top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Bioengineering / / edited by Renu Vyas
Advances in Bioengineering / / edited by Renu Vyas
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (229 p.)
Disciplina 660.6
Soggetto topico Biomedical engineering
Molecular biology
Proteins 
Bioinformatics
Human physiology
Biomedical Engineering/Biotechnology
Molecular Medicine
Protein Structure
Human Physiology
Bioenginyeria
Bioinformàtica
Materials nanoestructurats
Nanopartícules
Soggetto genere / forma Llibres electrònics
ISBN 981-15-2063-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Modeling of protein complexes involved in signaling pathway for Non-Small Cell Lung Cancer -- Chapter 2. Role of BioJava in the Department of Bioinformatics Tools -- Chapter 3. Overview of machine learning methods in ADHD prediction -- Chapter 4. Simplified Protein Structure Prediction Using Parallel Genetic Algorithms -- Chapter 5. Applications of deep learning in drug discovery -- Chapter 6. Big Data Analytics for Handling NGS Data & its Applications in Identifying Cancer Mutations -- Chapter 7. Medicinal Properties of Fruit waste -- Chapter 8. Epigenetic toxicity of nanoparticles -- Chapter 9. Protein Misfolding and Aggregation in Neurodegenerative diseases -- Chapter 10. Enzyme technology prospectus & their Biomedical Applications -- Chapter 11. Polyunsaturated fatty acids enhance the recovery of bone marrow impairment caused after radiation -- Chapter 12. Nanomaterial Enabled Rapid Electrochemical Biosensors For Bacterial Pathogens -- Chapter 13. Heart Rate Variability Analysis in lung cancer patients to study the effect of treatment -- Chapter 14. Co-Relation of Physiological Signals And Therapy for Diagnostics Purpose of Periodic Limb Movement Disorder (Plmd) -- Chapter 15. Analysis of Forward Head Posture -- Chapter 16. Biopolymeric Smart Nano-Carriers for Drug Delivery Applications.
Record Nr. UNINA-9910409691903321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (134 pages)
Disciplina 730
Soggetto topico Nanoparticles
Nanopartícules
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 981-16-6198-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1: Nanoparticles for Tissue Engineering: Type, Properties, and Characterization -- 1.1 Introduction -- 1.2 History of Nanoparticles -- 1.3 Types of Nanoparticles -- 1.3.1 Organic Nanoparticles -- 1.3.1.1 Liposomes -- 1.3.1.2 Polymeric Nanoparticles -- 1.3.2 Dendrimers -- 1.3.3 Inorganic Nanoparticles -- 1.3.3.1 Silica Nanoparticles -- 1.3.3.2 Metallic Nanoparticles -- Gold Nanoparticle -- 1.3.4 Magnetic Nanoparticle -- 1.3.4.1 Bio-ceramics and Bioactive Glass Nanoparticles -- 1.3.4.2 Carbon Nanotubes -- 1.4 Physiochemical Properties of Nanoparticles -- 1.4.1 Electronic and Optical Properties -- 1.4.2 Mechanical Properties -- 1.4.3 Magnetic Properties -- 1.4.4 Thermal Properties -- 1.5 Characterization of Nanoparticles -- 1.5.1 Particle Size -- 1.5.2 Surface Charge -- 1.5.3 Hydrophobicity -- 1.5.4 Drug Release -- 1.6 Application of Nanoparticles -- 1.6.1 Biological Property Enhancement -- 1.6.2 Mechanical Property Enhancement -- 1.6.3 3D Tissue Construction -- 1.6.4 Antibacterial Applications -- 1.6.5 Cells Stimulation for Mechano-transduction -- 1.6.6 Gene Delivery -- 1.7 Challenges and Future Perspective -- 1.8 Conclusion -- References -- 2: Nanoparticles and Bioceramics Used in Hard Tissue Engineering -- 2.1 Introduction -- 2.2 Nanoparticles Used in Hard Tissue Engineering -- 2.2.1 Organic Nanoparticles -- 2.2.1.1 Liposomes -- 2.2.1.2 Polymeric Nanoparticles -- 2.2.2 Inorganic Nanoparticles -- 2.2.2.1 Silica NPs -- 2.2.2.2 Metallic NPs -- 2.2.2.3 Bioactive Glass -- 2.2.2.4 Carbon Nanotubes -- 2.2.2.5 Quantum Dots -- 2.3 Bioceramics Used in Tissue Engineering -- 2.3.1 Classification Based on Origin -- 2.3.2 Classification Based on Tissue Response -- 2.3.3 Classification Based on Composition -- 2.3.3.1 Zirconium-Based Bioceramics -- 2.3.3.2 Alumina-Based Bioceramics -- 2.3.3.3 Carbon-Based Bioceramics.
2.4 Properties of Nanoparticles and Bioceramic Materials -- 2.5 Current Challenges and Future Perspective -- 2.6 Conclusion -- References -- 3: Application of Nanoparticles in Soft Tissue Engineering -- 3.1 Introduction -- 3.2 Nanofibers for Soft Tissue Engineering -- 3.2.1 Nature-Derived Nanofibers -- 3.2.2 Synthetic Nanofibers -- 3.3 Inorganic Nanoparticles -- 3.3.1 Silver Nanoparticles -- 3.3.2 Gold Nanoparticles -- 3.3.3 Iron Nanoparticles -- 3.3.4 Aluminum Nanoparticles -- 3.3.5 Zinc Nanomaterial -- 3.3.6 Magnesium Nanoparticles -- 3.3.7 Titanium -- 3.4 Nanomaterial Applications in Specific Areas of Tissue Engineering -- 3.4.1 Application of Nanomaterials for Soft Tissue Engineering in Dentistry -- 3.4.2 Applications of Nanomaterials for Soft Tissue Engineering in Stem Cells -- 3.4.3 Application of Nanomaterials for Soft Tissue Engineering in Osteology -- 3.4.4 Application of Nanomaterials for Soft Tissue Engineering in Cardiac Muscles -- 3.4.5 Application of Nanomaterials for Soft Tissue Engineering in Neurology -- 3.5 Future Directions in Soft Tissue Engineering -- 3.6 Conclusion -- References -- 4: 3D and 4D Nanoprinting for Tissue Regeneration -- 4.1 Introduction -- 4.2 Bioprinting Techniques Using Biopolymers and Biomaterials -- 4.3 Advances in 3D and 4D Nanoprinting Methods -- 4.3.1 Traditional Methods of 3D Scaffold Synthesis -- 4.3.1.1 Gas Foaming -- 4.3.1.2 Freeze-Drying -- 4.3.1.3 Particle Leaching -- 4.3.1.4 Fiber Bonding -- 4.3.1.5 Phase Separation -- 4.3.2 Advanced Nanoprinting Methods for Scaffold Synthesis -- 4.3.2.1 Rapid Prototyping -- 4.3.2.2 Two-Photon Absorption -- 4.3.2.3 Controlled Electrospinning -- 4.3.2.4 Charged Aerosol Jet -- 4.4 Advances in Nanoprinting of Cells, Tissues, and Organs -- 4.4.1 Skin -- 4.4.2 Bone and Cartilage -- 4.4.3 Retina -- 4.4.4 Neural.
4.5 Major Challenges Influencing the Bio-nanoprinting for Tissue Engineering -- 4.5.1 Factors Influencing Bio-nanoprinting for Tissue Engineering -- 4.6 Future Perspectives -- References -- 5: Strategies to Improve Delivery of Bioactive Agents -- 5.1 Introduction -- 5.2 Strategies for Improving Delivery of Bioactive Agents -- 5.3 Improvements in Nanoparticles for Enhanced Permeability and Retention (EPR) Effects for Delivery of Bioactive Agents -- 5.3.1 Nanoparticle Improvements for Permeating Cell-Cell Barriers -- 5.3.2 Nanoparticle Improvements to Overcome Blood-Brain Barrier (BBB) -- 5.3.3 Nanoparticle Improvements to Overcome Macrophage-Mediated Immune Clearance -- 5.4 Strategic Improvement of Drug Delivery Systems -- 5.4.1 Liposome-Based Drug Delivery -- 5.4.2 Virosome-Based Drug Delivery -- 5.4.3 Solid Lipid Nanoparticles Based Drug Delivery -- 5.4.4 Dendrimer-Based Drug Delivery -- 5.4.5 Nano-emulsion-Based Drug Delivery -- 5.4.6 Mesoporous Silica Nanoparticles (MSNP) Based Drug Delivery -- 5.5 Conclusion -- References -- 6: Nanotechnology and Its Applications in Molecular Detection -- 6.1 Nanotechnology and Molecular Detection: Importance of Nanotechnology in Molecular Detection -- 6.2 Applications -- 6.2.1 Nanotechnology on a Chip -- 6.2.1.1 Microfluidic Chips for Nanolitre Volumes: Nanochip -- 6.2.1.2 Optical Readout of Nanoparticle Labels -- 6.2.1.3 Nanoarrays -- 6.2.1.4 Protein Nanoarrays -- 6.2.2 Nanoparticle Technology -- 6.2.2.1 Gold Particles -- Introduction -- Synthesis of AuNps -- Properties of AuNPs -- Applications of AuNPs -- 6.2.2.2 Nanoparticle Probes -- 6.2.2.3 Nanobarcodes -- 6.2.2.4 Magnetic Nanoparticles: Ferrofluid -- 6.2.2.5 Quantum Dot Technology -- 6.2.3 Other Nanoparticles -- 6.2.3.1 Nanowires -- 6.2.3.2 Cantilever Arrays -- 6.2.3.3 DNA Nanomachines for Molecular Detection -- 6.2.3.4 Nanopore Technology.
6.2.3.5 Nanosensors -- 6.2.3.6 Resonance Light Scattering (RLS) Technology -- 6.3 Conclusion -- References -- 7: Challenges and Future Prospect of Nanoparticles in Tissue Engineering -- 7.1 Nanobiomaterials and Tissue Engineering -- 7.2 Challenges with Nanoparticles for Biomaterials in Tissue Engineering -- 7.3 Bone Tissue Engineering -- 7.4 Orthopedic Implants -- 7.5 Challenges in Surface Modification of Orthopedic Implants Using Nanobiomaterials and Tissue Engineering -- 7.6 Nanobiomaterials for Orthopedic and Dental Implants -- 7.7 Nano-bioceramic Coating Methods for Tissue Engineering Applications -- 7.8 Future Aspects of Tissue Engineering -- References.
Record Nr. UNINA-9910595035303321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-nano interface : applications in food, healthcare and sustainability / / edited by Manoranjan Arakha, Arun Kumar Pradhan and Suman Jha
Bio-nano interface : applications in food, healthcare and sustainability / / edited by Manoranjan Arakha, Arun Kumar Pradhan and Suman Jha
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (355 pages)
Disciplina 660.6
Soggetto topico Nanoparticles
Nanopartícules
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 981-16-2516-6
981-16-2515-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1: Impact of Isotropic and Anisotropic Plasmonic Metal Nanoparticles on Healthcare and Food Safety Management -- 1.1 Introduction -- 1.2 Synthetic Strategies for Metal Nanoparticles -- 1.3 Physico-Chemical Properties of Nanoparticles and their Impact on BiologicalMilieu -- 1.4 Applications of AuNPs in Healthcare -- 1.5 Gold Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.6 Application of Silver Nanoparticles in Healthcare -- 1.7 Silver Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.8 Application of Platinum Nanoparticles in Healthcare -- 1.9 Platinum Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.10 Conclusion -- References -- 2: An Introduction to Different Methods of Nanoparticles Synthesis -- 2.1 Introduction -- 2.2 Physical Method for Synthesis of Nanoparticle -- 2.2.1 High Energy Ball Milling -- 2.2.2 Inert Gas Condensation -- 2.2.3 Physical Vapour Deposition (PVD) -- 2.2.3.1 Sputtering -- 2.2.3.2 Electron Beam Evaporation (EBE) -- 2.2.3.3 Laser Ablation (LA) and Pulse Laser Deposition (PLD) -- 2.2.3.4 Vacuum Arc (VA) -- 2.2.4 Laser Pyrolysis -- 2.2.5 Flame Spray Pyrolysis (FSP) -- 2.2.6 Electrospraying Technique -- 2.2.7 Melt Mixing Technique -- 2.3 Chemical Method for Synthesis of Nanoparticle -- 2.3.1 Sol-Gel Methods -- 2.3.2 Micro-emulsion Technique -- 2.3.3 Hydrothermal Synthesis -- 2.3.4 Polyol Synthesis -- 2.3.5 Chemical Vapour Deposition (CPD) -- 2.3.6 Plasma Enhanced Chemical Vapour Deposition (PECVD) -- 2.4 Biological Method for Synthesis of Nanoparticle -- 2.4.1 Biogenic Synthesis Using Microorganisms -- 2.4.2 Biomolecules as Templates to Design Nanoparticles -- 2.4.3 Biogenic Synthesis Using Plant Extracts -- 2.5 Conclusion -- References.
3: Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases -- 3.1 Introduction -- 3.2 Classification of Nanoparticles -- 3.2.1 Dimensionality -- 3.2.2 Morphology -- 3.2.3 Composition -- 3.2.4 Agglomeration and Uniformity -- 3.3 Classification Based on Different Types of Nanomaterials -- 3.3.1 Inorganic Nanoparticles -- 3.3.2 Metal Oxide and Metal Nanoparticles -- 3.3.3 Organic Nanoparticles -- 3.3.4 Carbon Nanoparticles -- 3.4 Synthesis of Nanoparticles -- 3.4.1 Top-Down Method -- 3.4.2 Bottom-Up Method -- 3.5 Physical Methods for Synthesis of Nanoparticles -- 3.5.1 Mechanical Milling/Ball Milling of Nanoparticles -- 3.5.2 Laser Ablation -- 3.5.3 Sputtering -- 3.6 Chemical Methods for Synthesis of Nanoparticles -- 3.6.1 Sol-Gel Technique -- 3.6.2 Micro-Emulsion Technique -- 3.6.3 Electrochemical Technique -- 3.7 Green Synthesis Approaches for Synthesis of Nanoparticles -- 3.8 Nanoparticles Synthesis Using Bacteria -- 3.9 Application of Nanoparticles -- 3.9.1 Nanoparticles as Novel Antibiotics -- 3.9.2 Nanoparticles as Therapeutic Agents Against Infectious Diseases -- 3.10 Conclusion -- References -- 4: Nanotechnology in Food Science -- 4.1 Introduction -- 4.2 Nanotechnology -- 4.2.1 Types of Nanotechnology -- 4.2.1.1 Wet Nanotechnology -- 4.2.1.2 Dry Nanotechnology -- 4.2.1.3 Computational Nanotechnology -- 4.3 Nanotechnology in Food Packaging -- 4.4 Nanotechnology Against Food Deterioration -- 4.5 Nanotechnology for Food Storage -- 4.6 Nanotechnology in Food Pathogen Detection -- 4.6.1 Gold NPs -- 4.6.2 Magnetic NPs -- 4.6.3 Biosensors -- 4.7 Implication and Perspective -- 4.8 Conclusion -- References -- 5: Facets of Nanotechnology in Food Processing, Packaging and Safety: An Emerald Insight -- 5.1 Introduction -- 5.2 Nanoparticles -- 5.2.1 Organic Nanoparticles -- 5.2.2 Inorganic Nanoparticles (INP).
5.3 Nanoclays (NCS) -- 5.4 Nanoemulsions (NES) -- 5.5 Preparation and Factor Affecting Biosynthesis of Nanoparticles -- 5.6 Characterization of Nanoparticles -- 5.7 Nanotechnology in Food Microbiology -- 5.8 Nanoencapsulation and Microencapsulation -- 5.9 Nanoemulsions and Microemulsions -- 5.10 Nanofood Market -- 5.11 Food Processing Using Nanotechnology -- 5.12 Packaging Techniques Using Nanotechnology -- 5.12.1 Nano-Coatings -- 5.12.2 Nanolaminates -- 5.12.3 Nano Crystal -- 5.12.4 Nanomaterials -- 5.12.5 Biobased Packaging -- 5.12.6 Smart Packaging -- 5.13 Role of Nanosensor in Food Safety -- 5.14 Future Trends and Perspectives of Nanotechnology -- References -- 6: Nanotechnology and Its Potential Application in Postharvest Technology -- 6.1 Introduction -- 6.2 Nanomaterials -- 6.3 Properties of Nanomaterial -- 6.3.1 Physicochemical Properties of Nanoparticle -- 6.4 Applications of Nanotechnology -- 6.4.1 For the Control of Disease and Pest in Plants -- 6.4.2 For Detecting Plant Diseases -- 6.4.3 For the Control of Plant Diseases -- 6.5 Use of Nanoparticles to Control the Plant Diseases -- 6.5.1 Nano-Agriculture -- 6.5.2 Silver Nanoparticles -- 6.5.3 Nano Sensors -- 6.5.4 Mesoporous Silica Nanoparticles -- 6.5.5 Nanoemulsion -- 6.5.6 Precision Farming -- 6.6 Global Positioning System (GPS) -- 6.6.1 Sensor Technologies -- 6.6.2 Geographic Information System -- 6.6.3 Grid Soil Sampling and Variable-Rate Fertilizer (VRT) -- 6.6.4 Rate Controllers -- 6.6.5 Yield Monitor -- 6.6.6 Nano-Biofarming -- 6.7 Nano Formulation in Packing and Quality of Food -- 6.7.1 Nanotechnology for Food Packaging -- 6.7.2 Nanoencapsulation -- 6.8 Safety of Nano-Packaging Material -- 6.9 Biosynthesis of Nanomaterials -- 6.10 Postharvest Food Processing -- 6.11 Conclusion -- 6.12 Future Prospective -- References.
7: Nanotechnology Mediated Detection and Control of Phytopathogens -- 7.1 Introduction -- 7.2 Synthesis of Nanoparticles -- 7.3 Early Detection of Phytopathogens Using Nanoparticles -- 7.3.1 Action of Nanoparticles against Phytopathogens -- 7.3.1.1 Plant Disease Cycle -- 7.3.1.2 Host Pathogen Interaction -- 7.3.1.3 Generation of Reactive Oxygen Species (ROS) -- 7.3.1.4 Mode of Action -- 7.4 Nanoparticles in Controlling Phytopathogens -- 7.4.1 Nanoparticles Acting as Protectant -- 7.4.1.1 Ag Nanoparticle -- 7.4.1.2 Cu Nanoparticle -- 7.4.1.3 Zn Nanoparticle -- 7.4.2 Nanoparticles Acting as Carrier -- 7.4.2.1 Chitosan Nanoparticle -- 7.4.2.2 Silica Nanoparticle -- 7.4.2.3 Titanium Nanoparticle -- 7.5 Nanopesticides -- 7.6 Insecticides -- 7.7 Fungicides -- 7.8 Herbicide -- 7.9 Conclusion -- References -- 8: Nanosystems for Cancer Therapy -- 8.1 Introduction -- 8.2 Physiological Hindrances to Tumor-Specific Delivery -- 8.3 Targeting Cancer Cells with Nanosystems -- 8.3.1 Active Nanosystems -- 8.3.2 Passive Targeting Systems -- 8.4 Future Directions -- References -- 9: Phytoplankton Mediated Nanoparticles for Cancer Therapy -- 9.1 Introduction -- 9.2 Different Phytoplankton Mediated Nanoparticles -- 9.2.1 Diatoms -- 9.2.2 Coccolithophores -- 9.2.3 Cyanobacteria -- 9.3 Strategies for Development of Phytoplankton Mediated Nanodrug Formulation for Cancer Therapy -- 9.3.1 Green Synthesis of Metallic Nanoparticles -- 9.3.2 Diatom Nanocarriers for Systemic Drug Delivery -- 9.3.3 Green Carbon Nanotags for Anticancer Drug Delivery -- 9.4 Possible Future Strategies of Nanoformulation of Anticancer Drugs Isolated from Phytoplankton in Cancer Drug Development -- 9.5 Scope of Commercialization for Nanodrug Formulation for Cancer Therapy -- 9.6 Limitations of Phytoplankton Mediated Nanoparticles -- 9.7 Conclusion and Future Perspectives -- References.
10: Nanotechnology and Its Potential Implications in Ovary Cancer -- 10.1 Introduction -- 10.2 Possible Risk Factors Associated with Ovary Cancer -- 10.2.1 Age -- 10.2.2 Genetics -- 10.2.3 Family History -- 10.2.4 Ethnicity -- 10.2.5 Reproductive History -- 10.2.6 Gynaecological Factors -- 10.2.7 Hormone Replacement Therapy -- 10.2.8 Lifestyle Factors -- 10.3 Current Therapeutic Approach to Ovary Cancer -- 10.4 Nanotechnology and Its Implications in Ovary Cancer -- 10.4.1 Nanoformulations in Drug Delivery for Chemotherapy -- 10.4.2 Nanotechnology in Biomarker Discovery in Ovarian Cancer -- 10.4.3 Nanotechnology in Imaging Approach in Ovarian Cancer -- 10.4.4 Nanotechnology in Receptor Targeting in Ovary Cancer -- 10.5 Conclusion -- References -- 11: Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics -- 11.1 Introduction -- 11.2 Nanoparticle-Mediated Applications in Biology and Medicine -- 11.2.1 Nanoparticles in Biosensor -- 11.2.2 Nanoparticles in Bioimaging -- 11.2.3 Nanoparticles in Drug Delivery -- 11.3 Nanoparticle-Protein Interaction and Protein Aggregation -- 11.3.1 Nanoparticles in Type II Diabetes Mellitus -- 11.3.2 Nanoparticles in Parkinson´s Disease -- 11.3.3 Nanoparticles in Alzheimer´s Disease -- 11.3.4 Nanoparticles in Tauopathy Disease -- 11.4 Nanoparticle in Cancer -- 11.4.1 Nanoparticles in Cancer Diagnosis -- 11.4.2 Nanoparticles in Cancer Therapeutics -- 11.5 Conclusion -- References -- 12: Bio-nano Interface and Its Potential Application in Alzheimer´s Disease -- 12.1 Introduction -- 12.2 Pathogenesis -- 12.2.1 Amyloid Plaques -- 12.2.2 Neurofibrillary Tangles -- 12.2.3 Amyloid Precursor Protein (APP) -- 12.3 Nanotechnology Used in AD Detection -- 12.3.1 Iron Oxide NPs -- 12.3.2 Gold NPs -- 12.3.3 Scanning Tunnelling Microscopy System -- 12.3.4 Two Photon Rayleigh Spectroscopy.
12.4 Nanotechnology in the Treatment of AD.
Record Nr. UNINA-9910743380203321
Gateway East, Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging technologies for nanoparticle manufacturing / / Jayvadan K. Patel, Yashwant V. Pathak, editors
Emerging technologies for nanoparticle manufacturing / / Jayvadan K. Patel, Yashwant V. Pathak, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (604 pages)
Disciplina 620.5
Soggetto topico Nanomanufacturing
Nanopartícules
Soggetto genere / forma Llibres electrònics
ISBN 3-030-50703-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I: Introduction and Biomedical Applications of Nanoparticles -- 1: Introduction to Nanomaterials and Nanotechnology -- 1 Introduction -- 2 Nanomaterials -- 3 Why Are Nanoscale Materials: So Special and Unique? -- 4 Classification of Nanoscale Materials -- 4.1 Classification of Nanomaterials Based on Their Origin -- 4.2 Classification of Nanomaterials Based on the Chemical Composition -- 4.3 Material-Based Classification -- 4.4 Classification of Nanomaterials Based on Their Dimensions -- 5 Properties: The Physics at the Nanoscale -- 5.1 Confinement Effect -- 5.2 Surface Effects -- 5.3 Mechanical Properties -- 5.4 Structural Properties -- 5.5 Thermal Properties -- 5.6 Optical Properties -- 5.7 Magnetic Properties -- 6 Nanomaterials Synthesis Strategies -- 6.1 Bottom-Up Procedures -- 6.2 Top-Down Procedures -- 7 Conclusion -- References -- 2: Biomedical Applications of Nanoparticles -- 1 Introduction -- 1.1 Applications of Nanoparticles in Biomedical -- 2 Conclusion -- References -- Part II: Polymeric Nanoparticles -- 3: Nanocrystallization and Nanoprecipitation Technologies -- 1 Introduction -- 2 Definition -- 3 Prominent Attributes -- 3.1 Surface Area Enlargement -- 3.2 Increase in Saturation Solubility -- 3.3 Crystalline or Amorphous Particle States -- 4 Production Technologies -- 5 Nanocrystallization and Nanoprecipitation Technologies -- 6 Media Milling -- 6.1 Mechanism Involved -- 6.2 Selection of Bead Size -- 6.3 Particle Surface Modification -- 7 Cryo-Milling -- 7.1 Definition -- 7.2 Ultra Cryo-Milling -- 8 Solvent-Antisolvent Precipitation -- 8.1 Fundamental Principle of Antisolvent Precipitation Techniques -- 8.2 Step-Up Antisolvent Precipitation Process -- 8.2.1 Mixing -- 8.2.2 Mixing Devices.
9 Role of Stabilizer in Antisolvent Precipitation Techniques -- 10 Future Perspectives -- References -- 4: Microfluidics Technology for Nanoparticles and Equipment -- 1 Introduction -- 2 Principle Foundation -- 3 Mixing -- 3.1 Active Micromixers -- 3.2 Passive Micromixers -- 4 Microfluidic Reactors: Features for the Manufacture of Nanoparticles -- 5 Design of the Reactor -- 6 Fabrication of Microfluidic Devices -- 7 Microfluidic Devices: Types -- 8 Formulation of Nano Drug Delivery System Using Microfluidics -- 8.1 Pure Drug Nanoparticles -- 8.1.1 Crystalline Drug Nanoparticles -- 8.2 Amorphous Drug Nanoparticles -- 8.3 API Loaded Nanoparticles Generated Using Microfluidic Technology -- 9 Microfluidic and Bulk Technologies: Comparison (Jahn et al. 2007) -- 10 Microfluidics: Nanoparticles Drug Delivery -- 10.1 Flow Focusing Method -- 10.2 Micro-vortices Method -- 10.3 Chaotic Flow Method -- 10.4 Droplets Method -- 10.5 Other Methods -- 11 Microfluidics: Nanoparticles Characterization -- 11.1 Characterization of Particle Size and Morphology -- 11.2 Charge Characterization -- 11.3 Characterization of Drug Loading and Drug Release -- 12 Microfluidics: Nanoparticle Evaluation -- 13 Production of Nanoparticles Using Microfluidic Devices -- 13.1 Lipid Nanoparticles (LNPs) -- 13.2 Polymeric Nanoparticles -- 13.3 Theranostic Nanoparticles -- 14 Microfluidic Tools for Nanoparticles Investigation -- 14.1 Organ-on-a-Chip -- 14.2 Blood Vessel-on-a-Chip -- 14.3 Blood Brain Barrier-on-a-Chip -- 14.4 Tumour-on-a-Chip -- 14.5 Lung-on-a-Chip -- 14.6 Liver-on-a-Chip -- 14.7 Kidney-on-a-Chip -- 14.8 Heart-on-a-Chip -- 15 Companies Working on Microfluidic Technology -- 16 Future Developments -- 17 Conclusion -- References -- 5: Production of Nanocomposites via Extrusion Techniques -- 1 Introduction.
2 Polymeric Nanocomposites by Extrusion Method -- 3 Metal Matrix Nanocomposites Prepared by Extrusion Method -- 4 Conclusion -- References -- 6: The Use of Supercritical Fluid Technologies for Nanoparticle Production -- 1 Introduction -- 2 Supercritical Fluid Technology -- 3 Supercritical Fluids -- 4 Supercritical Processes for Nanoparticles Manufacturing -- 4.1 Particles from Gas-Saturated Solutions (PGSS) -- 4.2 Rapid Expansion of Supercritical Solutions (RESS) -- 4.3 Gas Anti-solvent Processes (GAS) -- 4.4 Supercritical Anti-solvent Processes (SAS) -- 4.5 Aerosol Solvent Extraction System (ASES) -- 4.6 Supercritical Anti-solvent with Enhanced Mass Transfer (SAS-EM) -- 4.7 Solution-Enhanced Dispersion by Supercritical Fluids (SEDS) -- 4.8 Suspension-Enhanced Dispersion by Supercritical Fluids (SpEDS Process) -- 4.9 Supercritical Assisted Atomization (SAA) -- 5 Application of SCF for Production of Nanoparticles -- 6 Summary and Future Perspective -- References -- 7: Salting Out and Ionic Gelation Manufacturing Techniques for Nanoparticles -- 1 Introduction -- 2 Nanotechnology in Drug Delivery Systems -- 3 Polymeric Nanoparticles -- 4 Drug Releasing Mechanism of Nanoparticles -- 5 Development of Polymeric Nanoparticles -- 5.1 Polymerization -- 5.1.1 Emulsion-Polymerization Technique -- 5.1.2 Interfacial Polymerization Technique -- 5.2 Development of Polymeric Nanoparticles From Preformed Polymers -- 5.2.1 Emulsification and Solvent Evaporation Method -- 5.2.2 Solvent Displacement Technique -- 5.2.3 Interfacial Deposition Technique -- 5.2.4 Emulsification and Solvent Diffusion -- 5.2.5 Salting-Out Method -- Effect of Various Parameters on Salting-Out Technique -- Advantages of the Salting-Out Method -- Disadvantages of the Salting-Out Method -- Scale-Up of the Salting-Out Method.
Effect of Process Parameters on the Quality of the Nanoformulation During the Scale-Up of Method -- The Theoretical Model for the Preparation of Nanoparticles by the Salting-Out Method -- Relation of the Rate of Stirring to the Nanoparticle Size -- Model for Drug Transport From the Salted-Out Scaffold -- Salting-Out Method and Transition of Polymer Properties -- Applications of the Salting-Out Method -- Preparation of PLGA- and PLA-Based Nanoformulations -- Preparation of Polymeric Nanoparticles for Gene Therapy by the Salting-Out Method -- Interactions Between Crosslinking Ions and Polymeric Chains -- Combination of the Salting-Out Method with Other Methods -- Emulsion Solvent Evaporation-Salting-Out Technique -- Emulsion-Based and Aqueous-Based Salting-Out Method -- 5.2.6 Supercritical Fluid Technology -- 5.2.7 Rapid Expansion of Supercritical Solution (RESS) -- 5.2.8 Rapid Expansion of Supercritical Solution into a Liquid Solvent -- 5.2.9 Electrospraying Technology -- 5.2.10 Ionic Gelation Method -- Chitosan-Based Nanoformulations -- Characterization of Chitosan -- Molecular Weight Determination -- Calculation of the Degree of Deacetylation -- Chitosan-Based Nanoparticles and Ionic Gelation Method -- 5.2.11 Microreactor Application in the Preparation of Chitosan Nanoparticles by Ionic Gelation Method -- 5.2.12 Theoretical Analysis of Nanoparticle Preparation by Ionic Gelation Method in a Microreactor -- 5.2.13 Hydrogels of Drug-Loaded Chitosan-Based Nanoparticle -- 5.2.14 Preparation of Alginate-Based Nanoparticles by Ionic Gelation Method -- Alginate Hydrogels -- Factors Influencing the Crosslinking Degree of Alginate-Based Hydrogels -- Evaluation of Hydrogels -- Preparation of Sodium Alginate Nanoparticles by Ionic Gelation Method -- Preparation Sodium Pectin-Based Nanoparticles by Ionic Gelation Method.
Ionic Gelation Method for the Preparation of Nanogels -- Ionic Gelation Method for the Development of Nanoparticles Loaded Films -- 5.3 Effect of Process Parameters on the Quality of Nanoformulations -- 5.3.1 Polymer -- 5.3.2 Crosslinking Agent -- 5.3.3 Polymer and Drug Ratio -- 5.3.4 Sonication -- 5.4 Effect of Morphological and Physicochemical Properties on the Quality of Nanoformulation -- 5.4.1 Particle Size -- 5.4.2 Drug Loading and Entrapment Efficiency -- 5.4.3 Drug Release Kinetics -- 5.4.4 Degree of Swelling -- 5.4.5 Zeta Potential -- 5.4.6 Cellular Uptake of Nanoparticles -- 5.5 Modified Traditional Methods for the Development of Nanoparticles -- 5.5.1 Dialysis -- 5.5.2 Membrane Evaporation and Emulsion Technique -- 5.5.3 Premix Membrane Emulsification -- 5.5.4 Spray-Dry Method -- 5.5.5 Spray Solvent Displacement Combined with Dialysis -- 6 Conclusion -- References -- 8: Nanogel Synthesis by Irradiation of Aqueous Polymer Solutions -- 1 Introduction -- 2 Nanosized Particles in Medicine -- 3 Nanogels: Highlights and Applications -- 4 Synthesis Methods of Nanogels -- 4.1 Crosslinking/Polymerization of Monomer or Monomer Mixtures -- 4.2 Crosslinking of Preformed Polymers -- 5 Radiation-Induced Synthesis of Nanogels -- 5.1 Radiation Chemistry of Aqueous Systems -- 6 Conclusions and Future Prospects -- References -- 9: Cellulose Acetate-Based Nanofibers: Synthesis, Manufacturing, and Applications -- 1 Introduction -- 2 Derivatives of CA Polymer -- 3 Synthesis and Manufacturing of CA-Based Nanofibers -- 3.1 Electrospinning Process and Mechanism -- 3.2 Solvent Selection -- 3.2.1 Acetone-Based Solvent Systems -- (a) Using Water Acetone System -- (b) Acetone-DMF System -- (c) Using Acetone-DMAc Solvents -- 3.2.2 Other Solvent Systems -- 3.3 Deacetylation Study -- 4 Application of CA Nanofibers.
4.1 Antibacterial Application.
Record Nr. UNINA-9910488720503321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microbial Nanobionics : Volume 1, State-of-the-Art / / edited by Ram Prasad
Microbial Nanobionics : Volume 1, State-of-the-Art / / edited by Ram Prasad
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (332 pages) : illustrations
Disciplina 620.5
Collana Nanotechnology in the Life Sciences
Soggetto topico Microbiology
Plant genetics
Microbial genetics
Nanotechnology
Plants - Evolution
Microtechnology
Microelectromechanical systems
Plant Genetics
Microbial Genetics
Plant Evolution
Microsystems and MEMS
Nanopartícules
Soggetto genere / forma Llibres electrònics
ISBN 3-030-16383-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Processing of Nanoparticles by Biomatrices in a Green Approach -- 2. . Green Synthesis/ Biogenic Materials, Characterization and Their Applications -- 3. Biological Synthesis of Nanoparticles by Different Groups of Bacteria -- 4. Mushrooms: New Biofactories for Nanomaterials Production of Different Industrial and Medical Applications -- 5. Actinomycetes: It’s realm in Nanotechnology -- 6. Impact of nanomaterials in Microbial system -- 7. Microbial Production of Nanoparticles: Mechanisms and Applications -- 8. Microbial Nanobionic Engineering: Translational and Transgressive Science of an Antidisciplinary Approximation -- 9. Microbial Nanobionics: Application of Nanobiosensors in Microbial Growth and Diagnostics -- 10. Cancer Bionanotechnology: Biogenic Synthesis of Metallic Nanoparticles and their Pharmaceutical Potency -- 11. Antimicrobial Nanocomposites for Improving Indoor Air Quality -- 12. Microbial Photosynthetic Reaction Centers and Functional Nano Hybrids -- 13. Nanomaterials in Microbial Fuel cells and Related Applications -- Index.
Record Nr. UNINA-9910373910203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanoparticles for rational vaccine design / / Harvinder Singh Gill, Richard W. Compans, editors
Nanoparticles for rational vaccine design / / Harvinder Singh Gill, Richard W. Compans, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (140 pages)
Disciplina 615.372
Collana Current topics in microbiology and immunology
Soggetto topico Vaccines - Design
Vacunes
Immunoteràpia
Nanopartícules
Nanomedicina
Soggetto genere / forma Llibres electrònics
ISBN 3-030-85067-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495172503321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant Responses to Nanomaterials : Recent Interventions, and Physiological and Biochemical Responses / / edited by Vijay Pratap Singh, Samiksha Singh, Durgesh Kumar Tripathi, Sheo Mohan Prasad, Devendra Kumar Chauhan
Plant Responses to Nanomaterials : Recent Interventions, and Physiological and Biochemical Responses / / edited by Vijay Pratap Singh, Samiksha Singh, Durgesh Kumar Tripathi, Sheo Mohan Prasad, Devendra Kumar Chauhan
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (339 pages) : illustrations
Disciplina 297.05
Collana Nanotechnology in the Life Sciences
Soggetto topico Plant biotechnology
Plants - Development
Plant diseases
Nanotechnology
Plant Biotechnology
Plant Development
Plant Pathology
Materials nanoestructurats
Nanopartícules
Fitoquímica
Fisiologia vegetal
Soggetto genere / forma Llibres electrònics
ISBN 3-030-36740-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Applications of Nanomaterials to Enhance Plant Health and Agricultural Production -- 2. Nanoparticles and their impacts on seed germination -- 3. Synthesis and characterization of zinc oxide nanoparticles and their impact on plants -- 4. Physiology of zinc oxide nanoparticles in plants -- 5. Effect of TiO2 as plant-growth stimulating nanomaterial on crop production -- 6. Contribution to monography Nanomaterials and physiological and biochemical responses of plants -- 7. Impacts of Carbon nanotubes on physiology and biochemistry of plants -- 8. Silver Nanoparticles and their Morpho-physiological Responses on Plants -- 9. Nanoparticles: Sources and toxicity -- 10. Impact of cobalt nanoparticles on morpho-physiological and biochemical responses of plants -- 11. Nanoparticles-induced oxidative stress in plants -- 12. Variability, behaviour and impact of nanoparticles in the environment.
Record Nr. UNINA-9910483349503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymeric nanoparticles for the treatment of solid tumors / / edited by Santwana Padhi, Anindita Behera, Eric Lichtfouse
Polymeric nanoparticles for the treatment of solid tumors / / edited by Santwana Padhi, Anindita Behera, Eric Lichtfouse
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (515 pages)
Disciplina 616.99406
Collana Environmental Chemistry for a Sustainable World
Soggetto topico Medicine—Research
Biology—Research
Nanotechnology
Cancer—Treatment
Biomedical Research
Cancer Therapy
Nanopartícules
Càncer
Terapèutica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-14848-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. The tumor microenvironment -- Chapter 2. Methods of formulation of polymeric nanoparticles -- Chapter 3. Natural polymers based nanoparticles targeted to solid tumors -- Chapter 4. Optimization of physicochemical properties of polymeric nanoparticles for targeting solid tumors -- Chapter 5. Passive and active targeting approaches for solid tumors -- Chapter 6. Polymeric nanoparticles entrapping natural drugs for cancer therapy -- Chapter 7. Polymeric nanoparticles entrapping drug combinations targeted to solid tumors -- Chapter 8. Ligands specific to over-expressed receptors in solid tumors -- Chapter 9. Ligand targeted polymeric nanoparticles for cancer chemotherapy -- Chapter 10. Polymeric nanoparticles as theranostics for targeting solid tumors -- Chapter 11. Oral delivery of polymeric nanoparticles for solid tumors -- Chapter 12. Polymeric nanoparticles to target glioblastoma tumors -- Chapter 13. Polymeric nanoparticles to target lung cancer -- Chapter 14. Polymer based nanoplatforms for targeting breast cancer -- Chapter 15. PH-Sensitive polymeric nanoparticles for cancer treatment -- Chapter 16. Polymeric nanoplatforms for targeted treatment of prostate cancer -- Chapter 17. Cellular internalization and toxicity of polymeric nanoparticles -- Chapter 18. Prospects and challenges in the treatment of solid tumors.
Record Nr. UNINA-9910631081103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The role of nanoparticles in plant nutrition under soil pollution : nanoscience in nutrient use efficiency / / edited by Vishnu D. Rajput, Krishan K. Verma, Neetu Sharma, Tatiana Minkina
The role of nanoparticles in plant nutrition under soil pollution : nanoscience in nutrient use efficiency / / edited by Vishnu D. Rajput, Krishan K. Verma, Neetu Sharma, Tatiana Minkina
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (xi, 394 pages) : illustrations (chiefly color)
Disciplina 581.7
631.5233
Collana Sustainable Plant Nutrition in a Changing World
Soggetto topico Nanoparticles
Plants - Nutrition
Soil pollution
Nutrició vegetal
Contaminació dels sòls
Nanopartícules
Soggetto genere / forma Llibres electrònics
ISBN 3-030-97389-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Global Importance and Cycling of Nanoparticles -- Environmental Emissions of Nanoparticles -- Bio- and Geo-Transformation and Bioavailability of Nanoparticles -- Interaction of Nanoparticles to Soil Pollutants -- Impact of Nanoparticles to Soil Systems -- Too Much or Too Little? A Review of the Connundrum of Nanoparticles -- Application and Use of Nanoelements in Combating Plant Nutrition -- Role of Nanoparticles in Remediation of Contaminated Soils -- Biochemical, Molecular and Ultrastructural Aspects in Phytoremediation of Nanoparticles Subjected to Unfertilized Soil -- Nanomaterials: A New Approach in Biofortification -- Applications and Implications of Nano-Fertilizers in Food Industries -- Nanobiosensors Based on Agri-Biomass -- Nanoparticles Uptake and Translocation in Plants -- Risks and Concerns of Use of Nanoparticles in Agriculture -- Mechanism of Nanoparticles Mediated Alleviating Biotic and Abiotic Stresses in Agricultural Crops -- Role of Nanoparticles in Environment, Human, and Animals Under Contaminated Soil -- Cytotoxic and Genotoxic Aspects of nanoparticles Interactions with Plant Systems -- Nanoparticles and its Effects on Growth, Yield, and Crop Quality Cultivated Under Polluted Soil -- Impact of nanoparticles of Modulations of Genes and Secondary Metabolites in Plants -- Interaction of Nanoparticles with Plant Growth Promoting Rhizobacteria in Polluted Soil -- Interaction of Nanomaterials with Plant Metabolism -- Bibliography -- Index.
Record Nr. UNINA-9910574048703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Toxicology of Nanoparticles: Insights from Drosophila / / edited by Namita Agrawal, Prasanna Shah
Toxicology of Nanoparticles: Insights from Drosophila / / edited by Namita Agrawal, Prasanna Shah
Autore Agrawal Namita
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Singapore, 2020
Descrizione fisica 1 online resource (128 pages)
Disciplina 615.1901
Soggetto topico Human physiology
Nanotechnology
Biology - Technique
Pharmacology
Human Physiology
Experimental Organisms
Drosòfila
Nanopartícules
Toxicologia
Soggetto genere / forma Llibres electrònics
ISBN 981-15-5522-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Synthesis and characterization of nanoparticles used in consumer products -- Chapter 2. Model organisms for in vivo assessment of nanoparticles -- Chapter 3. Impact of nanoparticles on behavior and physiology of Drosophila melanogaster -- Chapter 4. Dose-dependent influence of nanoparticles on fertility and survival -- Chapter 5. Effect of nanoparticles on maintenance of metabolic homeostasis -- Chapter 6. Nanoparticles: an activator of oxidative stress -- Chapter 7. Safe dose of nanoparticles: A boon for consumer goods and biomedical application.
Record Nr. UNINA-9910863126203321
Agrawal Namita  
Springer Singapore, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui