect in hollow alloy nanospheres -- 1.7 Nanosphere: Combining the Kirkendall effect and inverse Kirkendall effect on concentric bi-layer hollow nanospheres -- 1.8 Nanopore: Instability of a nanodonut hole in a membrane -- 1.9 Nanowire: Point contact reactions between metal and silicon nanowires -- 1.10 Nanowire: Nano gap in silicon nanowires -- 1.11 Nanowire: Lithiation in silicon nanowires -- 1.12 Nanowire: Point contact reactions between metallic nanowires -- 1.13 Nano-thin film: Explosive reaction in periodic multi-layered nano-thin films -- 1.14 Nano-microstructure in bulk sample: Nanotwins in Cu -- 1.15 Nano-microstructure on the surface of a bulk sample : surface mechanical attrition treatment (SMAT) of steel -- Chapter 2. Linear and Non-linear Diffusion -- 2.1 Introduction -- 2.2 Linear diffusion -- 2.3 Non-linear diffusion -- 2.3.1 Non-linear effect due to kinetic consideration -- Chapter 3. Kirkendall effect and inverse Kirkendall effect -- 3.1 Introduction -- 3.2 Kirkendall effect -- 3.3 Inverse Kirkendall effect -- Chapter 4. Ripening among nano precipitates -- 4.1 Introduction -- 4.2 Ham's model of growth of a large spherical precipitate -- 4.3 Mean field consideration -- 4.4 Gibbs-Thomson potential -- 4.5 Growth and dissolution of a spherical nano precipitate in a mean field -- 4.6 LSW Theory of kinetics of particle ripening -- 4.7 Continuity equation in size space -- 4.8 Size distribution function in conservative ripening -- Chapter 5. Spinodal decomposition -- 5.1 Introduction -- 5.2 Implication of diffusion equation in homogenization and in decomposition -- 5.3 Spinodal decompostion -- Chapter 6. Nucleation events in bulk materials, thin films, and nano-wires -- 6.1 Introduction -- 6.2 Thermodynamics and kinetics of nucleation -- 6.3 Heterogeneous nucleation in grain boundaries of bulk materials -- 6.4 No homogeneous nucleation in epitaxial growth of Si thin film on Si wafer -- Chapter 7. Contact reactions on Si; plane, line, and point contact reactions -- 7.1 Introduction -- 7.2 Bulk cases -- 7.3 Thin film cases -- 7.4 Nanowire cases -- Chapter 8. Grain growth in micro and nano scale -- 8.1 Introduction -- 8.2 Computer simulation to generate a 2D polycrystalline microstructure -- 8.3 Computer simulation of grain growth -- 8.4 Statistical distribution functions of grain size -- 8.5 Deterministic approach to grain growth modeling -- 8.6 Coupling between grain growth of a central grain and the rest of grains 8.7 Decoupling the grain growth of a central grain from the rest of grains in the normalized size space -- 8.8 Grain growth in 2D case in the normalized size space -- 8.9 Grain rotation of nano-grains -- Chapter 9. Self-sustained reactions in nanoscale multi-layered thin films -- 9.1 Introduction -- 9.2 The selection of a pair of metallic thin films for self-sustained reaction -- 9.3 A simple model of single-phase growth in self-sustained reaction -- 9.4 Estimate of flame velocity in steady state heat transfer -- 9.5 Comparison between reactions by annealing and by explosive reaction in Al/Ni -- 9.6 Self-explosive silicidation reactions -- Chapter 10. Formation and transformations of nano-twins in copper -- 10.1 Introduction -- 10.2 Formation of nano-twins in Cu -- 10.2.1 First principle calculation of energy of formation of nano-twins -- 10.3 Formation and transformation of oriented nano-twins in Cu -- 10.4 Potential applications of nano-twinned Cu References -- Appendix A: Laplace pressure of nano-cubic particles -- Appendix B: Derivation of interdiffusion coefficient as CMG -- Appendix C: Non-equilibrium vacancies -- Appendix D: Interaction between Kirkendall effect and Gibbs-Thomson effect in the formation of a spherical compound nanoshell.
Record Nr. UNINA-9910132334703321
Tu K. N (King-Ning), <1937->  
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Autore Tu K. N (King-Ning), <1937->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (308 p.)
Disciplina 620.1/1599
Soggetto topico Nanostructured materials
Chemical kinetics
Nanostructured materials - Analysis
Nanostructured materials - Computer simulation
ISBN 1-118-74283-4
1-118-74314-8
1-118-74287-7
Classificazione TEC021000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to kinetics in nanoscale materials -- 1.1 Introduction -- 1.2 Nanosphere: Surface energy equivalent to the Gibbs-Thomson potential -- 1.3 Nanosphere: Lower melting point -- 1.4 Nanosphere: Effect on homogeneous nucleation and phase diagram -- 1.5 Nanosphere: The Kirkendall effect and instability of hollow nanospheres -- 1.6 Nanosphere: The inverse Kirkendall effect in hollow alloy nanospheres -- 1.7 Nanosphere: Combining the Kirkendall effect and inverse Kirkendall effect on concentric bi-layer hollow nanospheres -- 1.8 Nanopore: Instability of a nanodonut hole in a membrane -- 1.9 Nanowire: Point contact reactions between metal and silicon nanowires -- 1.10 Nanowire: Nano gap in silicon nanowires -- 1.11 Nanowire: Lithiation in silicon nanowires -- 1.12 Nanowire: Point contact reactions between metallic nanowires -- 1.13 Nano-thin film: Explosive reaction in periodic multi-layered nano-thin films -- 1.14 Nano-microstructure in bulk sample: Nanotwins in Cu -- 1.15 Nano-microstructure on the surface of a bulk sample : surface mechanical attrition treatment (SMAT) of steel -- Chapter 2. Linear and Non-linear Diffusion -- 2.1 Introduction -- 2.2 Linear diffusion -- 2.3 Non-linear diffusion -- 2.3.1 Non-linear effect due to kinetic consideration -- Chapter 3. Kirkendall effect and inverse Kirkendall effect -- 3.1 Introduction -- 3.2 Kirkendall effect -- 3.3 Inverse Kirkendall effect -- Chapter 4. Ripening among nano precipitates -- 4.1 Introduction -- 4.2 Ham's model of growth of a large spherical precipitate -- 4.3 Mean field consideration -- 4.4 Gibbs-Thomson potential -- 4.5 Growth and dissolution of a spherical nano precipitate in a mean field -- 4.6 LSW Theory of kinetics of particle ripening -- 4.7 Continuity equation in size space -- 4.8 Size distribution function in conservative ripening -- Chapter 5. Spinodal decomposition -- 5.1 Introduction -- 5.2 Implication of diffusion equation in homogenization and in decomposition -- 5.3 Spinodal decompostion -- Chapter 6. Nucleation events in bulk materials, thin films, and nano-wires -- 6.1 Introduction -- 6.2 Thermodynamics and kinetics of nucleation -- 6.3 Heterogeneous nucleation in grain boundaries of bulk materials -- 6.4 No homogeneous nucleation in epitaxial growth of Si thin film on Si wafer -- Chapter 7. Contact reactions on Si; plane, line, and point contact reactions -- 7.1 Introduction -- 7.2 Bulk cases -- 7.3 Thin film cases -- 7.4 Nanowire cases -- Chapter 8. Grain growth in micro and nano scale -- 8.1 Introduction -- 8.2 Computer simulation to generate a 2D polycrystalline microstructure -- 8.3 Computer simulation of grain growth -- 8.4 Statistical distribution functions of grain size -- 8.5 Deterministic approach to grain growth modeling -- 8.6 Coupling between grain growth of a central grain and the rest of grains 8.7 Decoupling the grain growth of a central grain from the rest of grains in the normalized size space -- 8.8 Grain growth in 2D case in the normalized size space -- 8.9 Grain rotation of nano-grains -- Chapter 9. Self-sustained reactions in nanoscale multi-layered thin films -- 9.1 Introduction -- 9.2 The selection of a pair of metallic thin films for self-sustained reaction -- 9.3 A simple model of single-phase growth in self-sustained reaction -- 9.4 Estimate of flame velocity in steady state heat transfer -- 9.5 Comparison between reactions by annealing and by explosive reaction in Al/Ni -- 9.6 Self-explosive silicidation reactions -- Chapter 10. Formation and transformations of nano-twins in copper -- 10.1 Introduction -- 10.2 Formation of nano-twins in Cu -- 10.2.1 First principle calculation of energy of formation of nano-twins -- 10.3 Formation and transformation of oriented nano-twins in Cu -- 10.4 Potential applications of nano-twinned Cu References -- Appendix A: Laplace pressure of nano-cubic particles -- Appendix B: Derivation of interdiffusion coefficient as CMG -- Appendix C: Non-equilibrium vacancies -- Appendix D: Interaction between Kirkendall effect and Gibbs-Thomson effect in the formation of a spherical compound nanoshell.
Record Nr. UNINA-9910823862103321
Tu K. N (King-Ning), <1937->  
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling and simulation in the science of micro- and meso-porous materials / / edited by C. Richard A. Catlow, Veronique Van Speybroeck, Rutger A. van Santen
Modelling and simulation in the science of micro- and meso-porous materials / / edited by C. Richard A. Catlow, Veronique Van Speybroeck, Rutger A. van Santen
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2018
Descrizione fisica 1 online resource (341 pages) : illustrations
Disciplina 620.116
Soggetto topico Porous materials - Computer simulation
Microstructure - Computer simulation
Nanostructured materials - Computer simulation
ISBN 0-12-805058-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Structure prediction of microporous materials / Robert G. Bell -- Molecular dynamics of hydrocarbons in zeolites: historical perspective and current developments / German Sastre -- Modeling of diffusion in MOFs / Naseem A. Ramsahye, Guillaume Maurin.
Record Nr. UNINA-9910583400103321
Amsterdam, Netherlands : , : Elsevier, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui