Advanced drug delivery strategies for targeting chronic inflammatory lung diseases / / Dinesh Kumar Chellappan, Kavita Pabreja and Md. Faiyazuddin, editors
| Advanced drug delivery strategies for targeting chronic inflammatory lung diseases / / Dinesh Kumar Chellappan, Kavita Pabreja and Md. Faiyazuddin, editors |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (652 pages) |
| Disciplina | 615.6 |
| Soggetto topico |
Drug delivery systems
Lungs - Diseases - Treatment Nanoparticles Malalties del pulmó Dispositius d'administració de medicaments |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-4392-X
981-16-4391-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- About the Editors -- 1: An Introduction to Respiratory Diseases and an Emerging Need for Efficient Drug Delivery Systems -- 1.1 Current Treatments for Respiratory Diseases -- 1.1.1 Bronchodilators -- 1.1.2 Corticosteroids -- 1.1.3 Antibiotics -- 1.1.4 Bronchodilators -- 1.2 Challenges to the Current Treatment of Drugs -- 1.2.1 Asthma -- 1.2.2 Chronic Obstructive Pulmonary Disease (COPD) -- 1.2.3 Interstitial Lung Diseases (ILDs) -- 1.2.4 Cystic Fibrosis (CF) -- 1.2.5 Lung Cancer -- 1.2.6 Respiratory Infections -- 1.3 Pulmonary Drug Delivery Systems -- 1.4 Limitations of the Drug Delivery Systems -- 1.5 The Need of Novel Drug Delivery Systems -- 1.6 Conclusion -- References -- 2: Inflammatory Respiratory Diseases: Correlation Between Lung Cancer and COVID-19 -- 2.1 Epidemiology -- 2.1.1 Introduction -- 2.1.2 Incidence -- 2.1.3 Mortality -- 2.1.4 Survival -- 2.2 Lung Cancer Among Never Smokers -- 2.2.1 Risk Factors -- 2.2.1.1 Passive Smoking -- 2.2.2 Cooking Fumes -- 2.2.3 Inherited Genetic Susceptibility -- 2.2.4 Preexisting Lung-Related Disease -- 2.2.5 Clinical Profile of Lung Cancer Among Never Smokers -- 2.3 Lung Cancer Screening, Diagnosis, and Treatment -- 2.3.1 Screening -- 2.3.2 Diagnosis -- 2.3.2.1 PET with Computed Tomography (PET-CT) -- 2.3.2.2 Magnetic Resonance Imaging (MRI) -- 2.3.3 Bronchoscopy -- 2.3.3.1 Fiberoptic Bronchoscopy -- 2.3.4 Endobronchial Ultrasound (EBUS) and Endoscopic (Esophageal) Ultrasound (EUS) -- 2.3.5 Transthoracic Needle Biopsy -- 2.3.5.1 Treatment -- 2.3.5.2 Surgery -- 2.3.5.3 Chemotherapy -- 2.3.5.4 Targeted Therapy -- 2.3.5.5 Immunotherapy -- 2.3.5.6 Radiation -- 2.4 Lung Cancer and COVID-19 -- 2.4.1 Introduction -- 2.4.2 Lung Cancer to a COVID-19 Risk Factor -- 2.4.3 Why Are Lung Cancer Patients Prone to Getting Infected with COVID-19?.
2.4.4 Lung Cancer Management During Diagnosis and Staging -- 2.5 Conclusion -- References -- 3: Advancements in Translational Respiratory Research Using Nanotechnology -- 3.1 Introduction -- 3.2 Advancements in Translational Respiratory Research (TRR) -- 3.3 Overview of Nanomedicine and Nanotechnology -- 3.3.1 Types of Nanoparticles -- 3.3.1.1 Carbon-Based Nanoparticles -- 3.3.1.2 Metal Nanoparticles -- 3.3.1.3 Ceramic Nanoparticles -- 3.3.1.4 Semiconductor Nanoparticles -- 3.3.1.5 Polymeric Nanoparticles -- 3.3.1.6 Lipid-Based Nanoparticles -- 3.3.2 Synthesis of Nanoparticles -- 3.3.2.1 Bottom-Up Method -- 3.3.2.2 Top-Down Method -- 3.3.3 Characterization of Nanoparticles -- 3.4 Inhalation Drug Delivery -- 3.4.1 Barriers to the Inhalation Drug Delivery System -- 3.4.2 Nanoparticles in Inhalation Drug Delivery -- 3.4.3 Clinical Studies on Inhalation Drug Delivery -- 3.5 Oligonucleotide Therapy -- 3.5.1 Antisense Oligonucleotides (ASOs) -- 3.5.2 Short Interfering RNA (siRNA) -- 3.5.3 MicroRNA (miRNA) -- 3.5.4 Aptamers -- 3.5.5 Cytosine-Guanine Dinucleotide (CpG) Oligonucleotides -- 3.5.6 Delivery of Oligonucleotide Therapy -- 3.5.7 Clinical Studies on Oligonucleotide Therapy -- 3.6 Photodynamic Therapy (PDT) -- 3.6.1 Nanoparticles in PDT -- 3.6.2 Clinical Studies on Photodynamic Therapy -- 3.7 Future Prospects -- 3.8 Conclusion -- References -- 4: Chemical Moieties as Advanced Therapeutics for Targeting Respiratory Disorders -- 4.1 Introduction -- 4.2 Indole-Based Chemical Compounds for Managing Respiratory Disorders -- 4.3 Azole-Based Chemical Compounds for Managing Respiratory Disorders -- 4.4 Chromone-Based Conjugates for Capping Respiratory Disorders -- 4.5 Flavonoid-Based Conjugates for Capping Respiratory Disorders -- 4.6 Terpenoid-Based Conjugates for Capping Respiratory Disorders -- 4.7 Alkaloids for Capping Respiratory Disorders. 4.8 Essential Patented Molecules for Ameliorating Respiratory Disorders -- 4.9 Conclusion -- References -- 5: Phytochemicals and their Nanoformulations Targeted for Pulmonary Diseases -- 5.1 Introduction -- 5.2 Phytochemical Nanoformulations Targeted for Lung Diseases -- 5.2.1 Curcumin -- 5.2.2 Resveratrol -- 5.2.3 Naringenin -- 5.2.4 (-)-Epigallocatechin-3-O-Gallate (EGCG) -- 5.2.5 Berberine -- 5.2.6 Celastrol -- 5.3 Conclusion and Future Prospects -- References -- 6: Nanocarriers: An Advanced and Highly Effective Approach for Targeting Chronic Lung Diseases -- 6.1 Introduction -- 6.2 Advanced Drug Delivery and Its Implication in Chronic Inflammatory Lung Disease -- 6.3 Nanocarriers Investigated in Advanced Drug Delivery for Targeting Chronic Lung Disease -- 6.3.1 Liposomes -- 6.3.2 Dendrimers -- 6.3.3 Polymeric Nanoparticles -- 6.3.4 Micelles -- 6.3.5 Carbon Nanotubes -- 6.3.6 Quantum Dots -- 6.3.7 Exosomes -- 6.3.8 Solid Lipid Nanoparticles -- 6.4 Synthetic Approaches of Polymeric Nanoparticle Formulation -- 6.5 Drugs Delivered Through Advanced Drug Delivery Strategies: Nanocarriers -- 6.6 Conclusions and Future Prospects -- References -- 7: Vesicular Drug Delivery Systems in Respiratory Diseases -- 7.1 Introduction -- 7.2 Global Prevalence of Major Respiratory Diseases -- 7.3 Conventional Therapies Used for Respiratory Diseases -- 7.4 Antibiotics -- 7.5 Anti-Inflammatory Drugs -- 7.6 Bronchodilators -- 7.7 Gene Therapy -- 7.8 Vesicular Drug Delivery System (VDDS) for Respiratory Disease Treatment -- 7.8.1 Liposomes -- 7.8.2 Virosomes -- 7.8.3 Niosomes -- 7.8.4 Proniosomes -- 7.8.5 Archaesome -- 7.8.6 Ethosomes -- 7.8.7 Others -- 7.9 Conclusion and Future Perspective -- References -- 8: Nanoparticles in Chronic Respiratory Diseases -- 8.1 Introduction -- 8.1.1 Chronic Respiratory Disease -- 8.1.2 Nanoparticle Size for Alveoli Delivery. 8.2 Lipid-Based Nanoparticle -- 8.2.1 Liposomes -- 8.2.2 Lipid Polymer Hybrid -- 8.2.3 Solid Lipid Nanoparticle -- 8.2.4 Nanostructured Lipid Carrier -- 8.3 Polysaccharides-Based Nanoparticles -- 8.4 Polymer-Based Nanoparticles (PNS) -- 8.5 Dendrimers -- 8.6 Inorganic Nanoparticles -- 8.6.1 Development of Inorganic Nanoparticles -- 8.6.1.1 Precipitation of Salts in Aqueous Media -- 8.6.1.2 Hydrothermal Method -- 8.6.1.3 Microemulsion Method -- 8.6.1.4 Polyol Process -- 8.6.1.5 Thermal Decomposition -- 8.6.2 Inorganic-Based Nanomaterials -- 8.6.2.1 Carbon Nanotubes -- 8.6.2.2 Gold Nanoparticles -- 8.6.2.3 Silver Nanoparticles -- 8.6.2.4 Platinum Nanoparticles -- 8.6.2.5 Magnetic Nanoparticles (MNPs) -- 8.6.2.6 Iron-Oxide Nanoparticles -- 8.6.2.7 Zinc Oxide Nanoparticles -- 8.6.2.8 Copper Oxide Nanoparticle -- 8.6.3 Inorganic Nanoparticles in Chronic Respiratory Diseases -- 8.7 Advanced Nanomedicine for Chronic Respiratory Diseases -- 8.7.1 Clinical Studies for Targeted Drug Delivery -- 8.7.1.1 Cystic Fibrosis -- 8.7.1.2 Lung Cancer -- 8.7.1.3 Asthma -- 8.7.2 Theranostics (Diagnosis and Imaging Based on Nanotechnology) -- 8.8 Conclusion -- References -- 9: Applications of Nanotechnology in Pulmonary Disease Diagnosis -- 9.1 Introduction -- 9.2 Promising Nanotechnological Interventions for Pulmonary Disease Diagnosis -- 9.2.1 Nanoparticle-Based Nano-Platforms for Diagnostic Imaging in Pulmonary Diseases -- 9.2.1.1 Gold NPs -- 9.2.1.2 Iron Oxide NPs -- 9.2.1.3 Polymeric NPs -- 9.2.1.4 Silica-Based NPs -- 9.2.1.5 Manganese Oxide NPs -- 9.2.1.6 Gadolinium-Based NPs -- 9.2.1.7 Miscellaneous -- 9.3 Nano-Biosensors for Pulmonary Disease Diagnosis -- 9.3.1 Nano-Biosensors for the Diagnosis of Tuberculosis -- 9.3.2 Nano-Biosensors for the Diagnosis of Lung Cancer -- 9.3.3 Nano-Biosensors for Diagnosis of Pulmonary Arterial Hypertension. 9.4 Quantum Dots/Nanocrystal Fluorophores-Based Nano-Platforms for Pulmonary Disease Diagnosis -- 9.5 Conclusion and Future Perspectives -- References -- 10: Nanotechnology in Pulmonary Disease Diagnosis -- 10.1 Introduction -- 10.2 Nanotechnology as a Diagnosis Tool -- 10.2.1 Ex Vivo Diagnosis -- 10.2.2 In Vivo Diagnosis -- 10.3 Nanotechnology in the Diagnosis of Pulmonary Diseases -- 10.4 Summary and Conclusion -- References -- 11: Recent Trends in Nanomedicine for Diagnosis and Treatment of Pulmonary Diseases -- 11.1 Introduction -- 11.1.1 Classification of Respiratory Diseases -- 11.1.2 Nanomedicine -- 11.1.3 Application of Nanomedicine in Respiratory Diseases -- 11.1.4 Diagnosis and Treatment -- 11.1.5 Obstructive Pulmonary Diseases -- 11.1.6 Pulmonary Tuberculosis -- 11.1.7 Lung Cancer -- 11.2 Targeted Drug Delivery in Pulmonary Diseases -- 11.3 Types of Nanoparticle-Based Treatment for Pulmonary Diseases -- 11.3.1 Solid Lipid Nanoparticles (SLN) -- 11.3.2 Polymeric Nanoparticles -- 11.4 Conclusion and Future Perspectives -- References -- 12: Strategies for Enhanced Drug Targeting to Inflamed Lungs: Novel Perspectives -- 12.1 Introduction -- 12.2 Anatomy and Physiology of Human Lungs -- 12.2.1 Bronchial Tree -- 12.2.1.1 Tracheal Airways -- 12.2.1.2 Bronchi and Bronchioles -- 12.2.2 Alveoli -- 12.2.3 Pulmonary Blood Circulation -- 12.2.4 Physiology of Lungs -- 12.2.4.1 Pulmonary Mechanics -- 12.2.4.2 Inspiration -- 12.2.4.3 Expiration -- 12.2.4.4 Gas Exchange -- 12.3 Chronic Inflammatory Lung Diseases -- 12.3.1 Asthma -- 12.3.1.1 Pathogenesis of Asthma -- 12.3.2 Chronic Obstructive Pulmonary Disease (COPD) and Emphysema -- 12.3.2.1 Pathogenesis of COPD (Chronic Bronchitis and Emphysema) -- 12.3.3 Idiopathic Pulmonary Fibrosis (IPF) -- 12.3.3.1 Pathogenesis of IPF -- 12.4 Nanodiagnosis of CILD. 12.5 Strategies for Enhanced Drug Targeting to Inflamed Lungs. |
| Record Nr. | UNINA-9910743341503321 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced synthesis of gold and zirconia nanoparticles and their characterization [[electronic resource] /] / Stephan Dankesreiter
| Advanced synthesis of gold and zirconia nanoparticles and their characterization [[electronic resource] /] / Stephan Dankesreiter |
| Autore | Dankesreiter Stephan |
| Pubbl/distr/stampa | Hamburg, : Diplomica Verlag, 2011 |
| Descrizione fisica | 1 online resource (169 p.) |
| Disciplina | 540 |
| Soggetto topico |
Gold
Zirconium oxide Nanoparticles |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-8366-4199-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. 1. Introduction -- pt. 2. Fundamentals -- pt. 3. Experimental -- pt. 4. Results and discussion -- pt. 5. Annex. |
| Record Nr. | UNINA-9910459854603321 |
Dankesreiter Stephan
|
||
| Hamburg, : Diplomica Verlag, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced synthesis of gold and zirconia nanoparticles and their characterization [[electronic resource] /] / Stephan Dankesreiter
| Advanced synthesis of gold and zirconia nanoparticles and their characterization [[electronic resource] /] / Stephan Dankesreiter |
| Autore | Dankesreiter Stephan |
| Pubbl/distr/stampa | Hamburg, : Diplomica Verlag, 2011 |
| Descrizione fisica | 1 online resource (169 p.) |
| Disciplina | 540 |
| Soggetto topico |
Gold
Zirconium oxide Nanoparticles |
| ISBN | 3-8366-4199-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. 1. Introduction -- pt. 2. Fundamentals -- pt. 3. Experimental -- pt. 4. Results and discussion -- pt. 5. Annex. |
| Record Nr. | UNINA-9910785653703321 |
Dankesreiter Stephan
|
||
| Hamburg, : Diplomica Verlag, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced synthesis of gold and zirconia nanoparticles and their characterization / / Stephan Dankesreiter
| Advanced synthesis of gold and zirconia nanoparticles and their characterization / / Stephan Dankesreiter |
| Autore | Dankesreiter Stephan |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hamburg, : Diplomica Verlag, 2011 |
| Descrizione fisica | 1 online resource (169 p.) |
| Disciplina | 540 |
| Soggetto topico |
Gold
Zirconium oxide Nanoparticles |
| ISBN |
9783836641999
3836641992 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. 1. Introduction -- pt. 2. Fundamentals -- pt. 3. Experimental -- pt. 4. Results and discussion -- pt. 5. Annex. |
| Record Nr. | UNINA-9910966196403321 |
Dankesreiter Stephan
|
||
| Hamburg, : Diplomica Verlag, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications / / edited by Sivashankar Krishnamoorthy, Krzysztof (Kris) Iniewski
| Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications / / edited by Sivashankar Krishnamoorthy, Krzysztof (Kris) Iniewski |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (391 pages) |
| Disciplina | 620.115 |
| Soggetto topico |
Nanophotonics
Plasmonics Optoelectronic devices Nanoparticles Electronics Nanophotonics and Plasmonics Optoelectronic Devices Electronics and Microelectronics, Instrumentation |
| ISBN | 3-031-42700-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1 Supersonic Cluster Beam Deposition for the integration of functional nanostructured films in devices -- Chapter 2 Advances in colloidal synthesis of “giant” core/thick-shell quantum dots -- Chapter 3 Emerging trends in nanotechnology for Forensic Science -- Chapter 4 Nanoparticles induced alignment of nematic liquid crystals for tunable electro-optical devices -- Chapter 5 Photoelectrochemical immunosensor for carcinoembryonic antigen detection- an attempt for early cancer screening -- Chapter 6 Scanning Photodielectric Spectroscopy Of CdZnTe Crystals -- Chapter 7 Exploring the Potential of Transition Metal Complexes with MPA-CdTe Quantum Dots for Photoinduced Electron Transfer -- Chapter 8 Interparticle Charge-Transport-Enhanced Electrochemiluminescence of Quantum-Dot Aerogels -- Chapter 9 Optical structural and phonon characteristics of epitaxially grown II-VI/III-V films and superlattices -- Chapter 10 Defects engineering in epitaxiallygrown Cd(Zn)Te thin films on lattice-mismatch substrates -- Chapter 11 Defect-influenced modeling of photophysics in lead-based hybrid and all-inorganic perovskites -- Chapter 12 Charge carrier dynamics of halide perovskite nanocrystals: application towards X-ray/gamma-ray radiation detection -- Chapter 13 Thallium Based Materials for Radiation Detection -- Chapter 14 Printable Organic and Hybrid Semiconductors: A New Frontier for Detecting Ionizing Radiation -- Chapter 15 Halide Perovskite Thin Films for Neutron and X-ray Detection -- Chapter 16 Metal Halide Perovskite Solar Modules –Manufacturing and Performance -- Chapter 17 Naturally Inspired Heme-like Chemistries for the Oxygen Reduction Reaction - Going Beyond Platinum Group Metals in Proton Exchange Membrane Fuel Cell Catalysis -- Chapter 18 Integration of electrical energy storage devices with photovoltaic solar cells in one hybrid system -- Chapter 19 Design and optimization of CdTe QDs luminescent solar concentrators based on analytic and simulation models. |
| Record Nr. | UNINA-9910842282803321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
| Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (134 pages) |
| Disciplina | 730 |
| Soggetto topico |
Nanoparticles
Nanopartícules Enginyeria de teixits |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-16-6198-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- 1: Nanoparticles for Tissue Engineering: Type, Properties, and Characterization -- 1.1 Introduction -- 1.2 History of Nanoparticles -- 1.3 Types of Nanoparticles -- 1.3.1 Organic Nanoparticles -- 1.3.1.1 Liposomes -- 1.3.1.2 Polymeric Nanoparticles -- 1.3.2 Dendrimers -- 1.3.3 Inorganic Nanoparticles -- 1.3.3.1 Silica Nanoparticles -- 1.3.3.2 Metallic Nanoparticles -- Gold Nanoparticle -- 1.3.4 Magnetic Nanoparticle -- 1.3.4.1 Bio-ceramics and Bioactive Glass Nanoparticles -- 1.3.4.2 Carbon Nanotubes -- 1.4 Physiochemical Properties of Nanoparticles -- 1.4.1 Electronic and Optical Properties -- 1.4.2 Mechanical Properties -- 1.4.3 Magnetic Properties -- 1.4.4 Thermal Properties -- 1.5 Characterization of Nanoparticles -- 1.5.1 Particle Size -- 1.5.2 Surface Charge -- 1.5.3 Hydrophobicity -- 1.5.4 Drug Release -- 1.6 Application of Nanoparticles -- 1.6.1 Biological Property Enhancement -- 1.6.2 Mechanical Property Enhancement -- 1.6.3 3D Tissue Construction -- 1.6.4 Antibacterial Applications -- 1.6.5 Cells Stimulation for Mechano-transduction -- 1.6.6 Gene Delivery -- 1.7 Challenges and Future Perspective -- 1.8 Conclusion -- References -- 2: Nanoparticles and Bioceramics Used in Hard Tissue Engineering -- 2.1 Introduction -- 2.2 Nanoparticles Used in Hard Tissue Engineering -- 2.2.1 Organic Nanoparticles -- 2.2.1.1 Liposomes -- 2.2.1.2 Polymeric Nanoparticles -- 2.2.2 Inorganic Nanoparticles -- 2.2.2.1 Silica NPs -- 2.2.2.2 Metallic NPs -- 2.2.2.3 Bioactive Glass -- 2.2.2.4 Carbon Nanotubes -- 2.2.2.5 Quantum Dots -- 2.3 Bioceramics Used in Tissue Engineering -- 2.3.1 Classification Based on Origin -- 2.3.2 Classification Based on Tissue Response -- 2.3.3 Classification Based on Composition -- 2.3.3.1 Zirconium-Based Bioceramics -- 2.3.3.2 Alumina-Based Bioceramics -- 2.3.3.3 Carbon-Based Bioceramics.
2.4 Properties of Nanoparticles and Bioceramic Materials -- 2.5 Current Challenges and Future Perspective -- 2.6 Conclusion -- References -- 3: Application of Nanoparticles in Soft Tissue Engineering -- 3.1 Introduction -- 3.2 Nanofibers for Soft Tissue Engineering -- 3.2.1 Nature-Derived Nanofibers -- 3.2.2 Synthetic Nanofibers -- 3.3 Inorganic Nanoparticles -- 3.3.1 Silver Nanoparticles -- 3.3.2 Gold Nanoparticles -- 3.3.3 Iron Nanoparticles -- 3.3.4 Aluminum Nanoparticles -- 3.3.5 Zinc Nanomaterial -- 3.3.6 Magnesium Nanoparticles -- 3.3.7 Titanium -- 3.4 Nanomaterial Applications in Specific Areas of Tissue Engineering -- 3.4.1 Application of Nanomaterials for Soft Tissue Engineering in Dentistry -- 3.4.2 Applications of Nanomaterials for Soft Tissue Engineering in Stem Cells -- 3.4.3 Application of Nanomaterials for Soft Tissue Engineering in Osteology -- 3.4.4 Application of Nanomaterials for Soft Tissue Engineering in Cardiac Muscles -- 3.4.5 Application of Nanomaterials for Soft Tissue Engineering in Neurology -- 3.5 Future Directions in Soft Tissue Engineering -- 3.6 Conclusion -- References -- 4: 3D and 4D Nanoprinting for Tissue Regeneration -- 4.1 Introduction -- 4.2 Bioprinting Techniques Using Biopolymers and Biomaterials -- 4.3 Advances in 3D and 4D Nanoprinting Methods -- 4.3.1 Traditional Methods of 3D Scaffold Synthesis -- 4.3.1.1 Gas Foaming -- 4.3.1.2 Freeze-Drying -- 4.3.1.3 Particle Leaching -- 4.3.1.4 Fiber Bonding -- 4.3.1.5 Phase Separation -- 4.3.2 Advanced Nanoprinting Methods for Scaffold Synthesis -- 4.3.2.1 Rapid Prototyping -- 4.3.2.2 Two-Photon Absorption -- 4.3.2.3 Controlled Electrospinning -- 4.3.2.4 Charged Aerosol Jet -- 4.4 Advances in Nanoprinting of Cells, Tissues, and Organs -- 4.4.1 Skin -- 4.4.2 Bone and Cartilage -- 4.4.3 Retina -- 4.4.4 Neural. 4.5 Major Challenges Influencing the Bio-nanoprinting for Tissue Engineering -- 4.5.1 Factors Influencing Bio-nanoprinting for Tissue Engineering -- 4.6 Future Perspectives -- References -- 5: Strategies to Improve Delivery of Bioactive Agents -- 5.1 Introduction -- 5.2 Strategies for Improving Delivery of Bioactive Agents -- 5.3 Improvements in Nanoparticles for Enhanced Permeability and Retention (EPR) Effects for Delivery of Bioactive Agents -- 5.3.1 Nanoparticle Improvements for Permeating Cell-Cell Barriers -- 5.3.2 Nanoparticle Improvements to Overcome Blood-Brain Barrier (BBB) -- 5.3.3 Nanoparticle Improvements to Overcome Macrophage-Mediated Immune Clearance -- 5.4 Strategic Improvement of Drug Delivery Systems -- 5.4.1 Liposome-Based Drug Delivery -- 5.4.2 Virosome-Based Drug Delivery -- 5.4.3 Solid Lipid Nanoparticles Based Drug Delivery -- 5.4.4 Dendrimer-Based Drug Delivery -- 5.4.5 Nano-emulsion-Based Drug Delivery -- 5.4.6 Mesoporous Silica Nanoparticles (MSNP) Based Drug Delivery -- 5.5 Conclusion -- References -- 6: Nanotechnology and Its Applications in Molecular Detection -- 6.1 Nanotechnology and Molecular Detection: Importance of Nanotechnology in Molecular Detection -- 6.2 Applications -- 6.2.1 Nanotechnology on a Chip -- 6.2.1.1 Microfluidic Chips for Nanolitre Volumes: Nanochip -- 6.2.1.2 Optical Readout of Nanoparticle Labels -- 6.2.1.3 Nanoarrays -- 6.2.1.4 Protein Nanoarrays -- 6.2.2 Nanoparticle Technology -- 6.2.2.1 Gold Particles -- Introduction -- Synthesis of AuNps -- Properties of AuNPs -- Applications of AuNPs -- 6.2.2.2 Nanoparticle Probes -- 6.2.2.3 Nanobarcodes -- 6.2.2.4 Magnetic Nanoparticles: Ferrofluid -- 6.2.2.5 Quantum Dot Technology -- 6.2.3 Other Nanoparticles -- 6.2.3.1 Nanowires -- 6.2.3.2 Cantilever Arrays -- 6.2.3.3 DNA Nanomachines for Molecular Detection -- 6.2.3.4 Nanopore Technology. 6.2.3.5 Nanosensors -- 6.2.3.6 Resonance Light Scattering (RLS) Technology -- 6.3 Conclusion -- References -- 7: Challenges and Future Prospect of Nanoparticles in Tissue Engineering -- 7.1 Nanobiomaterials and Tissue Engineering -- 7.2 Challenges with Nanoparticles for Biomaterials in Tissue Engineering -- 7.3 Bone Tissue Engineering -- 7.4 Orthopedic Implants -- 7.5 Challenges in Surface Modification of Orthopedic Implants Using Nanobiomaterials and Tissue Engineering -- 7.6 Nanobiomaterials for Orthopedic and Dental Implants -- 7.7 Nano-bioceramic Coating Methods for Tissue Engineering Applications -- 7.8 Future Aspects of Tissue Engineering -- References. |
| Record Nr. | UNINA-9910595035303321 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications and properties of magnetic nanoparticles / / Paolo Arosio, editor
| Applications and properties of magnetic nanoparticles / / Paolo Arosio, editor |
| Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023] |
| Descrizione fisica | 1 online resource (276 pages) |
| Disciplina | 615.19 |
| Soggetto topico |
Nanoparticles
Magnetic nanoparticles |
| ISBN | 3-0365-6207-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Editor -- Applications and Properties of Magnetic Nanoparticles -- Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory -- Highly Sensitive Fluorescent Detection of Acetylcholine Based on the Enhanced Peroxidase-Like Activity of Histidine Coated Magnetic Nanoparticles -- Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites -- The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications -- Evaluation of Physicochemical Properties of Amphiphilic 1,4-Dihydropyridines and Preparation of Magnetoliposomes -- Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields -- Deviation of Trypsin Activity Using Peptide Conformational Imprints -- Determination of Cobalt Spin-Diffusion Length in Co/Cu Multilayered Heterojunction Nanocylinders Based on Valet-Fert Model -- Magnetic Imaging of Encapsulated Superparamagnetic Nanoparticles by Data Fusion of Magnetic Force Microscopy and Atomic Force Microscopy Signals for Correction of Topographic Crosstalk -- Coating Effect on the 1H-NMR Relaxation Properties of Iron Oxide Magnetic Nanoparticles -- Application of Magnetosomes in Magnetic Hyperthermia -- Room Temperature Magnetic Memory Effect in Cluster-Glassy Fe-Doped NiO Nanoparticles -- Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles -- Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties -- Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T1-Weighted Magnetic Resonance Imaging (MRI) -- Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method -- Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer. |
| Record Nr. | UNINA-9910647232403321 |
| [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of targeted nano drugs and delivery systems : nanoscience and nanotechnology in drug delivery / / edited by Shyam S. Mohapatra, [and four others]
| Applications of targeted nano drugs and delivery systems : nanoscience and nanotechnology in drug delivery / / edited by Shyam S. Mohapatra, [and four others] |
| Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2019 |
| Descrizione fisica | 1 online resource (684 pages) |
| Disciplina | 615.19 |
| Collana | Micro & nano technologies series |
| Soggetto topico |
Nanoparticles
Nanomedicine |
| ISBN |
0-12-814030-5
0-12-814029-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583319903321 |
| Amsterdam, Netherlands : , : Elsevier, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bio-nano interface : applications in food, healthcare and sustainability / / edited by Manoranjan Arakha, Arun Kumar Pradhan and Suman Jha
| Bio-nano interface : applications in food, healthcare and sustainability / / edited by Manoranjan Arakha, Arun Kumar Pradhan and Suman Jha |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (355 pages) |
| Disciplina | 660.6 |
| Soggetto topico |
Nanoparticles
Nanopartícules Ultraestructura (Biologia) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-2516-6
981-16-2515-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1: Impact of Isotropic and Anisotropic Plasmonic Metal Nanoparticles on Healthcare and Food Safety Management -- 1.1 Introduction -- 1.2 Synthetic Strategies for Metal Nanoparticles -- 1.3 Physico-Chemical Properties of Nanoparticles and their Impact on BiologicalMilieu -- 1.4 Applications of AuNPs in Healthcare -- 1.5 Gold Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.6 Application of Silver Nanoparticles in Healthcare -- 1.7 Silver Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.8 Application of Platinum Nanoparticles in Healthcare -- 1.9 Platinum Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.10 Conclusion -- References -- 2: An Introduction to Different Methods of Nanoparticles Synthesis -- 2.1 Introduction -- 2.2 Physical Method for Synthesis of Nanoparticle -- 2.2.1 High Energy Ball Milling -- 2.2.2 Inert Gas Condensation -- 2.2.3 Physical Vapour Deposition (PVD) -- 2.2.3.1 Sputtering -- 2.2.3.2 Electron Beam Evaporation (EBE) -- 2.2.3.3 Laser Ablation (LA) and Pulse Laser Deposition (PLD) -- 2.2.3.4 Vacuum Arc (VA) -- 2.2.4 Laser Pyrolysis -- 2.2.5 Flame Spray Pyrolysis (FSP) -- 2.2.6 Electrospraying Technique -- 2.2.7 Melt Mixing Technique -- 2.3 Chemical Method for Synthesis of Nanoparticle -- 2.3.1 Sol-Gel Methods -- 2.3.2 Micro-emulsion Technique -- 2.3.3 Hydrothermal Synthesis -- 2.3.4 Polyol Synthesis -- 2.3.5 Chemical Vapour Deposition (CPD) -- 2.3.6 Plasma Enhanced Chemical Vapour Deposition (PECVD) -- 2.4 Biological Method for Synthesis of Nanoparticle -- 2.4.1 Biogenic Synthesis Using Microorganisms -- 2.4.2 Biomolecules as Templates to Design Nanoparticles -- 2.4.3 Biogenic Synthesis Using Plant Extracts -- 2.5 Conclusion -- References.
3: Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases -- 3.1 Introduction -- 3.2 Classification of Nanoparticles -- 3.2.1 Dimensionality -- 3.2.2 Morphology -- 3.2.3 Composition -- 3.2.4 Agglomeration and Uniformity -- 3.3 Classification Based on Different Types of Nanomaterials -- 3.3.1 Inorganic Nanoparticles -- 3.3.2 Metal Oxide and Metal Nanoparticles -- 3.3.3 Organic Nanoparticles -- 3.3.4 Carbon Nanoparticles -- 3.4 Synthesis of Nanoparticles -- 3.4.1 Top-Down Method -- 3.4.2 Bottom-Up Method -- 3.5 Physical Methods for Synthesis of Nanoparticles -- 3.5.1 Mechanical Milling/Ball Milling of Nanoparticles -- 3.5.2 Laser Ablation -- 3.5.3 Sputtering -- 3.6 Chemical Methods for Synthesis of Nanoparticles -- 3.6.1 Sol-Gel Technique -- 3.6.2 Micro-Emulsion Technique -- 3.6.3 Electrochemical Technique -- 3.7 Green Synthesis Approaches for Synthesis of Nanoparticles -- 3.8 Nanoparticles Synthesis Using Bacteria -- 3.9 Application of Nanoparticles -- 3.9.1 Nanoparticles as Novel Antibiotics -- 3.9.2 Nanoparticles as Therapeutic Agents Against Infectious Diseases -- 3.10 Conclusion -- References -- 4: Nanotechnology in Food Science -- 4.1 Introduction -- 4.2 Nanotechnology -- 4.2.1 Types of Nanotechnology -- 4.2.1.1 Wet Nanotechnology -- 4.2.1.2 Dry Nanotechnology -- 4.2.1.3 Computational Nanotechnology -- 4.3 Nanotechnology in Food Packaging -- 4.4 Nanotechnology Against Food Deterioration -- 4.5 Nanotechnology for Food Storage -- 4.6 Nanotechnology in Food Pathogen Detection -- 4.6.1 Gold NPs -- 4.6.2 Magnetic NPs -- 4.6.3 Biosensors -- 4.7 Implication and Perspective -- 4.8 Conclusion -- References -- 5: Facets of Nanotechnology in Food Processing, Packaging and Safety: An Emerald Insight -- 5.1 Introduction -- 5.2 Nanoparticles -- 5.2.1 Organic Nanoparticles -- 5.2.2 Inorganic Nanoparticles (INP). 5.3 Nanoclays (NCS) -- 5.4 Nanoemulsions (NES) -- 5.5 Preparation and Factor Affecting Biosynthesis of Nanoparticles -- 5.6 Characterization of Nanoparticles -- 5.7 Nanotechnology in Food Microbiology -- 5.8 Nanoencapsulation and Microencapsulation -- 5.9 Nanoemulsions and Microemulsions -- 5.10 Nanofood Market -- 5.11 Food Processing Using Nanotechnology -- 5.12 Packaging Techniques Using Nanotechnology -- 5.12.1 Nano-Coatings -- 5.12.2 Nanolaminates -- 5.12.3 Nano Crystal -- 5.12.4 Nanomaterials -- 5.12.5 Biobased Packaging -- 5.12.6 Smart Packaging -- 5.13 Role of Nanosensor in Food Safety -- 5.14 Future Trends and Perspectives of Nanotechnology -- References -- 6: Nanotechnology and Its Potential Application in Postharvest Technology -- 6.1 Introduction -- 6.2 Nanomaterials -- 6.3 Properties of Nanomaterial -- 6.3.1 Physicochemical Properties of Nanoparticle -- 6.4 Applications of Nanotechnology -- 6.4.1 For the Control of Disease and Pest in Plants -- 6.4.2 For Detecting Plant Diseases -- 6.4.3 For the Control of Plant Diseases -- 6.5 Use of Nanoparticles to Control the Plant Diseases -- 6.5.1 Nano-Agriculture -- 6.5.2 Silver Nanoparticles -- 6.5.3 Nano Sensors -- 6.5.4 Mesoporous Silica Nanoparticles -- 6.5.5 Nanoemulsion -- 6.5.6 Precision Farming -- 6.6 Global Positioning System (GPS) -- 6.6.1 Sensor Technologies -- 6.6.2 Geographic Information System -- 6.6.3 Grid Soil Sampling and Variable-Rate Fertilizer (VRT) -- 6.6.4 Rate Controllers -- 6.6.5 Yield Monitor -- 6.6.6 Nano-Biofarming -- 6.7 Nano Formulation in Packing and Quality of Food -- 6.7.1 Nanotechnology for Food Packaging -- 6.7.2 Nanoencapsulation -- 6.8 Safety of Nano-Packaging Material -- 6.9 Biosynthesis of Nanomaterials -- 6.10 Postharvest Food Processing -- 6.11 Conclusion -- 6.12 Future Prospective -- References. 7: Nanotechnology Mediated Detection and Control of Phytopathogens -- 7.1 Introduction -- 7.2 Synthesis of Nanoparticles -- 7.3 Early Detection of Phytopathogens Using Nanoparticles -- 7.3.1 Action of Nanoparticles against Phytopathogens -- 7.3.1.1 Plant Disease Cycle -- 7.3.1.2 Host Pathogen Interaction -- 7.3.1.3 Generation of Reactive Oxygen Species (ROS) -- 7.3.1.4 Mode of Action -- 7.4 Nanoparticles in Controlling Phytopathogens -- 7.4.1 Nanoparticles Acting as Protectant -- 7.4.1.1 Ag Nanoparticle -- 7.4.1.2 Cu Nanoparticle -- 7.4.1.3 Zn Nanoparticle -- 7.4.2 Nanoparticles Acting as Carrier -- 7.4.2.1 Chitosan Nanoparticle -- 7.4.2.2 Silica Nanoparticle -- 7.4.2.3 Titanium Nanoparticle -- 7.5 Nanopesticides -- 7.6 Insecticides -- 7.7 Fungicides -- 7.8 Herbicide -- 7.9 Conclusion -- References -- 8: Nanosystems for Cancer Therapy -- 8.1 Introduction -- 8.2 Physiological Hindrances to Tumor-Specific Delivery -- 8.3 Targeting Cancer Cells with Nanosystems -- 8.3.1 Active Nanosystems -- 8.3.2 Passive Targeting Systems -- 8.4 Future Directions -- References -- 9: Phytoplankton Mediated Nanoparticles for Cancer Therapy -- 9.1 Introduction -- 9.2 Different Phytoplankton Mediated Nanoparticles -- 9.2.1 Diatoms -- 9.2.2 Coccolithophores -- 9.2.3 Cyanobacteria -- 9.3 Strategies for Development of Phytoplankton Mediated Nanodrug Formulation for Cancer Therapy -- 9.3.1 Green Synthesis of Metallic Nanoparticles -- 9.3.2 Diatom Nanocarriers for Systemic Drug Delivery -- 9.3.3 Green Carbon Nanotags for Anticancer Drug Delivery -- 9.4 Possible Future Strategies of Nanoformulation of Anticancer Drugs Isolated from Phytoplankton in Cancer Drug Development -- 9.5 Scope of Commercialization for Nanodrug Formulation for Cancer Therapy -- 9.6 Limitations of Phytoplankton Mediated Nanoparticles -- 9.7 Conclusion and Future Perspectives -- References. 10: Nanotechnology and Its Potential Implications in Ovary Cancer -- 10.1 Introduction -- 10.2 Possible Risk Factors Associated with Ovary Cancer -- 10.2.1 Age -- 10.2.2 Genetics -- 10.2.3 Family History -- 10.2.4 Ethnicity -- 10.2.5 Reproductive History -- 10.2.6 Gynaecological Factors -- 10.2.7 Hormone Replacement Therapy -- 10.2.8 Lifestyle Factors -- 10.3 Current Therapeutic Approach to Ovary Cancer -- 10.4 Nanotechnology and Its Implications in Ovary Cancer -- 10.4.1 Nanoformulations in Drug Delivery for Chemotherapy -- 10.4.2 Nanotechnology in Biomarker Discovery in Ovarian Cancer -- 10.4.3 Nanotechnology in Imaging Approach in Ovarian Cancer -- 10.4.4 Nanotechnology in Receptor Targeting in Ovary Cancer -- 10.5 Conclusion -- References -- 11: Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics -- 11.1 Introduction -- 11.2 Nanoparticle-Mediated Applications in Biology and Medicine -- 11.2.1 Nanoparticles in Biosensor -- 11.2.2 Nanoparticles in Bioimaging -- 11.2.3 Nanoparticles in Drug Delivery -- 11.3 Nanoparticle-Protein Interaction and Protein Aggregation -- 11.3.1 Nanoparticles in Type II Diabetes Mellitus -- 11.3.2 Nanoparticles in Parkinson´s Disease -- 11.3.3 Nanoparticles in Alzheimer´s Disease -- 11.3.4 Nanoparticles in Tauopathy Disease -- 11.4 Nanoparticle in Cancer -- 11.4.1 Nanoparticles in Cancer Diagnosis -- 11.4.2 Nanoparticles in Cancer Therapeutics -- 11.5 Conclusion -- References -- 12: Bio-nano Interface and Its Potential Application in Alzheimer´s Disease -- 12.1 Introduction -- 12.2 Pathogenesis -- 12.2.1 Amyloid Plaques -- 12.2.2 Neurofibrillary Tangles -- 12.2.3 Amyloid Precursor Protein (APP) -- 12.3 Nanotechnology Used in AD Detection -- 12.3.1 Iron Oxide NPs -- 12.3.2 Gold NPs -- 12.3.3 Scanning Tunnelling Microscopy System -- 12.3.4 Two Photon Rayleigh Spectroscopy. 12.4 Nanotechnology in the Treatment of AD. |
| Record Nr. | UNINA-9910743380203321 |
| Gateway East, Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
BioSensing, theranostics, and medical devices : from laboratory to point-of-care testing / / edited by Vivek Borse, Pranjal Chandra, and Rohit Srivastava
| BioSensing, theranostics, and medical devices : from laboratory to point-of-care testing / / edited by Vivek Borse, Pranjal Chandra, and Rohit Srivastava |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (380 pages) |
| Disciplina | 610.284 |
| Soggetto topico |
Medicine - Research
Biosensors Theranostic Nanomedicine Biosensing Techniques Nanoparticles Equipment Design Aparells i instruments mèdics |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-2781-9
981-16-2782-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- About the Editors -- Chapter 1: Gold Nanoclusters as Emerging Theranostic Interventions for Biomedical Applications -- 1.1 Introduction -- 1.2 Synthesis of AuNCs -- 1.3 Gold Nanoclusters as Biosensors -- 1.4 Gold Nanoclusters as Therapeutics -- 1.5 Conclusions and Future Prospects -- References -- Chapter 2: Advances in Materials, Methods, and Principles of Modern Biosensing Tools -- 2.1 Introduction -- 2.2 Materials for Biosensors -- 2.3 Principles of Biosensing -- 2.3.1 Colorimetric -- 2.3.1.1 Liquid Phase Biosensors -- 2.3.1.2 Paper Biosensors -- 2.3.1.3 Microfluidic Biosensors -- 2.3.1.4 Microfluidic Paper Analytical Devices (μPADs) -- 2.3.2 Colorimetric Assays -- 2.3.3 Chemiresistive Biosensors -- 2.3.4 Electrochemical Biosensors -- 2.3.5 Semiconductor Biosensors -- 2.4 Recent Trends of Biosensing and Device Fabrication -- 2.5 Future of Biosensing -- 2.6 Summary -- References -- Chapter 3: Evolution Towards Theranostics: Basic Principles -- 3.1 Introduction -- 3.2 Basic Principle of Theranostics in POC -- 3.2.1 Fundamental Prospects -- 3.2.2 Components -- 3.2.3 Point-of-Care Devices -- 3.3 Biological Factors Involved in Theranostic Applications -- 3.3.1 Administration of Nanoparticles -- 3.3.1.1 Passive Targeting -- 3.3.1.2 Active Targeting -- 3.3.1.3 Physical Targeting -- 3.3.2 The Journey of Nanoparticles to the Target Sites -- 3.4 Recent Advancements in Theranostics -- 3.5 Advantages of Smart Theranostics Agents Over Conventional Therapy -- 3.5.1 Localized Therapy -- 3.5.2 Multimodality -- 3.5.3 Simultaneous Diagnosis and Therapy -- 3.5.4 Multifunctionality -- 3.5.5 Real-Time Monitoring -- 3.5.6 Immune-Evasion -- 3.6 Challenges for Responsible Development -- 3.6.1 Toxicity -- 3.6.2 Stability -- 3.6.3 Commerciality -- 3.7 Future Perspective -- 3.8 Conclusion -- References.
Chapter 4: Biosensor-Based Point-of-Care Devices: Metabolites and Pulse Oximetry -- 4.1 Introduction -- 4.2 Glucose Measurement at the Point-of-Care -- 4.2.1 Methods of Measurement -- 4.2.2 Summary of Devices -- 4.2.2.1 Glucose Meters for At-Home Care -- 4.2.2.2 Glucose Meters for Clinical Care -- 4.3 Creatinine Measurement at the Point-of-Care -- 4.3.1 Methods of Measurement -- 4.3.2 Summary of Devices -- 4.4 Lipid Measurement at the Point-of-Care -- 4.4.1 Mechanisms of Measurement -- 4.4.2 Summary of Devices -- 4.5 Pulse Oximetry Measurements at the Point-of-Care -- 4.5.1 Methods of Measurement -- 4.5.2 Summary of Devices -- 4.6 Conclusion -- References -- Chapter 5: Biosensor-Based Point-of-Care Devices: Detection of Infectious Diseases and Cancer -- 5.1 Introduction -- 5.2 Pathogen Detection at the Point-of-Care -- 5.2.1 Methods of Detection -- 5.2.2 Summary of Devices -- 5.2.2.1 HIV -- 5.2.2.2 Tuberculosis -- 5.2.2.3 Malaria -- 5.2.2.4 Syphilis -- 5.2.2.5 Chlamydia and Gonorrhea -- 5.3 Cancer Detection at the Point-of-Care -- 5.3.1 Methods of Detection -- 5.3.2 Summary of Devices -- 5.3.2.1 Prostate Cancer -- 5.3.2.2 Colorectal Cancer -- 5.3.2.3 Liver Cancer -- 5.3.2.4 Bladder Cancer -- 5.4 Conclusion -- References -- Chapter 6: Non-invasive Cellular Characterization Using Bioimpedance Sensing -- 6.1 Introduction -- 6.2 Principle -- 6.2.1 Cell-Substrate Impedance -- 6.2.2 Design and Simulation of Sensor Configuration -- 6.3 Bioimpedance Sensor and Impedance Measurement -- 6.3.1 Device Fabrication -- 6.3.2 Cleaning and Surface Modification of the Sensor -- 6.3.3 Experimental Setup -- 6.3.4 Cell Culture and Cell Seeding Inside the Chip -- 6.3.5 Bioimpedance Measurement -- 6.4 Theoretical Analysis -- 6.4.1 Electrical Equivalent Model of the System -- 6.4.1.1 Estimation of Equivalent Model Parameters. 6.4.1.2 Fragmental Frequency Analysis Method to Extract the Model Parameters -- 6.4.2 Extracting the Single Cell Property from Measurement of Group of Cells -- 6.4.2.1 Maxwell´s Mixture Theory -- 6.4.2.2 Equivalent Electrical Model of Single Cell -- 6.5 Applications -- 6.5.1 Calculation of Equivalent Parameters of HeLa Cells Using Fragmental Frequency Analysis -- 6.5.1.1 Resistance of the PBS Media -- 6.5.1.2 Resistance Rexp -- 6.5.1.3 Coating Capacitance -- 6.5.1.4 Double Layer Capacitance -- 6.5.1.5 Equivalent Parameters of the HeLa Cells -- 6.5.2 Extraction of Single Cell Parameters of HeLa Cells -- 6.6 Summary -- References -- Chapter 7: Research Aspects and Strategies for the Development of Biosensors for Renal Disease Diagnosis -- 7.1 Point-of-Care Devices and their Importance in Renal Diseases Diagnosis -- 7.2 Various Biomarkers for Kidney Disease Diagnosis -- 7.3 Point-of-Care Devices for Kidney Injury Diagnosis -- 7.4 New Avenues in Developing POC for Renal Diseases -- 7.5 Conclusion -- References -- Chapter 8: From Natural to Artificial Biorecognition Elements: From Antibodies to Molecularly Imprinted Polymers -- 8.1 Introduction -- 8.2 Development and Production of Recognition Elements -- 8.2.1 Antibodies -- 8.2.2 APTAMERs -- 8.2.3 Molecularly Imprinted Polymers (MIPs) -- 8.3 Conclusions -- References -- Chapter 9: Design and Development of a Bed-Side Cardiac Health Monitoring Device -- 9.1 Introduction -- 9.1.1 Tissue as a Conductor -- 9.2 Evolution of Bio-Impedance: Impedance Cardiography -- 9.3 Significance of Non-Invasive Recording of Cardiac Parameters -- 9.4 Physiological and Clinical Applications of Impedance Cardiography -- 9.5 Designing an Electrode - Skin Model for Simulation Studies -- 9.5.1 Current Density -- 9.5.2 Resistive Loss -- 9.5.3 Electric Field Displacement -- 9.6 ICG Acquisition -- 9.6.1 Frequency and Current Values. 9.6.2 ICG Measurement Methods -- 9.7 ICG Device Fabrication -- 9.8 Conclusion -- References -- Chapter 10: Tailoring Multi-Functional 1D or 2D Nanomaterials: An Approach towards Engineering Futuristic Ultrasensitive Platf... -- 10.1 Introduction -- 10.2 1D or 2D Nanomaterials and its Sensing Application -- 10.2.1 1D Nanomaterials -- 10.2.1.1 Nanofibers -- 10.2.1.2 Nanowires -- 10.2.1.3 Nanotubes -- 10.2.1.4 Nanorods -- 10.2.2 2D Nanomaterials -- 10.2.2.1 Graphene -- 10.2.2.2 Transition Metal Dichalcogenides -- 10.3 Functionalization Routes towards Microbial Detection -- 10.4 1D or 2D Nanomaterials in Nano/Micro-Gap Based Sensing Devices -- 10.4.1 Planar Gaps -- 10.4.2 Planar Gap Based FET Devices -- 10.4.3 Vertical Gap -- 10.5 Sample Preparation -- 10.5.1 Cultures -- 10.5.2 Tissues -- 10.5.3 Blood/Serum/Plasma -- 10.6 Extraction of Biological Molecules for Molecular Detection -- 10.6.1 Nucleic Acid Extraction -- 10.6.2 Protein Extraction -- 10.6.3 Automated Nucleic Acid Extraction Methods -- 10.7 Fluid Kinetics for Detection Systems -- 10.8 1D or 2D Material Based Optical Detection of Microbial Strains -- 10.8.1 Fluorescent Biosensor -- 10.8.2 FRET-Based Biosensors -- 10.8.3 Raman Based Sensor -- 10.8.4 DNA Based Sensor -- 10.9 Summary and Future Work -- References -- Chapter 11: Clinical Validation of the Medical Devices: A General Prospective -- 11.1 Introduction -- 11.2 What Is Clinical Evaluation? -- 11.2.1 Definition -- 11.2.2 Pre-Clinical Evaluation -- 11.3 Needs of Clinical Evaluation of Medical Devices -- 11.4 Type of Clinical Evaluation -- 11.4.1 Clinical Investigation -- 11.4.2 By Literature Way -- 11.5 Clinical Validation According to the Type of Devices -- 11.5.1 Clinical Validation -- 11.5.2 Process Validation -- 11.5.3 Revalidation -- 11.5.4 Design Validation -- 11.6 Clinical Validation for each Class of Medical Devices. 11.7 Clinical and Analytical Validations of Biosensors Based IVDs -- 11.8 The Regulatory Perspective of the Medical Device in Consideration with Clinical Validation -- 11.8.1 Medical Device Rules (MDR)-2017, India -- 11.8.2 Food and Drug Administration USA -- 11.8.3 Medical Devices Clinical Validation Process in EU -- 11.8.4 Clinical Confirmatory Process in Australia -- 11.8.5 Medical Devices Clinical Validation in China -- 11.9 Conclusions -- References -- Chapter 12: Dried Blood Patterns for Diagnosis of Non-Communicable and Infectious Diseases -- 12.1 Introduction -- 12.2 Whole Blood and its Physical Properties -- 12.3 Physics of Pattern Formation -- 12.4 Factors Affecting the Pattern Formation -- 12.5 Disease Diagnosis Using the Dried Pattern of Blood Plasma and Serum -- 12.6 Disease Diagnosis Using the Dried Pattern of Whole Blood -- 12.7 Challenges and Future Outlook -- References -- Chapter 13: Theranostics: Principles, Materials, and Technical Advancements -- 13.1 Introduction to Principles of Theranostics -- 13.2 Materials for Cancer Theranostics -- 13.2.1 Gold-Based Nanosystems -- 13.2.2 Iron Oxide-Based Nanosystems -- 13.2.3 Other Metallic Nanosystems -- 13.2.4 Carbon-Based Nanosystems -- 13.2.5 Silica-Based Nanosystems -- 13.2.6 Quantum Dots-Based Nanosystems -- 13.2.7 Polymer-Based Nanosystems -- 13.2.8 Lipid-Based Nanosystems -- 13.3 Advanced Theranostic Nanomedicine Platforms for Clinical Applications -- 13.3.1 Photodynamic and Photothermal Therapy -- 13.3.2 Imaging -- 13.3.3 Nanobiosensors -- 13.3.4 Magnetic Hyperthermia -- 13.3.5 Multimodal Image Guided Therapy -- 13.3.6 Treatment of Cardiovascular Diseases -- 13.3.7 Treatment of Central Nervous System Related Diseases -- 13.4 Commercialization and Translational Challenges of Theranostic Nanosystems -- 13.5 Conclusion -- References. Chapter 14: Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. |
| Record Nr. | UNINA-9910743257803321 |
| Gateway East, Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||