top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in microfluidics and nanofluids / / edited by S. M. Sohel Murshed
Advances in microfluidics and nanofluids / / edited by S. M. Sohel Murshed
Pubbl/distr/stampa London, England : , : IntechOpen, , [2021]
Descrizione fisica 1 online resource (190 pages)
Disciplina 532.05
Soggetto topico Microfluidics
Nanofluids
ISBN 1-83968-693-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910586692403321
London, England : , : IntechOpen, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Application of nonlinear systems in nanomechanics and nanofluids : analytical methods and applications / / Davood Domairry Ganji, Sayyid Habibollah Hashemi Kachapi
Application of nonlinear systems in nanomechanics and nanofluids : analytical methods and applications / / Davood Domairry Ganji, Sayyid Habibollah Hashemi Kachapi
Autore Ganji Davood Domairry
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2015]
Descrizione fisica 1 online resource (412 p.)
Disciplina 515/.392
Collana Micro and Nano Technologies
Soggetto topico Nanofluids
Nonlinear systems
ISBN 0-323-35381-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Application of Nonlinear Systems in Nanomechanics and Nanofluids: Analytical Methods and Applications; Copyright; Dedication ; Contents; Preface; Introduction; Audience; Acknowledgments; Chapter 1: Introduction to Nanotechnology, Nanomechanics, Micromechanics, and Nanofluid; 1.1. Nanotechnology; 1.1.1. Introduction to Nanotechnology; 1.1.2. Origins; 1.1.3. Fundamental Concepts; 1.1.4. Nanomaterials; 1.2. Nanomechanics; 1.3. Micromechanics; 1.4. Nanofluid; 1.4.1. Introduction; 1.4.2. Synthesis of Nanofluids; 1.4.3. Smart Cooling Nanofluids
1.4.4. Response Stimuli Nanofluids for Sensing Applications1.4.5. Applications; References; Chapter 2: Semi Nonlinear Analysis in Carbon Nanotube; 2.1. Introduction of Carbon Nanotube; 2.1.1. Single-Wall Nanotubes; 2.1.2. Multiwall Nanotubes; 2.1.3. Double-Wall Nanotubes; 2.2. Single SWCNT over a Bundle of Nanotube; 2.2.1. Introduction; 2.2.2. Formulations; 2.2.2.1. Schematic of problem; 2.2.2.2. Modeling the individual SWCNT as a beam; 2.2.2.3. Differential quadrature and solution procedure; 2.2.2.4. Finite element method; 2.2.3. Results; 2.2.3.1. Mesh point number effect
2.2.3.2. Length effect2.2.3.3. Validation of GDQ approach; 2.2.4. Conclusion; 2.3. Cantilevered SWCNT as a Nanomechanical Sensor; 2.3.1. Introduction; 2.3.2. Analysis of the Problem; 2.3.2.1. Basic bending vibration and resonant frequencies of SWCNT with attached mass; 2.3.2.2. Resonant frequency of cantilevered SWCNT where the mass is rigidly attached to the tip; 2.3.3. Numerical Results; 2.3.3.1. Vibration mode analysis; 2.3.4. Mass Sensor Mode Comparison; 2.3.5. Conclusion; 2.4. Nonlinear Vibration for Embedded CNT; 2.4.1. Introduction; 2.4.2. Basic Equations; 2.4.3. Solution Methodology
2.4.4. Numerical Results and Discussion2.4.5. Conclusion; 2.5. Curved SWCNT; 2.5.1. Introduction; 2.5.2. Vibrational Model; 2.5.3. Solution Methodology; 2.5.4. Numerical Results and Discussion; 2.5.5. Conclusion; 2.6. CNT with Rippling Deformations; 2.6.1. Introduction; 2.6.2. Vibration Model; 2.6.2.1. Boundary conditions; 2.6.2.2. Nonlinear vibration model; 2.6.2.3. Nonlinear analysis; 2.6.3. Results and Discussion; 2.6.4. Conclusion; References; Chapter 3: Physical Relationships between Nanoparticle and Nanofluid Flow; 3.1. Turbulent Natural Convection Using Cu/Water Nanofluid
3.1.1. Introduction3.1.2. Numerical Method; 3.1.2.1. Problem statement; 3.1.2.2. LBM; 3.1.2.3. LES method; 3.1.2.4. LBM based on LES model; 3.1.2.5. LBM for nanofluid; 3.1.2.6. Boundary conditions; 3.1.2.6.1. Flow; 3.1.2.6.2. Temperature; 3.1.3. Code Validation and Mesh Results; 3.1.4. Result and Discussion; 3.1.5. Conclusions; 3.2. Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates; 3.2.1. Introduction; 3.2.2. Governing Equations; 3.2.3. Analysis of the HPM; 3.2.4. Implementation of the Method; 3.2.5. Results and Discussion; 3.2.6. Conclusion
3.3. Slip Effects on Unsteady Stagnation Point Flow of a Nanofluid over a Stretching Sheet
Record Nr. UNINA-9910788149203321
Ganji Davood Domairry  
Amsterdam : , : Elsevier, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Application of nonlinear systems in nanomechanics and nanofluids : analytical methods and applications / / Davood Domairry Ganji, Sayyid Habibollah Hashemi Kachapi
Application of nonlinear systems in nanomechanics and nanofluids : analytical methods and applications / / Davood Domairry Ganji, Sayyid Habibollah Hashemi Kachapi
Autore Ganji Davood Domairry
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2015]
Descrizione fisica 1 online resource (412 p.)
Disciplina 515/.392
Collana Micro and Nano Technologies
Soggetto topico Nanofluids
Nonlinear systems
ISBN 0-323-35381-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Application of Nonlinear Systems in Nanomechanics and Nanofluids: Analytical Methods and Applications; Copyright; Dedication ; Contents; Preface; Introduction; Audience; Acknowledgments; Chapter 1: Introduction to Nanotechnology, Nanomechanics, Micromechanics, and Nanofluid; 1.1. Nanotechnology; 1.1.1. Introduction to Nanotechnology; 1.1.2. Origins; 1.1.3. Fundamental Concepts; 1.1.4. Nanomaterials; 1.2. Nanomechanics; 1.3. Micromechanics; 1.4. Nanofluid; 1.4.1. Introduction; 1.4.2. Synthesis of Nanofluids; 1.4.3. Smart Cooling Nanofluids
1.4.4. Response Stimuli Nanofluids for Sensing Applications1.4.5. Applications; References; Chapter 2: Semi Nonlinear Analysis in Carbon Nanotube; 2.1. Introduction of Carbon Nanotube; 2.1.1. Single-Wall Nanotubes; 2.1.2. Multiwall Nanotubes; 2.1.3. Double-Wall Nanotubes; 2.2. Single SWCNT over a Bundle of Nanotube; 2.2.1. Introduction; 2.2.2. Formulations; 2.2.2.1. Schematic of problem; 2.2.2.2. Modeling the individual SWCNT as a beam; 2.2.2.3. Differential quadrature and solution procedure; 2.2.2.4. Finite element method; 2.2.3. Results; 2.2.3.1. Mesh point number effect
2.2.3.2. Length effect2.2.3.3. Validation of GDQ approach; 2.2.4. Conclusion; 2.3. Cantilevered SWCNT as a Nanomechanical Sensor; 2.3.1. Introduction; 2.3.2. Analysis of the Problem; 2.3.2.1. Basic bending vibration and resonant frequencies of SWCNT with attached mass; 2.3.2.2. Resonant frequency of cantilevered SWCNT where the mass is rigidly attached to the tip; 2.3.3. Numerical Results; 2.3.3.1. Vibration mode analysis; 2.3.4. Mass Sensor Mode Comparison; 2.3.5. Conclusion; 2.4. Nonlinear Vibration for Embedded CNT; 2.4.1. Introduction; 2.4.2. Basic Equations; 2.4.3. Solution Methodology
2.4.4. Numerical Results and Discussion2.4.5. Conclusion; 2.5. Curved SWCNT; 2.5.1. Introduction; 2.5.2. Vibrational Model; 2.5.3. Solution Methodology; 2.5.4. Numerical Results and Discussion; 2.5.5. Conclusion; 2.6. CNT with Rippling Deformations; 2.6.1. Introduction; 2.6.2. Vibration Model; 2.6.2.1. Boundary conditions; 2.6.2.2. Nonlinear vibration model; 2.6.2.3. Nonlinear analysis; 2.6.3. Results and Discussion; 2.6.4. Conclusion; References; Chapter 3: Physical Relationships between Nanoparticle and Nanofluid Flow; 3.1. Turbulent Natural Convection Using Cu/Water Nanofluid
3.1.1. Introduction3.1.2. Numerical Method; 3.1.2.1. Problem statement; 3.1.2.2. LBM; 3.1.2.3. LES method; 3.1.2.4. LBM based on LES model; 3.1.2.5. LBM for nanofluid; 3.1.2.6. Boundary conditions; 3.1.2.6.1. Flow; 3.1.2.6.2. Temperature; 3.1.3. Code Validation and Mesh Results; 3.1.4. Result and Discussion; 3.1.5. Conclusions; 3.2. Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates; 3.2.1. Introduction; 3.2.2. Governing Equations; 3.2.3. Analysis of the HPM; 3.2.4. Implementation of the Method; 3.2.5. Results and Discussion; 3.2.6. Conclusion
3.3. Slip Effects on Unsteady Stagnation Point Flow of a Nanofluid over a Stretching Sheet
Record Nr. UNINA-9910808589203321
Ganji Davood Domairry  
Amsterdam : , : Elsevier, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of nanofluid for heat transfer enhancement / / Davood Domairry Ganji, Mohsen Sheikholeslami
Applications of nanofluid for heat transfer enhancement / / Davood Domairry Ganji, Mohsen Sheikholeslami
Autore Ganji Davood Domairry
Edizione [1st edition]
Pubbl/distr/stampa Boston, MA : , : Elsevier, , [2017]
Descrizione fisica 1 online resource (620 pages) : illustrations
Collana Micro and nano technologies
Soggetto topico Nanofluids
Heat - Transmission
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583042003321
Ganji Davood Domairry  
Boston, MA : , : Elsevier, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of nanofluid for heat transfer enhancement / Mohsen Sheikholeslami, Davood Domairry Ganji
Applications of nanofluid for heat transfer enhancement / Mohsen Sheikholeslami, Davood Domairry Ganji
Autore Sheikholeslami, Mohsen
Pubbl/distr/stampa Amsterdam : Elsevier, c2017
Descrizione fisica xii, 605 p. : ill. (some color) ; 24 cm
Disciplina 621.402
Collana Micro and nano technologies series
Soggetto topico Nanofluids
Heat - Transmission
ISBN 9780081021729
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003609299707536
Sheikholeslami, Mohsen  
Amsterdam : Elsevier, c2017
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Applications of semi-analytical methods for nanofluid flow and heat transfer / / Mohsen Sheikholeslami, Davood Domairry Ganji
Applications of semi-analytical methods for nanofluid flow and heat transfer / / Mohsen Sheikholeslami, Davood Domairry Ganji
Autore Sheikholeslami Mohsen
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2018
Descrizione fisica 1 online resource (869 pages) : illustrations (some color), graphs
Disciplina 620.106
Collana Micro & Nano Technologies Series
Soggetto topico Nanofluids
Heat - Transmission
ISBN 0-12-813676-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583052203321
Sheikholeslami Mohsen  
Amsterdam, Netherlands : , : Elsevier, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrokinetic microfluidics and nanofluidics / / Dongqing Li
Electrokinetic microfluidics and nanofluidics / / Dongqing Li
Autore Li Dongqing
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (288 pages)
Disciplina 530.417
Collana Fluid mechanics and its applications
Soggetto topico Electrokinetics
Microfluidics
Nanofluids
ISBN 9783031161315
9783031161308
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Author -- 1 Basics of Interfacial Electrokinetics -- 1.1 Electrical Double Layer -- 1.1.1 Electrical Field in a Dielectric Medium -- 1.1.2 Origin of Surface Charge -- 1.1.3 Electrical Double Layer (EDL) -- 1.1.4 Boltzmann Distribution -- 1.1.5 Theoretical Model and Analysis of EDL -- 1.1.6 EDL Field Near a Flat Surface -- 1.1.7 EDL Field Around a Spherical Surface -- 1.1.8 EDL Field Around a Cylinder -- 1.1.9 Concentration and pH Dependence of Surface Charge and Zeta Potential -- 1.2 Electroosmotic Flows in Microchannels -- 1.2.1 Electroosmotic Flow Velocity -- 1.2.2 Electroosmotic Flow in a Slit Microchannel -- 1.2.3 Electroosmotic Flow in a Cylindrical Microchannel -- 1.3 Introduction to Electrophoresis -- References -- 2 Induced Charge Electrokinetic Transport Phenomena -- 2.1 Basics of Induced Charge Electrokinetics -- 2.2 Induced Charge Electroosmotic Flow [3, 4, 8, 9, 10, 11] -- 2.2.1 Flow Field with Vortices in the Converging-Diverging Section -- 2.2.2 Regulating Flow -- 2.3 Flow Mixing by Induced Charge Electroosmotic Flow -- 2.4 Induced Charge Electrokinetic Motion of Fully Polarizable Particles -- 2.4.1 Electric Field -- 2.4.2 Flow Field -- 2.4.3 Particle Motion -- 2.4.4 Transient Motion of Conducting Particles Along the Center of a Microchannel -- 2.4.5 Wall Effects on Induced Charge Electrokinetic Motion of Conducting Particles -- 2.4.6 Particle Focusing in a Microchannel -- 2.4.7 Particle Separation by Density -- 2.5 Induced Charge Particle-Particle Interactions -- 2.6 Polarizability Dependence of Electrokinetic Motion of Dielectric Particles -- 2.6.1 Polarization of Dielectrics -- 2.6.2 The Induced Surface Potential and Electroosmotic Flow -- 2.6.3 Interaction of Two Dielectric Particles Due to Induced Charge EOF -- References -- 3 DC-Dielectrophoresis in Microfluidic Chips.
3.1 Basics of Dielectrophoresis -- 3.2 DC-DEP Separation of Micro-particles and Cells -- 3.3 DEP Produced by Asymmetric Orifices on Sidewalls of Microchannel -- 3.3.1 DC-DEP Separation of Micro-particles By Size -- 3.3.2 DC-DEP Separation of Nano-particles By Size -- 3.3.3 DC-DEP Separation of Nano-particles By Type -- 3.3.4 AC-DEP Separation of Biological Cells -- References -- 4 Electroosmotic Flow and Electrophoresis in Nanochannels -- 4.1 Difference and Challenge -- 4.2 Single Nanochannel Fabrication by Nano-crack Method -- 4.2.1 Effect of Reagents -- 4.2.2 Effects of Alcohol Volume and Heating Time -- 4.2.3 Concentration Effects and the Role of Water -- 4.2.4 Temperature Effects -- 4.2.5 Number of Nano-cracks -- 4.2.6 Controlling the Locations of the Nano-cracks -- 4.2.7 How to Transfer the Pattern of a Nano-crack into a Positive Nanochannel Mold -- 4.2.8 Effects of Photoresist Type (Solvent Content) -- 4.2.9 Effects of Spin-Coating Time -- 4.2.10 Effects of UV Exposure Dose -- 4.2.11 Thickness of the Photoresist Layer -- 4.2.12 Bi-layer PDMS Microchannel and Nanochannel Fabrication -- 4.2.13 Durability of Nanochannel Molds -- 4.2.14 Chip Bonding -- 4.3 Characteristics of Electroosmotic Flow in Nanochannels -- 4.3.1 EOF Velocity Measurement by the Current Slope Method -- 4.3.2 Channel Size Effects -- 4.3.3 Ionic Concentration Effects -- 4.3.4 Electric Field Effect -- 4.3.5 Ion Size Effects -- 4.3.6 Ion Valence Effects -- 4.3.7 pH Value Effects -- 4.4 Nanoparticle Transport in Nanochannels -- 4.4.1 Ionic Concentration Effects -- 4.4.2 Effects of Particle Size to Channel Size Ratio -- 4.4.3 Electric Field Effects -- References -- 5 Janus Particles and Janus Droplets -- 5.1 Introduction -- 5.2 Induced Charge Electrokinetic Motion of Janus Particles -- 5.2.1 Electric Field -- 5.2.2 Flow Field -- 5.2.3 Particle Motion.
5.2.4 Micro-vortex Generation and Particle Motion -- 5.2.5 Electrokinetic Motion of Janus Particle in Different Orientations -- 5.2.6 Zeta Potential Effect on Vortices Around Janus Particle -- 5.2.7 Effect of Janus Particle Size on Its Motion -- 5.2.8 Different Portion of Polarizable Material of Janus Particle -- 5.2.9 Experimentally Observed Motion of Janus Particles -- 5.3 Electrically Induced Janus Droplets -- 5.3.1 Effect of the Concentration of the Nanoparticle Suspension -- 5.3.2 Effect of the Applied Electric Field -- 5.3.3 Vortices Around EIJD -- 5.3.4 Effect of the Applied Electrical Field -- 5.3.5 Effect of the Surface Coverage Under the Same Electrical Field -- 5.4 Electrokinetic Motion of EIJD in Microchannels -- 5.4.1 Formation of EIJD with Different Surface Coverage by Nanoparticles (r) -- 5.4.2 Vortices in Vicinity of Janus Droplet -- 5.4.3 Effects of Applied Electrical Field and Surface Coverage of Nanoparticles on Electrokineitc Motion -- 5.4.4 Effect of the Janus Droplet Size on Electrokineitc Motion -- 5.4.5 Effect of Electrolyte Concentration on Electrokineitc Motion of EIJD -- 5.4.6 Flow Focusing with Positively Charged Droplets -- 5.5 Droplets with Multiple Heterogeneous Surface Strips -- 5.5.1 EOF Fields Around Janus Droplets -- 5.5.2 Electrokinetic Motion of Droplets with Different Nanoparticle Films -- 5.6 Micro-valve Controlled by an Electrically Induced Janus Droplet -- 5.6.1 Rotation of the EIJD by Switching Electric Field -- 5.6.2 Operation of the Micro-valve -- 5.6.3 Effect of the Electric Field Strength on Micro-valve Switching Time -- 5.6.4 Sealing Performance of the EIJD Micro-valve -- References -- 6 Nanofluidic Iontronic Devices -- 6.1 Nanofluidic Based Iontronics -- 6.2 Ionic Diode Based on an Asymmetric-Shaped Nanoparticle Membrane -- 6.2.1 Fabrication of Asymmetric NCNM -- 6.2.2 Fabrication of Nanofluidic Chips.
6.2.3 Measurement System and Experimental Procedures -- 6.2.4 Characterization of the Asymmetric NCNM Membrane -- 6.2.5 Mechanism of the Ionic Current Rectification -- 6.2.6 Performance Evaluation of the NCNM Ionic Diode -- 6.2.7 Modification of the NCNM Ionic Diode with Cationic Surfactant -- 6.2.8 NCNM Ionic Transistor -- 6.2.9 Ionic Diode Bridge -- 6.3 Surface Modification Using Layer-by-Layer Method-Change of Channel Size and Surface Charge -- 6.3.1 Surface Modification Using LBL Method -- 6.3.2 Growth of Polymer Layers on Flat Hard-PDMS Surfaces [2, 3] -- 6.3.3 Growth of Polymer Layers in Nanochannels [2, 3] -- 6.3.4 Ion Type Effects -- 6.4 Single Nanochannel Ionic Diode-Regulation of Ion Transport in Nanofluidics by Surface Modification -- 6.4.1 Surface Modification of Nanochannel for Nanofluidic Diode -- 6.4.2 Working Principle of the Nanofluidic Diode -- 6.4.3 Effects of Frequency of the Applied Electric Field -- 6.4.4 Effects of the Ionic Concentration -- 6.4.5 Effects of Nanochannel Length -- 6.4.6 Effects of Electric Field Strength -- 6.5 From Ionic Diode to Ionic Transistor and Ionic Circuit [4] -- 6.5.1 Ionic Bipolar Junction Transistor -- 6.5.2 Full-Wave Ionic Rectifier -- References -- 7 Differential Resistive Pulse Sensor -- 7.1 Resistive Pulse Sensor -- 7.2 Microfluidic Differential Resistive Pulse Sensor -- 7.2.1 Effects of Particle-to-Sensing Gate Volume Ratio -- 7.2.2 Applied Voltage Effects -- 7.3 Improved Sensitivity by Electrokinetic Flow Focusing Method -- 7.4 High-Throughput Microfluidic Differential Resistive Pulse Sensor -- 7.5 Resistive Pulse Sensor with a Nanochannel Sensing Gate -- 7.6 Enhanced Sensitivity by Modifying Surface Charge of Nano Sensing Gate -- 7.7 Resistive Pulse Sensor with a Carbon Nanotube as Sensing Gate -- 7.7.1 Detection of Potassium Ions -- 7.7.2 Detection of 30-nt and 15-nt ssDNAs -- References.
Record Nr. UNINA-9910631092103321
Li Dongqing  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended-nanofluidic systems for chemistry and biotechnology [[electronic resource] /] / Kitamori Takehiko ... [et al.]
Extended-nanofluidic systems for chemistry and biotechnology [[electronic resource] /] / Kitamori Takehiko ... [et al.]
Pubbl/distr/stampa London, : Imperial College Press, 2012
Descrizione fisica 1 online resource (187 p.)
Disciplina 620.106
Altri autori (Persone) TakehikoKitamori
Soggetto topico Nanofluids
Microfluidics
Fluidic devices
Soggetto genere / forma Electronic books.
ISBN 1-281-60347-3
9786613784162
1-84816-802-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Chapter 1. Introduction; References; Chapter 2. Microchemical Systems; References; Chapter 3. Fundamental Technology: Nanofabrication Methods; 3.1. Top-Down Fabrication; 3.1.1. Introduction; 3.1.2. Bulk nanomachining techniques; 3.1.2.1. Combination of lithography and wet etching; 3.1.2.2. Combination of lithography and dry etching; 3.1.2.3. Other lithographic techniques; 3.1.2.4. Direct nanofabrication; 3.1.3. Surface machining techniques; 3.1.3.1. Utilization of polysilicon as a sacrificial material; 3.1.3.2. Utilization of metals and polymers as sacrificial materials
3.1.4. Imprinting and embossing nanofabrication techniques3.1.5. New strategies of nanofabrication; 3.1.5.1. Non-lithographic techniques; 3.1.5.2. Hybrid-material techniques; 3.1.6. Combination of lift-off and lithography; 3.2. Local Surface Modification; 3.2.1. Modification using VUV; 3.2.2. Modification using an electron beam; 3.2.3. Modification using photochemical reaction; 3.3. Bonding; 3.3.1. Introduction; 3.3.2. Wafer bond characterization methods; 3.3.3. Wafer direct bonding; 3.3.4. Wafer direct bonding mechanism; 3.3.5. Surface requirements for wafer direct bonding
3.3.6. Low temperature direct bonding by surface plasma activation3.3.7. Anodic bonding; References; Chapter 4. Fundamental Technology: Fluidic Control Methods; 4.1. Basic Theory; 4.2. Pressure-Driven Flow; 4.3. Shear-Driven Flow; 4.4. Electrokinetically-Driven Flow; 4.5. Conclusion and Outlook; References; Chapter 5. Fundamental Technology: Detection Methods; 5.1. Single Molecule Detection Methods; 5.1.1. Optical detection methods; 5.1.2. Electrochemical methods; 5.2. Measurement of Fluidic Properties; 5.2.1. Nonintrusive flow measurement techniques
5.2.1.1. Streaming potential/current measurement in pressure-driven flows5.2.1.2. Current monitoring in electroosmotic flow; 5.2.2. Optical flow imaging techniques using a tracer; 5.2.2.1. Properties of flow tracers; 5.2.2.2. Scalar image velocimetry; 5.2.2.3. Nanoparticle image velocimetry; 5.2.2.4. Laser-induced fluorescence photobleaching anemometer with stimulated emission depletion; References; Chapter 6. Basic Nanoscience; 6.1. Liquid Properties; 6.1.1. Introduction; 6.1.2. Viscosities of liquids confined in extended nanospaces; 6.1.3. Electrical conductivity in extended nanospaces
6.1.4. Streaming current/potential in extended nanospaces6.1.5. Ion transport in extended nanospaces; 6.1.6. Gas/liquid phase transition phenomena in extended nanospaces; 6.1.7. Structures and dynamics of liquids confined in extended nanospaces; 6.2. Chemical Reaction; 6.2.1. Enzymatic reaction; 6.2.2. Keto-enol tautomeric equilibrium; 6.2.3. Nanoparticle synthesis; 6.2.4. Nano DNA hybridization; 6.2.5. Nano redox reaction; 6.3. Liquid Properties in Intercellular Space; References; Chapter 7. Application to Chemistry and Biotechnology; 7.1. Separation; 7.1.1. Separation by electrophoresis
7.1.2. Separation by pressure-driven flow or shear-driven flow
Record Nr. UNINA-9910462507803321
London, : Imperial College Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended-nanofluidic systems for chemistry and biotechnology [[electronic resource] /] / Kitamori Takehiko ... [et al.]
Extended-nanofluidic systems for chemistry and biotechnology [[electronic resource] /] / Kitamori Takehiko ... [et al.]
Pubbl/distr/stampa London, : Imperial College Press, 2012
Descrizione fisica 1 online resource (187 p.)
Disciplina 620.106
Altri autori (Persone) TakehikoKitamori
Soggetto topico Nanofluids
Microfluidics
Fluidic devices
ISBN 1-281-60347-3
9786613784162
1-84816-802-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Chapter 1. Introduction; References; Chapter 2. Microchemical Systems; References; Chapter 3. Fundamental Technology: Nanofabrication Methods; 3.1. Top-Down Fabrication; 3.1.1. Introduction; 3.1.2. Bulk nanomachining techniques; 3.1.2.1. Combination of lithography and wet etching; 3.1.2.2. Combination of lithography and dry etching; 3.1.2.3. Other lithographic techniques; 3.1.2.4. Direct nanofabrication; 3.1.3. Surface machining techniques; 3.1.3.1. Utilization of polysilicon as a sacrificial material; 3.1.3.2. Utilization of metals and polymers as sacrificial materials
3.1.4. Imprinting and embossing nanofabrication techniques3.1.5. New strategies of nanofabrication; 3.1.5.1. Non-lithographic techniques; 3.1.5.2. Hybrid-material techniques; 3.1.6. Combination of lift-off and lithography; 3.2. Local Surface Modification; 3.2.1. Modification using VUV; 3.2.2. Modification using an electron beam; 3.2.3. Modification using photochemical reaction; 3.3. Bonding; 3.3.1. Introduction; 3.3.2. Wafer bond characterization methods; 3.3.3. Wafer direct bonding; 3.3.4. Wafer direct bonding mechanism; 3.3.5. Surface requirements for wafer direct bonding
3.3.6. Low temperature direct bonding by surface plasma activation3.3.7. Anodic bonding; References; Chapter 4. Fundamental Technology: Fluidic Control Methods; 4.1. Basic Theory; 4.2. Pressure-Driven Flow; 4.3. Shear-Driven Flow; 4.4. Electrokinetically-Driven Flow; 4.5. Conclusion and Outlook; References; Chapter 5. Fundamental Technology: Detection Methods; 5.1. Single Molecule Detection Methods; 5.1.1. Optical detection methods; 5.1.2. Electrochemical methods; 5.2. Measurement of Fluidic Properties; 5.2.1. Nonintrusive flow measurement techniques
5.2.1.1. Streaming potential/current measurement in pressure-driven flows5.2.1.2. Current monitoring in electroosmotic flow; 5.2.2. Optical flow imaging techniques using a tracer; 5.2.2.1. Properties of flow tracers; 5.2.2.2. Scalar image velocimetry; 5.2.2.3. Nanoparticle image velocimetry; 5.2.2.4. Laser-induced fluorescence photobleaching anemometer with stimulated emission depletion; References; Chapter 6. Basic Nanoscience; 6.1. Liquid Properties; 6.1.1. Introduction; 6.1.2. Viscosities of liquids confined in extended nanospaces; 6.1.3. Electrical conductivity in extended nanospaces
6.1.4. Streaming current/potential in extended nanospaces6.1.5. Ion transport in extended nanospaces; 6.1.6. Gas/liquid phase transition phenomena in extended nanospaces; 6.1.7. Structures and dynamics of liquids confined in extended nanospaces; 6.2. Chemical Reaction; 6.2.1. Enzymatic reaction; 6.2.2. Keto-enol tautomeric equilibrium; 6.2.3. Nanoparticle synthesis; 6.2.4. Nano DNA hybridization; 6.2.5. Nano redox reaction; 6.3. Liquid Properties in Intercellular Space; References; Chapter 7. Application to Chemistry and Biotechnology; 7.1. Separation; 7.1.1. Separation by electrophoresis
7.1.2. Separation by pressure-driven flow or shear-driven flow
Record Nr. UNINA-9910790309203321
London, : Imperial College Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended-nanofluidic systems for chemistry and biotechnology / / Kitamori Takehiko ... [et al.]
Extended-nanofluidic systems for chemistry and biotechnology / / Kitamori Takehiko ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa London, : Imperial College Press, 2012
Descrizione fisica 1 online resource (187 p.)
Disciplina 620.106
Altri autori (Persone) TakehikoKitamori
Soggetto topico Nanofluids
Microfluidics
Fluidic devices
ISBN 1-281-60347-3
9786613784162
1-84816-802-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Chapter 1. Introduction; References; Chapter 2. Microchemical Systems; References; Chapter 3. Fundamental Technology: Nanofabrication Methods; 3.1. Top-Down Fabrication; 3.1.1. Introduction; 3.1.2. Bulk nanomachining techniques; 3.1.2.1. Combination of lithography and wet etching; 3.1.2.2. Combination of lithography and dry etching; 3.1.2.3. Other lithographic techniques; 3.1.2.4. Direct nanofabrication; 3.1.3. Surface machining techniques; 3.1.3.1. Utilization of polysilicon as a sacrificial material; 3.1.3.2. Utilization of metals and polymers as sacrificial materials
3.1.4. Imprinting and embossing nanofabrication techniques3.1.5. New strategies of nanofabrication; 3.1.5.1. Non-lithographic techniques; 3.1.5.2. Hybrid-material techniques; 3.1.6. Combination of lift-off and lithography; 3.2. Local Surface Modification; 3.2.1. Modification using VUV; 3.2.2. Modification using an electron beam; 3.2.3. Modification using photochemical reaction; 3.3. Bonding; 3.3.1. Introduction; 3.3.2. Wafer bond characterization methods; 3.3.3. Wafer direct bonding; 3.3.4. Wafer direct bonding mechanism; 3.3.5. Surface requirements for wafer direct bonding
3.3.6. Low temperature direct bonding by surface plasma activation3.3.7. Anodic bonding; References; Chapter 4. Fundamental Technology: Fluidic Control Methods; 4.1. Basic Theory; 4.2. Pressure-Driven Flow; 4.3. Shear-Driven Flow; 4.4. Electrokinetically-Driven Flow; 4.5. Conclusion and Outlook; References; Chapter 5. Fundamental Technology: Detection Methods; 5.1. Single Molecule Detection Methods; 5.1.1. Optical detection methods; 5.1.2. Electrochemical methods; 5.2. Measurement of Fluidic Properties; 5.2.1. Nonintrusive flow measurement techniques
5.2.1.1. Streaming potential/current measurement in pressure-driven flows5.2.1.2. Current monitoring in electroosmotic flow; 5.2.2. Optical flow imaging techniques using a tracer; 5.2.2.1. Properties of flow tracers; 5.2.2.2. Scalar image velocimetry; 5.2.2.3. Nanoparticle image velocimetry; 5.2.2.4. Laser-induced fluorescence photobleaching anemometer with stimulated emission depletion; References; Chapter 6. Basic Nanoscience; 6.1. Liquid Properties; 6.1.1. Introduction; 6.1.2. Viscosities of liquids confined in extended nanospaces; 6.1.3. Electrical conductivity in extended nanospaces
6.1.4. Streaming current/potential in extended nanospaces6.1.5. Ion transport in extended nanospaces; 6.1.6. Gas/liquid phase transition phenomena in extended nanospaces; 6.1.7. Structures and dynamics of liquids confined in extended nanospaces; 6.2. Chemical Reaction; 6.2.1. Enzymatic reaction; 6.2.2. Keto-enol tautomeric equilibrium; 6.2.3. Nanoparticle synthesis; 6.2.4. Nano DNA hybridization; 6.2.5. Nano redox reaction; 6.3. Liquid Properties in Intercellular Space; References; Chapter 7. Application to Chemistry and Biotechnology; 7.1. Separation; 7.1.1. Separation by electrophoresis
7.1.2. Separation by pressure-driven flow or shear-driven flow
Record Nr. UNINA-9910809253803321
London, : Imperial College Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui