top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced nanomaterials for catalysis and energy : synthesis, characterization and applications / / edited by Vladislav A. Sadykov
Advanced nanomaterials for catalysis and energy : synthesis, characterization and applications / / edited by Vladislav A. Sadykov
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2019]
Descrizione fisica 1 online resource (783 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Analysis
ISBN 0-12-814808-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Synthesis of Nano-Catalysts in Flow Conditions Using Millimixers / Changdong Li, Maoshuai Li, Andre C. van Veen -- Influence of Hydrodynamics on Wet Syntheses of Nanomaterials / Nicholas Jose, Alexei Lapkin -- Advanced Size-Selected Catalysts Prepared by Laser Electrodispersion / Tatiana N. Rostovshchikova, Ekaterina S. Lokteva, Elena V. Golubina, Konstantin I. Maslakov, Sergey A Gurevich, Denis A. Yavsin, Vladimir M. Kozhevin -- Ruthenium Nanomaterials: An Overview of Recent Developments in Colloidal Synthesis, Properties, and Potential Applications / Irina L. Simakova, Dmitry Yu. Murzin -- Ag-Containing Nanomaterials in Heterogeneous Catalysis: Advances and Recent Trends / Olga V. Vodyankina, Grigory V. Mamontov, Valery V. Dutov, Tamara S. Kharlamova, Mikhail A. Salaev -- How Does the Surface Structure of Ni-Fe Nanoalloys Control Carbon Formation During Methane Steam/Dry Reforming? / Stavros Alexandros Theofanidis, Hilde Poelman, Guy B. Marin, Vladimir V. Galvita -- Recent Applications of Nanometal Oxide Catalysts in Oxidation Reactions / V. Cortés Corberán, V. Rives, V. Stathopoulos -- Particle-Size Effect in Catalytic Oxidation Over Pt Nanoparticles / Alexandr Yu. Stakheev, Dmitry A. Bokarev, Igor P. Prosvirin, Valerii I. Bukhtiyarov -- Novel Zeolite Catalysts for Methanol to Hydrocarbon Transformation / Evgeny Rebrov, Guannan Hu -- Semiconductor Photocatalysts Based on Nanostructured Cd12xZnxS Solid Solutions in the Reaction of Hydrogen Evolution From Aqueous Solutions of Inorganic Electron Donors Under Visible Light / Ekaterina A. Kozlova, Valentin N. Parmon -- Nanocomposite Alkali-Ion Solid Electrolytes / Nikolai F. Uvarov, Artem S. Ulihin, Yulia G. Mateyshina -- Advanced Materials for Solid Oxide Fuel Cells and Membrane Catalytic Reactors / Vladislav A. Sadykov, Natalia V. Mezentseva, Lyudmila N. Bobrova, Oleg L. Smorygo, Nikita F. Eremeev, Yulia E. Fedorova, Yulia N. Bespalko, Pavel I. Skriabin, Alexey V. Krasnov, Anton I. Lukashevich, Tamara A. Krieger, Ekaterina M. Sadovskaya, Vladimir D. Belyaev, Alexander N. Schmakov, Zakhar S. Vinokurov, Vladimir A. Bolotov, Yuri Yu. Tanashev, Mikhail V. Korobeynikov, Mikhail A. Mikhailendo -- Mixed Ionic-Electronic Conducting Perovskites as Nanostructured Ferroelastics / Irina V. Belenkaya, Olga A. Bragina, Alexander P. Nemudry.
Record Nr. UNINA-9910583472803321
Amsterdam : , : Elsevier, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon-based metal-free catalysts : design and applications / / edited by Liming Dai
Carbon-based metal-free catalysts : design and applications / / edited by Liming Dai
Autore Dai Liming
Edizione [1st edition]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (857 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Analysis
Soggetto genere / forma Electronic books.
ISBN 3-527-81142-7
3-527-81143-5
3-527-81145-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555054003321
Dai Liming  
Newark : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon-based metal-free catalysts : design and applications / / edited by Liming Dai
Carbon-based metal-free catalysts : design and applications / / edited by Liming Dai
Autore Dai Liming
Edizione [1st edition]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (857 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Analysis
ISBN 3-527-81142-7
3-527-81143-5
3-527-81145-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910831093103321
Dai Liming  
Newark : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Construction of highly ordered nanomaterials composed of protein containers and plasmonic nanoparticles / / Marcel Josef Lach
Construction of highly ordered nanomaterials composed of protein containers and plasmonic nanoparticles / / Marcel Josef Lach
Autore Lach Marcel Josef
Pubbl/distr/stampa Göttingen : , : Cuvillier Verlag, , [2020]
Descrizione fisica 1 online resource (290 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Analysis
ISBN 3-7369-6296-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794214603321
Lach Marcel Josef  
Göttingen : , : Cuvillier Verlag, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Construction of highly ordered nanomaterials composed of protein containers and plasmonic nanoparticles / / Marcel Josef Lach
Construction of highly ordered nanomaterials composed of protein containers and plasmonic nanoparticles / / Marcel Josef Lach
Autore Lach Marcel Josef
Pubbl/distr/stampa Göttingen : , : Cuvillier Verlag, , [2020]
Descrizione fisica 1 online resource (290 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials - Analysis
ISBN 3-7369-6296-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910825619303321
Lach Marcel Josef  
Göttingen : , : Cuvillier Verlag, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging nanotechnologies in nanocellulose / / Liangbing Hu, Feng Jiang, and Chaoji Chen
Emerging nanotechnologies in nanocellulose / / Liangbing Hu, Feng Jiang, and Chaoji Chen
Autore Hu Liangbing
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (425 pages)
Disciplina 620.115
Collana Nanoscience and Technology
Soggetto topico Nanostructured materials
Nanostructured materials - Analysis
ISBN 3-031-14043-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910624306103321
Hu Liangbing  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphdiyne : fundamentals and applications in renewable energy and electronics / / Yuliang Li
Graphdiyne : fundamentals and applications in renewable energy and electronics / / Yuliang Li
Autore Li Yuliang
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (395 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials
Nanostructured materials - Analysis
Soggetto genere / forma Electronic books.
ISBN 3-527-82847-8
3-527-82848-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 The Development of Carbon Materials -- 1.2 Models and Nomenclature -- 1.3 Brief Introduction of Graphdiyne -- References -- Chapter 2 Basic Structure and Band Gap Engineering: Theoretical Study of GDYs -- 2.1 Structures -- 2.1.1 Theoretical Prediction and Classification -- 2.1.2 Geometric Structures of GDYs -- 2.2 Electronic Structures -- 2.2.1 Dirac Cones in α‐, β‐, and 6,6,12‐Graphynes -- 2.2.2 Semiconductor Properties of γ‐Graphynes -- 2.2.3 Electronic Structures Comparison of GDYs -- 2.2.4 Structure and Size‐Based Electronic Properties -- 2.2.5 Strain‐Dependent Electronic Properties -- 2.3 Mechanical Properties -- 2.3.1 Mechanical Properties of GDYs -- 2.3.2 Mechanical Properties of γ‐Graphyne -- 2.3.3 Mechanical Properties of γ‐Graphdiyne -- 2.3.4 Mechanical Properties of γ‐Graphynes Family -- 2.3.5 The Influence Factors on the Mechanical Properties of GDYs -- 2.4 Layers Structure of Bulk GDYs -- 2.4.1 Stacking Modes for Bilayer α‐Graphyne -- 2.4.2 Stacking Modes for Bilayer γ‐Graphyne -- 2.4.3 Stacking Modes for Bilayer γ‐Graphdiyne -- 2.4.4 Identification on the Stacking Structures of GDY -- 2.5 Band Gap Engineering of GDYs -- 2.5.1 Influences of Nonmetal Doping -- 2.5.2 Influences of Chemical Modification and Functionalization -- 2.5.3 Tunable Band Gap Under Strain -- 2.5.4 Graphyne Nanoribbons Under Strain or Electric Field -- References -- Chapter 3 GDY Synthesis and Characterization -- 3.1 Synthesis -- 3.1.1 Basic Chemistry -- 3.1.2 Cu‐Surface‐Mediated Synthesis -- 3.1.3 Template Synthesis -- 3.1.4 Interfacial Synthesis -- 3.1.5 Vapor-Liquid-Solid (VLS) Growth -- 3.1.6 Chemical Vapor Deposition (CVD) Growth -- 3.1.7 Explosion Approach -- 3.2 Characterization -- 3.2.1 Raman Spectroscopy -- 3.2.2 X‐ray Photoelectron Spectroscopy (XPS).
3.2.3 X‐ray Absorption Spectroscopy (XAS) -- 3.2.4 Microscope Technology -- 3.2.5 X‐ray Diffraction (XRD) Technique -- 3.2.6 Others -- 3.3 Summary -- References -- Chapter 4 Functionalization of GDYs -- 4.1 Heteroatom Doping -- 4.1.1 Nitrogen and Phosphor Doping -- 4.1.2 Halogen Doping -- 4.1.3 Sulfur, Boron, Hydrogen, and Other Nonmetal Heteroatoms -- 4.1.4 Dual Heteroatom Doping -- 4.2 Metal Decoration -- 4.2.1 Metal Atomic Decoration -- 4.2.2 Metallic Compounds -- 4.3 Absorption of Guest Molecules -- References -- Chapter 5 Graphdiyne‐Based Materials in Catalytic Applications -- 5.1 Graphdiyne‐Based Zero‐Valent Metal Atomic Catalysts -- 5.1.1 Synthetic Strategy for GDY‐Based ACs -- 5.1.2 Adsorption Geometry and Electronic Structures of GDY‐Based ACs -- 5.1.3 Morphology and Valence States of GDY‐Based ACs -- 5.1.4 Application of GDY‐Based ACs -- 5.1.4.1 Applied for Water Splitting -- 5.1.4.2 Applied for Ammonia Synthesis at Ambient Conditions -- 5.1.4.3 Applied for Oxygen Reduction Reaction -- 5.1.4.4 Applied for Organic Reactions -- 5.2 GDY‐Based Heterojunction Catalysts -- 5.2.1 Hydrogen Evolution Reaction on GDY‐Based Heteros -- 5.2.2 Oxygen Evolution Reaction on GDY‐Based Heterojunction -- 5.2.3 Photo‐/Photoelectrocatalytic Oxygen Evolution Reaction -- 5.2.4 Applied for Overall Water Splitting -- 5.2.5 Applied for Other Catalysis -- 5.3 Graphdiyne‐Based Metal‐Free Catalysts -- 5.3.1 Applied for Water Splitting -- 5.3.2 Applied for Oxygen Reduction Reactions -- 5.3.3 Applied for Photocatalysis -- References -- Chapter 6 Graphdiyne‐Based Materials in Rechargeable Batteries Applications -- 6.1 Introduction -- 6.2 Lithium‐Ion Battery Anodes -- 6.3 Graphdiyne Derivatives for LIB Anodes -- 6.4 Sodium Ion Battery Anodes -- 6.5 Electrochemical Interface -- 6.5.1 Function of Interface -- 6.5.2 Protection for LIBs Anodes.
6.5.3 Protection for LIB Cathodes -- 6.6 Lithium-Sulfur Battery -- 6.7 Lithium Metal Anodes -- 6.8 Supercapacitor Electrodes -- 6.9 Fuel Cells -- References -- Chapter 7 Graphdiyne‐Based Materials in Solar Cells Applications -- 7.1 Perovskite Solar Cells -- 7.1.1 Graphdiyne‐Based Materials in Interfacial Layers -- 7.1.2 Graphdiyne‐Based Materials in Active Layers -- 7.2 Organic Solar Cells -- 7.3 Others -- 7.3.1 Quantum Dots Solar Cells -- 7.3.2 Dye‐Sensitized Solar Cells -- 7.4 Future Perspectives -- References -- Chapter 8 Graphdiyne: Electronics, Thermoelectrics, and Magnetism Applications -- 8.1 Electronic Devices -- 8.2 Optic Devices -- 8.3 Thermoelectric Materials -- 8.4 Magnetism -- References -- Chapter 9 Graphdiyne‐Based Materials in Sensors and Separation Applications -- 9.1 Sensors -- 9.1.1 Biomolecules Sensor -- 9.1.1.1 DNA Detection -- 9.1.1.2 RNA and Amino Acids Detection -- 9.1.2 Small‐Molecule Detection Sensor -- 9.1.2.1 Gas Sensor -- 9.1.2.2 Humidity Detection -- 9.1.2.3 Hydrogen Peroxide Detection -- 9.1.2.4 Glucose Detection -- 9.1.3 Other Sensors -- 9.2 Separation -- 9.2.1 Gas Separation -- 9.2.1.1 Hydrogen Separation -- 9.2.1.2 Oxygen Separation -- 9.2.1.3 Carbon Dioxide Separation -- 9.2.1.4 Helium Separation -- 9.2.2 Oil/Water Separation -- 9.3 Conclusion and Perspective -- References -- Chapter 10 Perspectives -- 10.1 Chemical Synthesis Methodology and Aggregate Structures of Graphdiyne -- 10.2 Controllable Preparation of Highly Ordered Graphdiyne -- 10.3 Fundamental Physical Properties and Applications of Graphdiyne -- Index -- EULA.
Record Nr. UNINA-9910555131803321
Li Yuliang  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphdiyne : fundamentals and applications in renewable energy and electronics / / Yuliang Li
Graphdiyne : fundamentals and applications in renewable energy and electronics / / Yuliang Li
Autore Li Yuliang
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (395 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials
Nanostructured materials - Analysis
ISBN 3-527-82847-8
3-527-82848-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 The Development of Carbon Materials -- 1.2 Models and Nomenclature -- 1.3 Brief Introduction of Graphdiyne -- References -- Chapter 2 Basic Structure and Band Gap Engineering: Theoretical Study of GDYs -- 2.1 Structures -- 2.1.1 Theoretical Prediction and Classification -- 2.1.2 Geometric Structures of GDYs -- 2.2 Electronic Structures -- 2.2.1 Dirac Cones in α‐, β‐, and 6,6,12‐Graphynes -- 2.2.2 Semiconductor Properties of γ‐Graphynes -- 2.2.3 Electronic Structures Comparison of GDYs -- 2.2.4 Structure and Size‐Based Electronic Properties -- 2.2.5 Strain‐Dependent Electronic Properties -- 2.3 Mechanical Properties -- 2.3.1 Mechanical Properties of GDYs -- 2.3.2 Mechanical Properties of γ‐Graphyne -- 2.3.3 Mechanical Properties of γ‐Graphdiyne -- 2.3.4 Mechanical Properties of γ‐Graphynes Family -- 2.3.5 The Influence Factors on the Mechanical Properties of GDYs -- 2.4 Layers Structure of Bulk GDYs -- 2.4.1 Stacking Modes for Bilayer α‐Graphyne -- 2.4.2 Stacking Modes for Bilayer γ‐Graphyne -- 2.4.3 Stacking Modes for Bilayer γ‐Graphdiyne -- 2.4.4 Identification on the Stacking Structures of GDY -- 2.5 Band Gap Engineering of GDYs -- 2.5.1 Influences of Nonmetal Doping -- 2.5.2 Influences of Chemical Modification and Functionalization -- 2.5.3 Tunable Band Gap Under Strain -- 2.5.4 Graphyne Nanoribbons Under Strain or Electric Field -- References -- Chapter 3 GDY Synthesis and Characterization -- 3.1 Synthesis -- 3.1.1 Basic Chemistry -- 3.1.2 Cu‐Surface‐Mediated Synthesis -- 3.1.3 Template Synthesis -- 3.1.4 Interfacial Synthesis -- 3.1.5 Vapor-Liquid-Solid (VLS) Growth -- 3.1.6 Chemical Vapor Deposition (CVD) Growth -- 3.1.7 Explosion Approach -- 3.2 Characterization -- 3.2.1 Raman Spectroscopy -- 3.2.2 X‐ray Photoelectron Spectroscopy (XPS).
3.2.3 X‐ray Absorption Spectroscopy (XAS) -- 3.2.4 Microscope Technology -- 3.2.5 X‐ray Diffraction (XRD) Technique -- 3.2.6 Others -- 3.3 Summary -- References -- Chapter 4 Functionalization of GDYs -- 4.1 Heteroatom Doping -- 4.1.1 Nitrogen and Phosphor Doping -- 4.1.2 Halogen Doping -- 4.1.3 Sulfur, Boron, Hydrogen, and Other Nonmetal Heteroatoms -- 4.1.4 Dual Heteroatom Doping -- 4.2 Metal Decoration -- 4.2.1 Metal Atomic Decoration -- 4.2.2 Metallic Compounds -- 4.3 Absorption of Guest Molecules -- References -- Chapter 5 Graphdiyne‐Based Materials in Catalytic Applications -- 5.1 Graphdiyne‐Based Zero‐Valent Metal Atomic Catalysts -- 5.1.1 Synthetic Strategy for GDY‐Based ACs -- 5.1.2 Adsorption Geometry and Electronic Structures of GDY‐Based ACs -- 5.1.3 Morphology and Valence States of GDY‐Based ACs -- 5.1.4 Application of GDY‐Based ACs -- 5.1.4.1 Applied for Water Splitting -- 5.1.4.2 Applied for Ammonia Synthesis at Ambient Conditions -- 5.1.4.3 Applied for Oxygen Reduction Reaction -- 5.1.4.4 Applied for Organic Reactions -- 5.2 GDY‐Based Heterojunction Catalysts -- 5.2.1 Hydrogen Evolution Reaction on GDY‐Based Heteros -- 5.2.2 Oxygen Evolution Reaction on GDY‐Based Heterojunction -- 5.2.3 Photo‐/Photoelectrocatalytic Oxygen Evolution Reaction -- 5.2.4 Applied for Overall Water Splitting -- 5.2.5 Applied for Other Catalysis -- 5.3 Graphdiyne‐Based Metal‐Free Catalysts -- 5.3.1 Applied for Water Splitting -- 5.3.2 Applied for Oxygen Reduction Reactions -- 5.3.3 Applied for Photocatalysis -- References -- Chapter 6 Graphdiyne‐Based Materials in Rechargeable Batteries Applications -- 6.1 Introduction -- 6.2 Lithium‐Ion Battery Anodes -- 6.3 Graphdiyne Derivatives for LIB Anodes -- 6.4 Sodium Ion Battery Anodes -- 6.5 Electrochemical Interface -- 6.5.1 Function of Interface -- 6.5.2 Protection for LIBs Anodes.
6.5.3 Protection for LIB Cathodes -- 6.6 Lithium-Sulfur Battery -- 6.7 Lithium Metal Anodes -- 6.8 Supercapacitor Electrodes -- 6.9 Fuel Cells -- References -- Chapter 7 Graphdiyne‐Based Materials in Solar Cells Applications -- 7.1 Perovskite Solar Cells -- 7.1.1 Graphdiyne‐Based Materials in Interfacial Layers -- 7.1.2 Graphdiyne‐Based Materials in Active Layers -- 7.2 Organic Solar Cells -- 7.3 Others -- 7.3.1 Quantum Dots Solar Cells -- 7.3.2 Dye‐Sensitized Solar Cells -- 7.4 Future Perspectives -- References -- Chapter 8 Graphdiyne: Electronics, Thermoelectrics, and Magnetism Applications -- 8.1 Electronic Devices -- 8.2 Optic Devices -- 8.3 Thermoelectric Materials -- 8.4 Magnetism -- References -- Chapter 9 Graphdiyne‐Based Materials in Sensors and Separation Applications -- 9.1 Sensors -- 9.1.1 Biomolecules Sensor -- 9.1.1.1 DNA Detection -- 9.1.1.2 RNA and Amino Acids Detection -- 9.1.2 Small‐Molecule Detection Sensor -- 9.1.2.1 Gas Sensor -- 9.1.2.2 Humidity Detection -- 9.1.2.3 Hydrogen Peroxide Detection -- 9.1.2.4 Glucose Detection -- 9.1.3 Other Sensors -- 9.2 Separation -- 9.2.1 Gas Separation -- 9.2.1.1 Hydrogen Separation -- 9.2.1.2 Oxygen Separation -- 9.2.1.3 Carbon Dioxide Separation -- 9.2.1.4 Helium Separation -- 9.2.2 Oil/Water Separation -- 9.3 Conclusion and Perspective -- References -- Chapter 10 Perspectives -- 10.1 Chemical Synthesis Methodology and Aggregate Structures of Graphdiyne -- 10.2 Controllable Preparation of Highly Ordered Graphdiyne -- 10.3 Fundamental Physical Properties and Applications of Graphdiyne -- Index -- EULA.
Record Nr. UNINA-9910830155403321
Li Yuliang  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Autore Tu K. N (King-Ning), <1937->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (308 p.)
Disciplina 620.1/1599
Soggetto topico Nanostructured materials
Chemical kinetics
Nanostructured materials - Analysis
Nanostructured materials - Computer simulation
ISBN 1-118-74283-4
1-118-74314-8
1-118-74287-7
Classificazione TEC021000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to kinetics in nanoscale materials -- 1.1 Introduction -- 1.2 Nanosphere: Surface energy equivalent to the Gibbs-Thomson potential -- 1.3 Nanosphere: Lower melting point -- 1.4 Nanosphere: Effect on homogeneous nucleation and phase diagram -- 1.5 Nanosphere: The Kirkendall effect and instability of hollow nanospheres -- 1.6 Nanosphere: The inverse Kirkendall effect in hollow alloy nanospheres -- 1.7 Nanosphere: Combining the Kirkendall effect and inverse Kirkendall effect on concentric bi-layer hollow nanospheres -- 1.8 Nanopore: Instability of a nanodonut hole in a membrane -- 1.9 Nanowire: Point contact reactions between metal and silicon nanowires -- 1.10 Nanowire: Nano gap in silicon nanowires -- 1.11 Nanowire: Lithiation in silicon nanowires -- 1.12 Nanowire: Point contact reactions between metallic nanowires -- 1.13 Nano-thin film: Explosive reaction in periodic multi-layered nano-thin films -- 1.14 Nano-microstructure in bulk sample: Nanotwins in Cu -- 1.15 Nano-microstructure on the surface of a bulk sample : surface mechanical attrition treatment (SMAT) of steel -- Chapter 2. Linear and Non-linear Diffusion -- 2.1 Introduction -- 2.2 Linear diffusion -- 2.3 Non-linear diffusion -- 2.3.1 Non-linear effect due to kinetic consideration -- Chapter 3. Kirkendall effect and inverse Kirkendall effect -- 3.1 Introduction -- 3.2 Kirkendall effect -- 3.3 Inverse Kirkendall effect -- Chapter 4. Ripening among nano precipitates -- 4.1 Introduction -- 4.2 Ham's model of growth of a large spherical precipitate -- 4.3 Mean field consideration -- 4.4 Gibbs-Thomson potential -- 4.5 Growth and dissolution of a spherical nano precipitate in a mean field -- 4.6 LSW Theory of kinetics of particle ripening -- 4.7 Continuity equation in size space -- 4.8 Size distribution function in conservative ripening -- Chapter 5. Spinodal decomposition -- 5.1 Introduction -- 5.2 Implication of diffusion equation in homogenization and in decomposition -- 5.3 Spinodal decompostion -- Chapter 6. Nucleation events in bulk materials, thin films, and nano-wires -- 6.1 Introduction -- 6.2 Thermodynamics and kinetics of nucleation -- 6.3 Heterogeneous nucleation in grain boundaries of bulk materials -- 6.4 No homogeneous nucleation in epitaxial growth of Si thin film on Si wafer -- Chapter 7. Contact reactions on Si; plane, line, and point contact reactions -- 7.1 Introduction -- 7.2 Bulk cases -- 7.3 Thin film cases -- 7.4 Nanowire cases -- Chapter 8. Grain growth in micro and nano scale -- 8.1 Introduction -- 8.2 Computer simulation to generate a 2D polycrystalline microstructure -- 8.3 Computer simulation of grain growth -- 8.4 Statistical distribution functions of grain size -- 8.5 Deterministic approach to grain growth modeling -- 8.6 Coupling between grain growth of a central grain and the rest of grains 8.7 Decoupling the grain growth of a central grain from the rest of grains in the normalized size space -- 8.8 Grain growth in 2D case in the normalized size space -- 8.9 Grain rotation of nano-grains -- Chapter 9. Self-sustained reactions in nanoscale multi-layered thin films -- 9.1 Introduction -- 9.2 The selection of a pair of metallic thin films for self-sustained reaction -- 9.3 A simple model of single-phase growth in self-sustained reaction -- 9.4 Estimate of flame velocity in steady state heat transfer -- 9.5 Comparison between reactions by annealing and by explosive reaction in Al/Ni -- 9.6 Self-explosive silicidation reactions -- Chapter 10. Formation and transformations of nano-twins in copper -- 10.1 Introduction -- 10.2 Formation of nano-twins in Cu -- 10.2.1 First principle calculation of energy of formation of nano-twins -- 10.3 Formation and transformation of oriented nano-twins in Cu -- 10.4 Potential applications of nano-twinned Cu References -- Appendix A: Laplace pressure of nano-cubic particles -- Appendix B: Derivation of interdiffusion coefficient as CMG -- Appendix C: Non-equilibrium vacancies -- Appendix D: Interaction between Kirkendall effect and Gibbs-Thomson effect in the formation of a spherical compound nanoshell.
Record Nr. UNINA-9910132334703321
Tu K. N (King-Ning), <1937->  
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Kinetics in nanoscale materials / / King-Ning Tu, Andriy Gusak
Autore Tu K. N (King-Ning), <1937->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (308 p.)
Disciplina 620.1/1599
Soggetto topico Nanostructured materials
Chemical kinetics
Nanostructured materials - Analysis
Nanostructured materials - Computer simulation
ISBN 1-118-74283-4
1-118-74314-8
1-118-74287-7
Classificazione TEC021000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to kinetics in nanoscale materials -- 1.1 Introduction -- 1.2 Nanosphere: Surface energy equivalent to the Gibbs-Thomson potential -- 1.3 Nanosphere: Lower melting point -- 1.4 Nanosphere: Effect on homogeneous nucleation and phase diagram -- 1.5 Nanosphere: The Kirkendall effect and instability of hollow nanospheres -- 1.6 Nanosphere: The inverse Kirkendall effect in hollow alloy nanospheres -- 1.7 Nanosphere: Combining the Kirkendall effect and inverse Kirkendall effect on concentric bi-layer hollow nanospheres -- 1.8 Nanopore: Instability of a nanodonut hole in a membrane -- 1.9 Nanowire: Point contact reactions between metal and silicon nanowires -- 1.10 Nanowire: Nano gap in silicon nanowires -- 1.11 Nanowire: Lithiation in silicon nanowires -- 1.12 Nanowire: Point contact reactions between metallic nanowires -- 1.13 Nano-thin film: Explosive reaction in periodic multi-layered nano-thin films -- 1.14 Nano-microstructure in bulk sample: Nanotwins in Cu -- 1.15 Nano-microstructure on the surface of a bulk sample : surface mechanical attrition treatment (SMAT) of steel -- Chapter 2. Linear and Non-linear Diffusion -- 2.1 Introduction -- 2.2 Linear diffusion -- 2.3 Non-linear diffusion -- 2.3.1 Non-linear effect due to kinetic consideration -- Chapter 3. Kirkendall effect and inverse Kirkendall effect -- 3.1 Introduction -- 3.2 Kirkendall effect -- 3.3 Inverse Kirkendall effect -- Chapter 4. Ripening among nano precipitates -- 4.1 Introduction -- 4.2 Ham's model of growth of a large spherical precipitate -- 4.3 Mean field consideration -- 4.4 Gibbs-Thomson potential -- 4.5 Growth and dissolution of a spherical nano precipitate in a mean field -- 4.6 LSW Theory of kinetics of particle ripening -- 4.7 Continuity equation in size space -- 4.8 Size distribution function in conservative ripening -- Chapter 5. Spinodal decomposition -- 5.1 Introduction -- 5.2 Implication of diffusion equation in homogenization and in decomposition -- 5.3 Spinodal decompostion -- Chapter 6. Nucleation events in bulk materials, thin films, and nano-wires -- 6.1 Introduction -- 6.2 Thermodynamics and kinetics of nucleation -- 6.3 Heterogeneous nucleation in grain boundaries of bulk materials -- 6.4 No homogeneous nucleation in epitaxial growth of Si thin film on Si wafer -- Chapter 7. Contact reactions on Si; plane, line, and point contact reactions -- 7.1 Introduction -- 7.2 Bulk cases -- 7.3 Thin film cases -- 7.4 Nanowire cases -- Chapter 8. Grain growth in micro and nano scale -- 8.1 Introduction -- 8.2 Computer simulation to generate a 2D polycrystalline microstructure -- 8.3 Computer simulation of grain growth -- 8.4 Statistical distribution functions of grain size -- 8.5 Deterministic approach to grain growth modeling -- 8.6 Coupling between grain growth of a central grain and the rest of grains 8.7 Decoupling the grain growth of a central grain from the rest of grains in the normalized size space -- 8.8 Grain growth in 2D case in the normalized size space -- 8.9 Grain rotation of nano-grains -- Chapter 9. Self-sustained reactions in nanoscale multi-layered thin films -- 9.1 Introduction -- 9.2 The selection of a pair of metallic thin films for self-sustained reaction -- 9.3 A simple model of single-phase growth in self-sustained reaction -- 9.4 Estimate of flame velocity in steady state heat transfer -- 9.5 Comparison between reactions by annealing and by explosive reaction in Al/Ni -- 9.6 Self-explosive silicidation reactions -- Chapter 10. Formation and transformations of nano-twins in copper -- 10.1 Introduction -- 10.2 Formation of nano-twins in Cu -- 10.2.1 First principle calculation of energy of formation of nano-twins -- 10.3 Formation and transformation of oriented nano-twins in Cu -- 10.4 Potential applications of nano-twinned Cu References -- Appendix A: Laplace pressure of nano-cubic particles -- Appendix B: Derivation of interdiffusion coefficient as CMG -- Appendix C: Non-equilibrium vacancies -- Appendix D: Interaction between Kirkendall effect and Gibbs-Thomson effect in the formation of a spherical compound nanoshell.
Record Nr. UNINA-9910823862103321
Tu K. N (King-Ning), <1937->  
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui